
OO Language
Concepts

for
Procedural 4GL

Developers OO Development
Technology

Developer

Procedural
Development

Technology

Timothy D. Kuehn

Senior OpenEdge Consultant

TDK Consulting Services Inc

timk@tdkcs.ca tim.kuehn@gmail.com
Ph 519-576-8100 Cell: 519-781-0081

mailto:timk@tdkcs.ca

OO Language Concepts for 4GL Developers TDK
Consulting
Services Inc

Note to Reader

This document was part of a workshop given at PUG Challenge Americas 2013.
The associated code samples, exercises, quizzes, and answers and are part of an

“Introduction to OO” course offered by TDK Consulting Services Inc and are
available to attendees of this course.

OO Language Concepts for 4GL Developers
What is This Presentation About?

Intended as a introduction for procedural developers looking to
learn about OO programming.

• Define Various OO Language Elements

• Examine code which shows how they behave

• Use OEA/PDS to step through live examples

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
And we’re off!

TDK
Consulting
Services Inc

And we’re off!

OO Language Concepts for 4GL Developers
OO Language Element Definitions

What is a Class?
A class is a set of methods and properties grouped together in a
single definition file for the purpose of accomplishing a task.

/* presentation/classes/ClassWrapperClass.cls */
CLASS presentation.classes.ClassWrapperClass:

/* data definitions */
/* method definitions */
/* constructor, destructor*/

END CLASS.

Note: Class names must be distinct from db table field names!

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Element Definitions

What is an Object?
An object is the actualization of a class, it contains the class’s default data and any
actions that can be performed by its methods.

class = definition of how to do something.
object = an instance of that definition

In other words:
• classes are to OO what a persistent or super procedure files are to procedures,
• objects are to OO what procedure instances are to persistent and super
procedures.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Making an Object

How does one make an object?

/* presentation/examples/Class.p */

DEFINE VARIABLE oClass AS presentation.classes.ClassWrapperClass NO-UNDO.

oClass = NEW presentation.classes.ClassWrapperClass().

TDK
Consulting
Services Inc

What is a Method?
A method is a function that is encased in a class.

/* presentation/classes/MethodWrapper.cls */

CLASS presentation.classes.MethodWrapperClass:

METHOD CHARACTER MethodName():

RETURN("character string").

END METHOD.

END CLASS.

OO Language Concepts for 4GL Developers
OO Language Elements: Methods

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Methods

/* presentation/classes/MethodClass.cls */

CLASS presentation.classes.MethodClass:

DEFINE VARIABLE ch-MethodVar AS CHARACTER NO-UNDO.

METHOD VOID SetVariable(ip-methodvar AS CHARACTER):

ch-MethodVar = ip-methodvar.

END METHOD.

METHOD CHARACTER GetVariable():

RETURN(ch-MethodVar).

END METHOD.

END CLASS.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Methods

/* presentation/examples/Method.p */

DEFINE VARIABLE oMethodClass AS presentation.classes.MethodClass NO-UNDO.

oMethodClass = NEW presentation.classes.MethodClass().

oMethodClass:SetVariable("class value").

MESSAGE oMethodClass:GetVariable() VIEW-AS ALERT-BOX.

TDK
Consulting
Services Inc

What is a Property?
A property is a variable encased in a class that can
• be directly accessed by objects and programs,
• contain logic.

/* presentation/classes/property/Property.cls */

CLASS presentation.classes.property.PropertyClass:

DEFINE PUBLIC PROPERTY character-property AS CHARACTER NO-UNDO

GET.

SET.

END CLASS.

OO Language Concepts for 4GL Developers
OO Language Elements: Properties

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Properties

/* presentation/classes/property/PropertySetterClass.cls */

CLASS presentation.classes.property.PropertySetterClass:

DEFINE PROPERTY ExampleProperty AS CHARACTER NO-UNDO

GET:

RETURN(ExampleProperty).

END GET.

SET(ip-char AS CHARACTER):

ASSIGN ExampleProperty = ip-char.

END SET.

END CLASS.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Properties

/* presentation/classes/Property.p */

DEFINE VARIABLE oProperty

AS presentation.classes. property.PropertyClass NO-UNDO.

DEFINE VARIABLE oPropertySetter

AS presentation.classes. property.PropertySetterClass NO-UNDO.

oProperty = NEW presentation.classes.property.PropertyClass().

oPropertySetter = NEW presentation.classes. property.PropertySetterClass().

oProperty:ExampleProperty = "class property".

oPropertySetter:ExampleProperty = "class property setter".

MESSAGE oProperty:ExampleProperty VIEW-AS ALERT-BOX.

MESSAGE oPropertySetter:ExampleProperty VIEW-AS ALERT-BOX.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Using.*

/* presentation/examples/Using.p */

DEFINE VARIABLE oMethodClass AS presentation.classes.MethodClass NO-UNDO.

oMethodClass = NEW presentation.classes.MethodClass().

Newer, Faster Way:

USING presentation.classes.*.

DEFINE VARIABLE oMethodClass AS MethodClass NO-UNDO.

oMethodClass = NEW MethodClass().

oMethodClass:SetCharacter("class value").

MESSAGE oMethodClass:GetCharacter() VIEW-AS ALERT-BOX.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Exercise Set 1

TDK
Consulting
Services Inc

Quiz #1 - What is all this stuff?

OO Language Concepts for 4GL Developers
OO Language Elements: PolyMorphism

Polymorphism provide a way to describe interface functionality that supports calls
from different contexts. (In programmer speak, the same method name can be called
using different parameter signatures.)

InventoryClass:GetParentSKU(1234).
InventoryClass:GetParentSKU(“SKU Name”).
InventoryClass:GetParentSKU(oSKU).

ProductionOrder:CreateUsing(sales-order-number).
ProductionOrder:CreateUsing(oSalesOrder).

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: PolyMorphism

/* presentation/classes/Polymorphism.cls */

CLASS presentation.classes.PolymorphismClass:

DEFINE VARIABLE ch-ExampleVar AS CHARACTER NO-UNDO.

METHOD VOID SetVariable(ip-numeric-value AS INTEGER):

SetVariable(STRING(ip-numeric-value)).

END METHOD.

METHOD VOID SetVariable(ip-charvalue AS CHARACTER):

ch-ExampleVar = ip-charvalue.

END METHOD.

METHOD CHARACTER GetVariable():

RETURN(ch-ExampleVar).

END METHOD.

END CLASS.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: PolyMorphism

/* presentation/examples/Polymorphism.p */

USING presentation.classes.*.

DEFINE VARIABLE oPolyClass1 AS PolymorphismClass NO-UNDO.

DEFINE VARIABLE oPolyClass2 AS PolymorphismClass NO-UNDO.

oPolyClass1 = NEW PolymorphismClass().

oPolyClass2 = NEW PolymorphismClass().

oPolyClass1:SetVariable("a string").

oPolyClass2:SetVariable(123).

MESSAGE oPolyClass1:GetVariable() SKIP

oPolyClass2:GetVariable()

VIEW-AS ALERT-BOX.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: PolyMorphism

TDK
Consulting
Services Inc

Caution: Polymorphism only applies to parameter data type signatures, not to data return types.

Legal – two methods in the class with
• the same method name,
• the same data return type,
• different parameter signatures:

METHOD PUBLIC VOID SetVariable(ch-var as CHARACTER):
METHOD PUBLIC VOID SetVariable(de-var as DECIMAL):

Not Legal – two methods in the class with
• the same method name,
• the same parameter signature,
• differing data return types:

METHOD PUBLIC CHARACTER GetVariable():
METHOD PUBLIC DECIMAL GetVariable():

Attempts to do this will result in a compiler error.

OO Language Concepts for 4GL Developers
OO Language Elements: Constructors

/* presentation/classes/ConstructorClass.cls */

CLASS presentation.classes.ConstructorClass:

DEFINE VARIABLE ch-value AS CHARACTER.

CONSTRUCTOR ConstructorClass():

THIS-OBJECT("default constructor value"). /* Calls a different constructor in this class */

END CONSTRUCTOR.

CONSTRUCTOR ConstructorClass(ipc-value AS CHARACTER):

ASSIGN ch-value = ipc-value.

END CONSTRUCTOR.

METHOD CHARACTER GetVariable():

RETURN(ch-value).

END METHOD.

END CLASS.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Constructors

/* presentation/examples/Constructor.p */

USING presentation.classes.*.

DEFINE VARIABLE aConstructor AS ConstructorClass NO-UNDO.

DEFINE VARIABLE bConstructor AS ConstructorClass NO-UNDO.

aConstructor = NEW ConstructorClass().

bConstructor = NEW ConstructorClass("my values").

MESSAGE aConstructor:GetVariable() SKIP

bConstructor:GetVariable()

VIEW-AS ALERT-BOX.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Destructors

/* presentation.classes.DestructorClass */

CLASS presentation.classes.DestructorClass:

DEFINE VARIABLE ch-name AS CHARACTER.

DESTRUCTOR DestructorClass():

MESSAGE "in destructor for object" SKIP ch-name VIEW-AS ALERT-BOX.

END DESTRUCTOR.

CONSTRUCTOR DestructorClass():

ASSIGN ch-name = "created using default constructor".

END CONSTRUCTOR.

CONSTRUCTOR DestructorClass(ipc-parm AS CHARACTER):

ASSIGN ch-name = ipc-parm.

END CONSTRUCTOR.

END CLASS.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Destructors

/* presentations/examples/Destructor.p */

USING presentation.classes.*.

DEFINE VARIABLE oDestructorClass AS DestructorClass NO-UNDO.

oDestructorClass = NEW DestructorClass().

MESSAGE "pause before object delete" VIEW-AS ALERT-BOX.

DELETE OBJECT oDestructorClass.

MESSAGE "pause after object delete" VIEW-AS ALERT-BOX.

TDK
Consulting
Services Inc

Sample Code:

USING presentation.classes.*.

DEFINE VARIABLE oDestructorClass AS DestructorClass NO-UNDO.

oDestructorClass = NEW DestructorClass().

RETURN.

• This looks like a classic memory leak.

• It’s also a common practice in the OO world.

• Why?

• Garbage Collection.

Garbage collection frees programmers from explicitly manage object memory
allocation by deleting objects when they’re no longer in use.

In the ABL world, “no longer in use” = “an object with no references to it”.

OO Language Concepts for 4GL Developers
OO Language Elements: Garbage Collection

TDK
Consulting
Services Inc

/* presentations/examples/Garbage-collection-1.p */

USING presentation.classes.*.

DEFINE VARIABLE oDestructorClass AS DestructorClass NO-UNDO.

oDestructorClass = NEW DestructorClass().

MESSAGE "run child program" VIEW-AS ALERT-BOX.

RUN presentation/examples/Garbage-collection-2.p.

MESSAGE "pause main program after child was run" VIEW-AS ALERT-BOX.

DELETE OBJECT oDestructorClass.

MESSAGE "pause main program after object delete" VIEW-AS ALERT-BOX.

OO Language Concepts for 4GL Developers
OO Language Elements: Garbage Collection

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Garbage Collection

/* presentations/examples/Garbage-collection-2.p */

USING presentation.classes.*.

DEFINE VARIABLE oDestructClass AS DestructorClass NO-UNDO.

oDestructClass = NEW DestructorClass("created by child procedure").

MESSAGE " leaving child program"

VIEW-AS ALERT-BOX.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Garbage Collection

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Quiz #2

TDK
Consulting
Services Inc

Quiz #2 - It’s a ShapeShifting Class’s Life

What is Inheritance?

Inheritance is a way to compartmentalize and extend code. This is done by creating
collections of attributes and behaviors in a class, and then creating new classes which
take the functionality of that class and extend the functionality to do new things.

OO Language Concepts for 4GL Developers
OO Language Elements: Inheritance

Inheritance also allows a subclass to be used anywhere a superclass can be used.

TDK
Consulting
Services Inc

This is also where things start to get interesting

OO Language Concepts for 4GL Developers
OO Language Elements: Inheritance

Animal Bird
Can be
inherited
by

Animal Dog
Can be
inherited
by

SuperClass SubClass

Animal
SetSpecies()
GetSpecies()

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Inheritance

/* presentation/classes/inheritance/Animal.cls */
CLASS presentation.classes.inheritance.Animal:
DEFINE VARIABLE ch-species-name AS CHARACTER NO-UNDO.

METHOD VOID SetSpecies(ip-species-name AS CHARACTER):
ASSIGN ch-species-name = ip-species-name.
END METHOD.

METHOD CHARACTER GetSpecies():
RETURN(ch-species-name).
END METHOD.

METHOD CHARACTER GetInformation():
RETURN(ch-species-name).
END METHOD.

END CLASS.

TDK
Consulting
Services Inc

CONSTRUCTOR Animal():
END CONSTRUCTOR.

CONSTRUCTOR Animal(ip-species AS CHARACTER):
SetSpecies(ip-species).
END CONSTRUCTOR.

OO Language Concepts for 4GL Developers
OO Language Elements: Inheritance

/* presentation/classes/inheritance/Bird.cls */
CLASS presentation.classes.inheritance.Bird

INHERITS presentation.classes.inheritance.Animal:
DEFINE VARIABLE i-wing-span AS INTEGER NO-UNDO.

METHOD VOID SetWingSpan(ip-wing-span AS INTEGER):
ASSIGN i-wing-span = ip-wing-span.
END METHOD.

METHOD INTEGER GetWingSpan():
RETURN(i-wing-span).
END METHOD.

CONSTRUCTOR Bird(ip-species AS CHARACTER, ip-wing-span AS INTEGER):
SetSpecies(ip-species).
SetWingSpan(ip-wing-span).
END CONSTRUCTOR.
END CLASS.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Inheritance

/* presentation/classes/inheritance/Dog.cls */
CLASS presentation.classes.inheritance.Dog

INHERITS presentation.classes.inheritance.Animal:
DEFINE VARIABLE ch-breed-name AS CHARACTER NO-UNDO.

METHOD VOID SetBreed(ip-breed-name AS CHARACTER):
ASSIGN ch-breed-name = ip-breed-name.
END.

METHOD CHARACTER GetBreedName():
RETURN(ch-breed-name).
END METHOD.

CONSTRUCTOR Dog(ip-species AS CHARACTER, ip-breed AS CHARACTER):
SetSpecies(ip-species).
SetBreed(ip-breed).
END CONSTRUCTOR.

END CLASS.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Inheritance

/* presentation/examples/Inheritance.p */

USING presentation.classes.inheritance.*.
DEFINE VARIABLE oBird AS Bird NO-UNDO.
DEFINE VARIABLE oDog AS Dog NO-UNDO.

oBird = NEW Bird("Agapornis canus", 5).
oDog = NEW Dog("Canis lupus familiaris", "Poodle").

MESSAGE oBird:GetSpecies() SKIP
oBird:GetWingSpan()

VIEW-AS ALERT-BOX.

MESSAGE oDog:GetSpecies() SKIP
oDog:GetBreedName()

VIEW-AS ALERT-BOX.

TDK
Consulting
Services Inc

Liskov Substitution Principle
If S is a subtype of T, then objects of type T in a program may be replaced with objects
of type S without altering any of the desirable properties of that program

In other words, if the subclass can always be substituted for it’s base/superclass, then
• the design is good,
• the subclass can be used anywhere the base/superclass can.

OO Language Concepts for 4GL Developers
OO Language Elements: Inheritance

Animal Building
Should not be
inherited by

Animal Dog
Can be
inherited by

SuperClass (“T”) SubClass (“S)

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Inheritance/Substitution

/* presentation/examples/InheritanceAndSubstitution.p */
USING presentation.classes.inheritance.*.
DEFINE VARIABLE oBird AS Bird NO-UNDO.
DEFINE VARIABLE oDog AS Dog NO-UNDO.

oBird = NEW Bird("Agapornis canus", 5).
oDog = NEW Dog("Canis lupus familiaris", "Poodle").

/* Note passing subclass as a superclass parameter */
RUN show-species(oBird).
RUN show-species(oDog).

PROCEDURE show-species:
DEFINE INPUT PARAMETER oAnimal AS Animal NO-UNDO.
MESSAGE oAnimal:GetSpecies() SKIP

VIEW-AS ALERT-BOX.
END PROCEDURE.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Inheritance/Override

TDK
Consulting
Services Inc

Animal

Fish

GetInformation()

GetInformation()

Polymorphism allows for using the same API name with different parameters within a class.

Question:

What about when
• a subclass needs to extend a method with the same parameter signature as a superclass?
• It still needs to access the superclass method’s functionality?

Answer: SUPER: Call up the inheritance chain for a matching method definition

OO Language Concepts for 4GL Developers
OO Language Elements: Inheritance/Override

/* presentation/classes/override/Fish.cls */

METHOD OVERRIDE CHARACTER GetInformation(): /* Overrides "Animal" Method */
RETURN(SUPER:GetInformation() + " family: " + ch-family).
END METHOD.

CONSTRUCTOR Fish(ip-family AS CHARACTER):
THIS-OBJECT("", ip-family).
END CONSTRUCTOR.

CONSTRUCTOR Fish(ip-species AS CHARACTER, ip-family AS CHARACTER):
SUPER(ip-species). /* Call the super-class constructor */
SetFamily(ip-family).
END CONSTRUCTOR.

METHOD VOID SetFamily(newvalue AS CHARACTER):
ch-family = newvalue.
END METHOD.
END CLASS.

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Inheritance/Override

/* presentation/examples/InheritanceAndOverride.p */
USING presentation.classes.override.*.
DEFINE VARIABLE oFish AS Fish NO-UNDO.

/* Albacore Tuna */
oFish = NEW Fish("T. alalunga", /* Species */

"Scombridae" /* Family */
).

MESSAGE oFish:GetInformation()
VIEW-AS ALERT-BOX.

TDK
Consulting
Services Inc

What does Private, Protected, Public mean?

They are access modifiers which help implement encapsulation (or information
hiding). They tell the compiler what kind of access is allowed for the method, variable,
buffer, temp-table, query, or other item that’s being defined.

Note: OE 11.3 will change these access rules from “instance” scope to “class” scope

OO Language Concepts for 4GL Developers
OO Language Elements: Access Modifiers

Modifier OO Access Limitations Procedural version

PRIVATE Current class instance PRIVATE

PROTECTED Current class instance and all subclasses THIS-PROCEDURE super procedure

PUBLIC Any code which has access to the object Session super procedure,
Procedure handle access

TDK
Consulting
Services Inc

Sub Class

What does Private, Protected,

and Public look like?

OO Language Concepts for 4GL Developers
OO Language Elements: Access Modifiers

Super Class

Sub Class

Private

Private

P
 r

 o
 t

 e
 c

 t
 e

 d

Public

TDK
Consulting
Services Inc

P
ro

te
ct

e
d

Private

OO Language Concepts for 4GL Developers
OO Language Elements: Access Modifiers

presentation/classes/access:

Access Classes, their methods, and access modifiers

Class Method Access

AccessSuperClass SetMyName PUBLIC

GetMyName PUBLIC

SetMyAge PROTECTED

GetMyAge PUBLIC

AccessSuperClass (CR) PUBLIC

AccessSuperClass (CR) PRIVATE

AccessSubClass SetMyBirthDay PUBLIC (default)

TDK
Consulting
Services Inc

/* presentation/examples/Access.p */

USING presentation.classes.access.*.

DEFINE VARIABLE oStudentA AS AccessSubClass NO-UNDO.

DEFINE VARIABLE oStudentB AS AccessSubClass NO-UNDO.

oStudentA = NEW AccessSubClass().

oStudentB = NEW AccessSubClass().

oStudentA:SetMyBirthDay(ADD-INTERVAL(TODAY, -30, "years")).

oStudentB:SetMyName("Steve").

oStudentB:SetMyBirthDay(ADD-INTERVAL(TODAY, -29, "years")).

MESSAGE "A:" oStudentA:GetMyName() oStudentA:GetMyAge() SKIP

"B:" oStudentB:GetMyName() oStudentB:GetMyAge()

VIEW-AS ALERT-BOX.

OO Language Concepts for 4GL Developers
OO Language Elements: Access Modifiers

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Quiz #3

TDK
Consulting
Services Inc

Quiz #3 – Inheritance and Access Control

Static Class Members:
• can be a method, property, variable, buffer, or any other class member type,

• are scoped to the class, not an instance,

• have their own constructor,

• are instantiated whenever any static member in the class is referenced, or a
dynamic object instance is created,

• are able to reference other static members or object instances that it starts or are
passed to it,

• cannot call a “super” method,

• are referenced using ClassName:MethodName() format

OO Language Concepts for 4GL Developers
OO Language Elements: Static Members

TDK
Consulting
Services Inc

/* presentation/classes/StaticMemberClass.cls */
CLASS presentation.classes.static.StaticMemberClass:
DEFINE PUBLIC STATIC PROPERTY il-key-value AS INT64 NO-UNDO GET. SET.

METHOD PUBLIC STATIC INT64 GetNextKey():
il-key-value = il-key-value + 1.
RETURN(il-key-value).
END METHOD.

METHOD PUBLIC STATIC VOID SetKey(ip-keyvalue AS INT64):
il-key-value = ip-keyvalue.
END METHOD.

CONSTRUCTOR STATIC StaticMemberClass():
il-key-value = 0.
END CONSTRUCTOR.
END CLASS.

OO Language Concepts for 4GL Developers
OO Language Elements: Static Members

TDK
Consulting
Services Inc

/* presentation/examples/Static-only.p */

USING presentation.classes.static.*.

MESSAGE StaticMemberClass:GetNextKey()

VIEW-AS ALERT-BOX.

MESSAGE StaticMemberClass:GetNextKey()

VIEW-AS ALERT-BOX.

StaticMemberClass:SetKey(5).

MESSAGE StaticMemberClass:GetNextKey()

VIEW-AS ALERT-BOX.

OO Language Concepts for 4GL Developers
OO Language Elements: Static Members

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Static Members

TDK
Consulting
Services Inc

DEFINE PUBLIC PROPERTY il-dyn-key-value AS INT64 NO-UNDO
GET():
MESSAGE "In Get Dynamic Property" VIEW-AS ALERT-BOX.
RETURN(il-dyn-key-value).
END GET.

SET(il-parm AS INT64):
MESSAGE "In Set Dynamic Property" VIEW-AS ALERT-BOX.
ASSIGN il-dyn-key-value = il-parm.
END SET.

CONSTRUCTOR StaticAndDynamicClass():
MESSAGE "In Dynamic Constructor" VIEW-AS ALERT-BOX.
END CONSTRUCTOR.

CONSTRUCTOR STATIC StaticAndDynamicClass():
MESSAGE "In Static Constructor" VIEW-AS ALERT-BOX.
END CONSTRUCTOR.

CLASS presentation.classes.static.StaticAndDynamicClass:

DEFINE PUBLIC STATIC PROPERTY il-stat-key-value AS INT64 NO-UNDO
GET():
MESSAGE "In Get Static Property" VIEW-AS ALERT-BOX.
RETURN(il-stat-key-value).
END GET.

SET(il-parm AS INT64):
MESSAGE "In Set Static Property" VIEW-AS ALERT-BOX.
ASSIGN il-stat-key-value = il-parm.
END SET.

/* presentation/examples/StaticThenDynamic.p */

USING presentation.classes.static.*.

DEFINE VARIABLE oStaticAndDynamicClass StaticAndDynamicClass NO-UNDO.

MESSAGE "SetStaticProperty" VIEW-AS ALERT-BOX.

StaticAndDynamicClass:il-stat-key-value = 1.

MESSAGE "SetDynamicProperty" VIEW-AS ALERT-BOX.

oStaticAndDynamicClass = NEW StaticAndDynamicClass().

oStaticAndDynamicClass:il-dyn-key-value = 1.

MESSAGE StaticAndDynamicClass:il-stat-key-value SKIP

oStaticAndDynamicClass:il-dyn-key-value

VIEW-AS ALERT-BOX.

OO Language Concepts for 4GL Developers
OO Language Elements: Static Members

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Static Members

TDK
Consulting
Services Inc

/* presentation/examples/DynamicThenStatic.p */

USING presentation.classes.static.*.

DEFINE VARIABLE oStaticAndDynamicClass AS StaticAndDynamicClass NO-UNDO.

MESSAGE "SetDynamicProperty" VIEW-AS ALERT-BOX.

oStaticAndDynamicClass = NEW StaticAndDynamicClass().

oStaticAndDynamicClass:il-dyn-key-value = 1.

MESSAGE "SetStaticProperty" VIEW-AS ALERT-BOX.

StaticAndDynamicClass:il-stat-key-value = 1.

MESSAGE StaticAndDynamicClass:il-stat-key-value SKIP

oStaticAndDynamicClass:il-dyn-key-value

VIEW-AS ALERT-BOX.

OO Language Concepts for 4GL Developers
OO Language Elements: Static Members

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Static Members

TDK
Consulting
Services Inc

OO Language Concepts for 4GL Developers
OO Language Elements: Interfaces

TDK
Consulting
Services Inc

Interfaces provide a way to specify

what an object’s service API will look

like without actually implementing it.

Service
Object

Caller
Object A

P
I

This API specification (aka “interface”)

can then be used anywhere an

object reference can

OO Language Concepts for 4GL Developers
OO Language Elements: Interfaces

TDK
Consulting
Services Inc

/* presentation/classes/interface/iAnimal.cls */

INTERFACE presentation.classes.interface.iAnimal:

METHOD VOID SetSpecies(ip-species-name AS CHARACTER):

METHOD CHARACTER GetSpecies():

END INTERFACE.

/* presentation/classes/interface/iCat.cls */
INTERFACE presentation.classes.interface.iCat

INHERITS presentation.classes.interface.iAnimal:

METHOD VOID SetBreed(ip-breed-name AS CHARACTER):
METHOD CHARACTER GetBreedName():

END INTERFACE.

OO Language Concepts for 4GL Developers
OO Language Elements: Interfaces

TDK
Consulting
Services Inc

/* presentation/classes/examples/Interface.p */

USING presentation.classes.interface.*.
DEFINE VARIABLE oCat AS iCat NO-UNDO.

oCat = NEW Cat("F. catus", /* Domestic Cat */
"American Bobtail").

MESSAGE oCat:GetSpecies() SKIP
oCat:GetBreedName()

VIEW-AS ALERT-BOX.

OO Language Concepts for 4GL Developers
OO Language Elements: Quiz #4

TDK
Consulting
Services Inc

Quiz #4: Static Members and Interfaces

OO Language Concepts for 4GL Developers
OO Language Elements: Is A & Has A

TDK
Consulting
Services Inc

• Is-A: The current object is always identical to the inherited object

• Has-A: The current object contains another object

Animal Dog
Can be
inherited by

Animal Building
Should not be
inherited by

Bad design

Animal Building
Is contained by

Good Design

OO Language Concepts for 4GL Developers
OO Language Elements: Is A & Has A

TDK
Consulting
Services Inc

• Is-A: The current object is always identical to the inherited object

CLASS presentation.classes.inheritance.Dog

INHERITS presentation.classes.inheritance.Animal

• Has-A: The current object contains another object

CLASS presentation.classes.Building:

DEFINE VARIABLE oDog AS presentation.classes.inheritance.Dog NO-UNDO.

OO Language Concepts for 4GL Developers
Some Parting Comments: Now, About those Tools

TDK
Consulting
Services Inc

This presentation
has shown some
OO tools, how
they work, and a
few ideas of how
to use them.

And like these tools,
it’ll take a lot of work
to learn how to master
them.

OO Language Concepts for 4GL Developers
Some Parting Comments: Where From Here

TDK
Consulting
Services Inc

• Find a local mentor, or bring someone on-site for a 1-2 years
• Youtube for Google Code talks on OO
• Good Books on OO structure
• Books written for languages like java are also good
• Find online forums where OO people hang out – like stackexchange.com
• Lots of material on the Internet and Amazon.com

OO Language Concepts for 4GL Developers
Some Parting Comments: Where From Here

TDK
Consulting
Services Inc

Lots of “Pattern” books can save you from hours of inventing
and debugging wheels others perfected a long time ago

h
ttp

://w
w

w
.in

fo
q

.co
m

/m
in

ib
o

o
ks/d

o
m

ain
-d

riven
-d

esign
-q

u
ickly

http://www.infoq.com/minibooks/domain-driven-design-quickly

OO Language Concepts for 4GL Developers
Some Parting Comments: Danger Will Robinson!

TDK
Consulting
Services Inc

When starting out, you will make a big mess in OO, so keep your early
efforts confined to places where it can be fixed easily, or doesn’t matter.

It’s just as important to know what not to do,
as it is to know what to do.

OO Language Concepts for 4GL Developers
Thanks!

TDK
Consulting
Services Inc

Thank you for your time and attention!

Tim Kuehn
TDK Consulting Services Inc.
tim.kuehn@gmail.com

