

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk
 Independent IT consulting organization
 Focusing on OpenEdge and related technology
 Located in Cologne, Germany, subsidiaries in UK and Romania
 Customers in Europe, North America, Australia and South Africa
 Vendor of developer tools and consulting services
 Specialized in GUI for .NET, Angular, OO, Software Architecture,

Application Integration
 Experts in OpenEdge Application Modernization

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

SmartComponent Library
 Developer Framework aimed to increase Developer productivity and

flexibility
 Reduce or avoid repeating tasks
 Tools (code generation and round-trip dev.)
 Integration with various Progress tools (OpenEdge, Telerik, Kinvery,

BPM, Corticon, DataDirect …)
 Architecture Framework and Application Framework
 Proud on our quality; frequent releases and almost no regression

issues

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Framework Backend Architecture
 Strong focus on modern application architecture
 OpenEdge Reference Architecture compliant
 Complies with the Common Component Specification (CCS)
 Business Entities, Data Access Objects are a key components
 Business Tasks, including support for scheduled and asynchronous

processing
 ORM Elements und Domain Driven Design
 Common Infrastructure Components, Services

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

User-Interface Flexibility

 OpenEdge GUI for .NET
 Angular Web Applications (Telerik Kendo UI and JSDO)
 NativeScript
 Open standard interfaces (eg. RESTful, .NET, Java)
 Support for static user interfaces, repository based user interfaces

and a combination of both

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 9

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Domain-driven Design
 Term coined by Eric Evans (working as a consultant on Domain-driven

design) in his 2003 book
 Tackling complexity in the heart of software
 Introducing a software design methodology that allows domain-experts

(business analysts) and developers to work together
 Design of applications that require complex domain knowledge
 Software design around the core domain of an application

10

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Application design challenges
 Indirect communication between domain experts and developers
 Each focusing on its own terms
 Potentially separated by software designers and architects

 Domain expert may not care about database design or object
inheritance

11

Domain Expert DeveloperSoftware
Designer

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Domain-driven Design
 A domain specific project needs to leverage multiple realms of

expertise
 Domain specific expertise (key users and business analysts)
 Design (software architecture) and Developer expertise (implementation)

 The Challenge
 Need to enable communication between the two groups
 Project organization can insulate the transmission of knowledge and

retard the ideal evolution of a project

12

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

The Goal of Domain-driven design
 The Solution
 enable and simplify the communication process and establish a

methodology for making those communications more robust and efficient
 primarily accomplished by developing a ubiquitous language and single

model.
 Set design focus on application domain, not on implementation details
 e.g. don’t waste time talking about database tables and inheritance

concepts
 Process supported by agile methodologies

13

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Ubiquitous language
 “The vocabulary of that ubiquitous language includes names of

classes and prominent operations. The language includes terms to
discuss rules that have been made explicit in the model. It is
supplemented with terms from high-level organizing principles imposed
on the model. Finally, this language is enriched with the names of
patterns the team commonly applies to the domain model”

Eric Evans

14

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Developers model
 Domain-driven design principles overlapping with model-driven design

principles
 Developers are responsible for the model – “If developers don’t realize

that changing code changes the model, then their refactoring will
weaken the model rather than strengthen it.”, Eric Evans

 “With a MODEL-DRIVEN DESIGN, a portion of the code is an
expression of the model; changing the code changes the model.
Programmers are modelers, whether anyone likes it or not. So it is
better to set up the project so that the programmers do good modeling
work.”, Eric Evans

15

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Elements of Domain model: Entities

 Entities are NOT the same as business entities in OERA/CCS
 Primary Objects of the domain model, e.g. Customer, Person
 Defined by an identity (e.g. a primary unique key, reference in DB),

identity defined by reference, not by properties (two customers with the
same name and address may still be two different customers)

 Changing properties of entity instance will not create a new entity
 May have methods implemented (ShipOrder, RenameCustomer) to

respond to domain events

16

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Elements of Domain model: Value objects

 Objects of the model that typically have no concept of identity by
reference

 Defined solely by it’s property values, equality by value
 Typically implemented as immutable value objects to allow

reuse/sharing in multiple entities
 Sales amount: amount and unit of measure (10 pounds)
 Currency amount: amount and currency unit (100,- €)
 Address
 May have methods, e.g. for changing unit of measure

17

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Elements of Domain model: Aggregates

 Aggregates are combinations of Entities and value objects
 Order, Order Lines and Customer

 From the outside represented as a single entity
 Supporting transactions on a set of Entities

18

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Elements of Domain model: Services

 Functionality which implements relevant functionality of the domain
model and conceptionally belongs to a number of objects / entities will
be implemented as stand-alone services

 Services are typically state-less, reusable multiple times
 Methods reflect provided functionality
 Entities and value objects are passed in as parameters
 e.g. Price Calculation, Reservation of production capacities

19

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Elements of Domain model: Domain events

 Events that domain experts care about
 Event represented by an object (event argument)
 Something happens in the domain which may cause multiple actions
 Placing an order
 Stock quantity changed
 Renaming a customer

 Method of decoupling sub-systems, also with the goal to improve
scalability

 When crossing system boundary, might require MQ

20

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Elements of Domain model: Modules

 Modules separate the domain model into functional (not technical)
parts

 Strong inner cohesion
 Loose coupling between modules
 Order entry module and customer maintenance module
 Modules support separation of developer team, reduce dependencies

across the whole application
 Modules support easier analysis of impact of change

21

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

OERA OpenEdge Reference Architecture
 Architecture blue print for service-oriented OpenEdge applications
 Initially released with OpenEdge 10.0 (15+ years)
 Primary goals at the time
 AppServer enabling OpenEdge applications
 Building non-monolithic OpenEdge applications
 Supporting client flexibility
 Providing guidance for use of the ProDataset
 Providing guidance for use of OOABL (later, around OE10.1+)

23

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

OERA today
 Fast forward to 2015 …
 Modernization of OpenEdge applications more relevant than ever;

especially since Telerik acquisition and demands for UI flexibility
 OEAA – OpenEdge Application Architecture, redefining the OERA
 OERA back on focus, foundation of the CCS (common component

specification) project as a vehicle for community and Progress driven
architecture-spec efforts

 More detailed specs, rather than just programming samples
 Specs that an application or framework could be certified against
 CCS starting to influence “in-the-box” features

24

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Business Entities
 Business Logic Component in the Business Service Layer
 Manages a set of database tables
 Customer
 Order/OrderLine/Item (read-only)

 CRUD actions (create, read, update, delete)
 Custom actions, verbs of the entity (PutCustomerOnCreditHold)
 Primary backend component for the JSDO
 Kendo UI, Kendo UI Builder
 NativeScript

25

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

The OpenEdge Application Architecture (OEAA)

26

RESTful,
SOAP,

…

Can be
ABL GUI

That is
the

JSDO

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

CCS and DDD
 CCS does not define an implementation pattern for Domain-driven

design per se
 CCS provides key building blocks for DDD implementation
 Services and Service manager
 Business Entities for Data Access and validation
 Further infrastructure components which are required for almost every

implementation – but irrelevant for the domain model. As they are not
relevant to the domain experts
 Context
 Authentication, Authorization

27

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Business Entities vs. Entities
 Business Entities are not the same as Entities
 Business Entities are stateless service objects (CCS)
 Business Entities implement data retrieval logic (e.g. calculated fields,

query optimization) and logic for storing records (e.g. validation)
 Domain-driven design relies on Data Access as well, however it’s not

the main focus, as it’s not relevant for communication with domain
experts

 Business Entities may be used for Data Access of Entities
 in DDD repositories are used to retrieve and store Entities

28

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Business Entities vs. Entities
 Business entities may be starting point for transforming ERD model

into Domain model
 Single Database table as multiple temp-tables
 Multiple Database tables as single temp-table
 Reversing parent/child relations
 In DB Order may be child of Customer (customer’s order)
 In Business Entity Customer may be child or Order (order’s customer)

 Business Entities may read required data to assemble value objects in
Entity
 e.g. Quantity amount and unit of measure into additional temp-table fields

29

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Practicability of module cohesion and loose coupling
 Business Entities may read data from multiple database tables

30

Order

OrderLine

Customer

Item

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Practicability of module cohesion and loose coupling
 Those database tables may conceptually fit into different modules

31

Order

OrderLine

Customer

Item

Order Entry Module Customer
Maintenance Module

Item
Maintenance Module

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Practicability of module cohesion and loose coupling
 Data Access through joined queries as DATA-SOURCE for

ProDatasets
 Acceptable for read-only access to data from other modules
 It’s unlikely to implement micro-services for

each module. In ABL only a subset of
database tables accessible

32

eOrder:
FOR EACH Order, FIRST

Customer OF Order

eOrderLine:
FOR EACH Item, FIRST

Item OF OrderLine

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Practicability of module cohesion and loose coupling
 Loose coupling between modules would suggest retrieving data from

different modules through service calls, e.g. Fetch Order and OrderLine
first
 Retrieve customers and items from services by set of required Id’s
 Either implemented as part of Business Entities or Repositories (DDD)

 Experience has shown however, that performance is better by an order
of magnitude to resolve this as part of data access queries, crossing
module boundaries

33

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

CCS Services and the Service Container
 Domain services are part of domain model
 Domain services are state-less classes implementing domain functions
 Good fit with CCS Services, and Service Manager

34

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Service Manager
 Service Manager provides access to Services (that are not Managers)
 Factory for business services
 Calls their initialize() method
 Controls their life time
 Services typically launched at first request
 Services may be stopped (at the end of a request, after 1 hour, …)

CCS - A deep dive 35

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Ccs.Common.IServiceManager

CCS - A deep dive 36

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Obtaining reference to services

37

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

The OO Spaghetti Monster

OOABL / Business Entity Best Practices

39

Customer

Sales Rep

Order / Order
Line

Item

Invoice

Employee

Inventory

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Start ordering your objects in packages / modules

OOABL / Business Entity Best Practices

40

Customer

Sales Rep

Order / Order
Line

Item

Invoice

Employee

Inventory

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Divide and conquer – Modules as sub-systems

OOABL / Business Entity Best Practices

41

Customer

Sales Rep

Order / Order
Line Item

Invoice

Employee

Inventory

CRM-Module Order Processing-Module Factory/Warehouse-Module HR-Module

Module-Facade Module-Facade Module-Facade Module-Facade

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Facades

42

The facade pattern (also spelled façade) is
a software-design pattern commonly used
with object-oriented programming. Analogous to
a facade in architecture, a facade is an object that
serves as a front-facing interface masking more
complex underlying or structural code.
A facade can improve the readability and usability
of a software library by masking interaction with
more complex components behind a single API

https://en.wikipedia.org/wiki/Facade_pattern

https://en.wikipedia.org/wiki/Facade_pattern

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Implementing modules
 Modules should define interaction patterns from the outside to the

inside and within the module
 Outside should communicate through façade only
 Inside the module objects should be allowed to call directly into each

other
 Domain-driven design accepts different implementation standards

across modules, multiple agile teams agreeing on their own standards
 Modules can support modernization of application
 Legacy functionality can be hidden behind facades
 No need to modernize the whole application at once

43

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Module facades as service
 Module facades should be implemented as services
 They represent a module to the outside
 Module facades are typically loaded when the application starts
 Module facades can subscribe to domain events (later)

44

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Open/Close Principle
 Design as open for enhancement – while closed for modifications
 Design to a contract (Interface) on the sub-system level, not just a

single class
 Modules manage complexity and impact of change
 A change in functionality in one module does not require changes to

other modules
 Simplifies testing. Allows mocking of a whole sub-system

45

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Open/Close Principle
 Business Requirement: Confirming an order needs to commit

inventory/stock allocation
 If Order Business Entity would directly call into the Inventory/Stock

Business Entity this would create a direct dependency between the two
Business Entities
 A change in the implementation of the Inventory/Stock Business Entity

might affect the Order Business Entity
 If the Order Business Entity however, would publish a message using a

Message Publisher infrastructure, the Inventory/Stock Domain may –
or may not at it’s own responsibility perform required action

46

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Implementing domain events
 Domain events are used to signal that something has happened (in the

whole domain) that may be relevant for functionality within one or
multiple modules

 Event itself more relevant than where it has happened
 Event may be raised due to action within an module
 Event may be raised due to action from outside
 Events primarily represented by message / payload

48

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

PUBLISH/SUBSCRIBE vs. Message Service
 We prefer to implement domain events through a Message Service

(MessagePublisher)
 Listeners subscribe to message types (class, interface, OO type-

compatibility)
 Publishers send message object (value object, PABLO) via Publish

method of MessagePublisher service
 Single point of subscription for module façade
 Messages typically not based on Entities or Value objects as this might

cause undesired dependencies

49

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 50

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

PUBLISH/SUBSCRIBE vs. Message Service
 At system boundary messages may be sent to other systems
 Via MQ
 Via AppServer call from Service Adapter (representing remote services)

51

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Demo
 Using the MessagePublisher

52

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Implementing value object
 Value objects are typically PABLO’s (plain ABL objects), similar to

POJO’s (plain old Java object) or POCO’s (plain old CLR object)
 Objects that are implemented to mainly store property values
 Equality based on values
 Consider overriding the Equals() method
 May contain methods, typically for basic calculations
 Change unit of measure, change currency
 Multiply, Add, …
 Methods are not supposed to change properties of value object, rather

return new object instance
54

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 55

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 56

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

 IF oPrice1:Equals (oPrice2) THEN …

57

Implement your
own equality

rules, eventually
changing currency

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

 MESSAGE STRING (oPrice)
 MESSAGE oPrice:ToString()
 MESSAGE oPrice

58

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Why immutable?
 Because the value 42 cannot be changed as well
 A value object in combination with the properties represents a single

value
 Value objects may be reused
 May improve performance

 When reusing value objects, a change to a property would affect all
references to the single value object

59

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Why immutable?

60

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Implementing Equals() via ABL Reflection

61

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Implementing Entities
 Entities represent the core implementation blocks of the Domain model
 Entities typically represent data from the database
 Yes – domain experts might not care
 But they do care that today’s order is still available tomorrow

 Equality is defined based on primary unique key values or similar
 Depending on requirements for abstraction, Entities can be built on top

of a Business Entity ProDataset schema
 Entities might implement further domain logic
 Use repositories to retrieve and save Entities to the database

63

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Entity based on ProDataset Temp-Table

64

Value Object
Column, not present
in database

Database fields
„hidden“ from Entity
as they are represented
by Value Object instead

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Demo
 Review Customer Entity Design based on ProDataset
 Review Address value object mapping
 Review Address

65

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Questions
 Email: info@consultingwerk.com
 www.consultingwerk.com
 https://www.youtube.com/consultingwerk

66

	Domain-driven Design for ABL
	Agenda
	Consultingwerk
	SmartComponent Library
	Foliennummer 5
	Framework Backend Architecture
	User-Interface Flexibility
	Agenda
	Foliennummer 9
	Domain-driven Design
	Application design challenges
	Domain-driven Design
	The Goal of Domain-driven design
	Ubiquitous language
	Developers model
	Elements of Domain model: Entities
	Elements of Domain model: Value objects
	Elements of Domain model: Aggregates
	Elements of Domain model: Services
	Elements of Domain model: Domain events
	Elements of Domain model: Modules
	Agenda
	OERA OpenEdge Reference Architecture
	OERA today
	Business Entities
	The OpenEdge Application Architecture (OEAA)
	CCS and DDD
	Business Entities vs. Entities
	Business Entities vs. Entities
	Practicability of module cohesion and loose coupling
	Practicability of module cohesion and loose coupling
	Practicability of module cohesion and loose coupling
	Practicability of module cohesion and loose coupling
	CCS Services and the Service Container
	Service Manager
	Ccs.Common.IServiceManager
	Obtaining reference to services
	Agenda
	The OO Spaghetti Monster
	Start ordering your objects in packages / modules
	Divide and conquer – Modules as sub-systems
	Facades
	Implementing modules
	Module facades as service
	Open/Close Principle
	Open/Close Principle
	Agenda
	Implementing domain events
	PUBLISH/SUBSCRIBE vs. Message Service
	Foliennummer 50
	PUBLISH/SUBSCRIBE vs. Message Service
	Demo
	Agenda
	Implementing value object
	Foliennummer 55
	Foliennummer 56
	Foliennummer 57
	Foliennummer 58
	Why immutable?
	Why immutable?
	Implementing Equals() via ABL Reflection
	Agenda
	Implementing Entities
	Entity based on ProDataset Temp-Table
	Demo
	Questions

