
Data Integration:

The REST of the Story

RESTful Interface Design

for Data Integration

Tony Lavinio

Senior Software Architect

October 9, 2019

2 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

What are we doing here?!

▪ Why are we talking about REST?

• You are providing data! (or want to)

• You are consuming data! (or want to)

▪ APIs are everywhere!

• External APIs

• Internal APIs

“Use the API” sounds easy – but sometimes it’s harder than it has to be.

What can you do to be successful?

3 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

The Story Arc

Background

Internal APIs vs. Documented APIs

Tools & Debugging

Complex Data & Relationships

Designing for Change

Designing for Performance

Authentication & Security

Error Handling

REST Basics.

Dealing with incomplete informa…

Postman, Fiddler, AutoREST

Nested & repeating structures. Joins.

Schema evolution.

Paging, Filtering, Caching.

Basic, OAuth2, etc.

Bad JSON. HTTP Status.

4 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Background

5 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Why Choose REST?

▪ Fast infrastructure available

• It leverages browser technologies

• Compression/Caching

▪ Simple enough for an intern to implement

• Protocol simple

• Incremental value

▪ All the cool kids are doing it

• Almost every application has a REST-in or REST-out option

• Tools widely available and free

6 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

REST Basics

▪ Protocol: HTTP or HTTPS

▪ Actions: Verbs

 GET

 POST

 PUT

 PATCH

 DELETE

▪ Payload: JSON

• Less often, XML

7 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

REST Basics – GET

▪ GET

• FIND or FOR EACH (ABL) SELECT (SQL)

▪ GET /customer

• FOR EACH customer: SELECT * FROM customer;

▪ GET /customer/key

• FIND customer WHERE id = key. SELECT customer WHERE id = key;

▪ GET /customer?name=UFO%20Frisbee

• FOR EACH customer SELECT customer

WHERE name = "UFO Frisbee": WHERE name = 'UFO Frisbee';

8 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

REST Basics – POST

▪ POST

• CREATE (ABL) INSERT (SQL)

• Requires a JSON payload, like

{ "id":27, "name":"UFO Frisbee", "salesrep":"DKP" }

▪ POST /customer

• CREATE customer INSERT INTO customer

ASSIGN (id, name, salesrep)

id = 27 VALUES

name = "UFO Frisbee" (27, 'UFO Frisbee', 'DKP');

salesrep = "DKP".

9 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

REST Basics – PUT and PATCH

▪ PUT and PATCH

• Technically, PUT should reset any unspecified fields to their default

– A lot like deleting and recreating, with just the values specified

• Most sites mean PATCH when they implement PUT

– So we’ll pretend PUT means PATCH for the rest of this slide

• Assignments (ABL) UPDATE (SQL)

• Requires a JSON payload, like
{ "salesrep":"SLS" }

▪ PUT /customer/27

• FIND customer UPDATE customer
WHERE id = 27. SET salesrep = 'SLS'

customer.salesrep = "SLS". WHERE id = 27;

10 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

REST Basics – DELETE

▪ DELETE

• DELETE (ABL) DELETE (SQL)

▪ DELETE /customer/27

• FIND customer DELETE customer

WHERE id = 27. WHERE id = 27;

DELETE customer.

12 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Internal APIs vs.
Documented APIs

13 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

What’s what

▪ Some applications do a really good

job of documenting their APIs

▪ Some tell a good story, but the

docs don’t match reality

▪ Some endpoints, especially those

built on internal systems, have

no reference material at all, other

than “Ask Rita; I think she wrote

that.”

“For a number of years now, work has been proceeding in order
to bring perfection to the crudely conceived idea of a
transmission that would not only supply inverse reactive current
for use in unilateral phase detractors, but would also be capable
of automatically synchronizing cardinal grammeters. Such an
instrument is the turbo encabulator.

Now basically the only new principle involved is that instead of
power being generated by the relative motion of conductors and
fluxes, it is produced by the modial interaction of magneto-
reluctance and capacitive diractance.

The original machine had a base plate of pre-famulated amulite
surmounted by a malleable logarithmic casing in such a way
that the two spurving bearings were in a direct line with the
panametric fan. The latter consisted simply of six hydrocoptic
marzlevanes, so fitted to the ambifacient lunar waneshaft that
side fumbling was effectively prevented.

The main winding was of the normal lotus-o-delta type placed in
panendermic semi-boloid slots of the stator, every seventh
conductor being connected by a non-reversible tremie pipe to
the differential girdle spring on the “up” end of the grammeters.

The turbo-encabulator has now reached a high level of
development, and it’s being successfully used in the operation
of novertrunnions. Moreover, whenever a forescent skor motion
is required, it may also be employed in conjunction with a drawn
reciprocation dingle arm, to reduce sinusoidal repleneration.”

/** @author Rita */
public class Result
/**
* @return
*/
public Object getValue() {
return object.calc();

}

/**
* @param object
*/
public void setValue(Object o) {
object = o.clone();

}
}

14 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Strategies

▪ Reading documentation

• And hoping it’s accurate This sentence is false.

▪ Reading source code

• If it’s available, and if it’s not written in APL {⍵ /⍨ ~{⍵∨≠\⍵}⍵∊'<>'} txt

▪ Finding Rita

• “Oh, She resigned last week.”
“Um, Anyone know if IT has wiped her computer yet?”

▪ Poking it with a stick

• Hitting the endpoint with POSTMAN and seeing what comes out

▪ Sampling

• Using ARC to sample and analyze the structure

15 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Things to look for in documentation

▪ Authentication

▪ Paging

▪ Parameter semantics

▪ JSON response format (results aren’t always at the root)

[

{"id":8, "name":"Butternut Squash"},

{"id":23, "name":"Sub Par Golf"},

{"id":27, "name":"UFO Frisbee"}

]

{

"customers":[

{"id":8, "name":"Butternut Squash"},

{"id":23, "name":"Sub Par Golf"},

{"id":27, "name":"UFO Frisbee"}

]

}

{

"offset":0,

"count":3,

"total":3,

"page":1,

"pages":1,

"results":[

{"id":8, "name":"Butternut Squash"},

{"id":23, "name":"Sub Par Golf"},

{"id":27, "name":"UFO Frisbee"}

]

}

16 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Tools & Debugging

17 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Browser

▪ Quick way to test GET requests when no special headers or

authentication is required

• But that’s about it

18 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Inspecting
with a
Browser
(Chrome)

19 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Postman

▪ Issue request

▪ Inspect results

▪ Modify headers

▪ Experiment with authentication

20 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Inspecting
with Postman
(showing
body)

21 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Inspecting
with Postman
(showing
headers)

22 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Fiddler

▪ Use as a proxy to watch stuff happen

• Even HTTPS interception

▪ Intercept (and tweak) data in stream

https://www.telerik.com/download/fiddler

https://docs.telerik.com/fiddler/Configure-Fiddler/Tasks/ConfigureFiddler

https://docs.telerik.com/fiddler/Configure-Fiddler/Tasks/ConfigureJavaApp

▪ If using HTTPS, here’s how to configure:
https://stackoverflow.com/questions/8549749/how-to-capture-https-with-fiddler-in-java

https://www.telerik.com/download/fiddler
https://docs.telerik.com/fiddler/Configure-Fiddler/Tasks/ConfigureFiddler
https://docs.telerik.com/fiddler/Configure-Fiddler/Tasks/ConfigureJavaApp
https://stackoverflow.com/questions/8549749/how-to-capture-https-with-fiddler-in-java

23 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Import certificate from Fiddler; Inform JVM

▪ <java>\bin\keytool.exe -importcert -trustcacerts

-file <desktop>\FiddlerRoot.cer

-keystore <directory>/FiddlerKeystore -alias Fiddler

▪ Enter keystore password: password

▪ Trust this certificate? [no] yes

▪ -Dhttps.proxyHost=127.0.0.1

▪ -Dhttps.proxyPort=8888

▪ -Djavax.net.ssl.trustStore=<directory>/FiddlerKeystore

▪ -Djavax.net.ssl.trustStorePassword=password

24 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Fiddler Screenshot

Fiddler on the Roof, 1971—8 Academy Awards,

4 Golden Globes, 3 BAFTAs, etc. Not software.

© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

25 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Useful Fiddler
Screenshot

© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

29 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Complex Data & Relationships

30 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

One of these things is not like the others

{
_id: 1,
tournament: "world cup",
years:[
{
year: 2014,
location: "Brazil",
teams:[
"Brazil", "Chile", "Colombia",
"Germany", "Mexico", "USA"

]
},
…

]
}

Muppet Voice Image

Grover Frank Oz

Kermit Jim Henson

Surface Length Width Legs

Oak 42" 72" 5

Maple 36" 60" 4

Teak 30" 54" 2

Ebony 80cm 160cm 2

Team Zone Standing

Brazil CONMEBOL 3

Chile CONMEBOL 14

Colombia CONMEBOL 8

Germany UEFA 2

Mexico CONCACAF 20

USA CONCACAF 13

31 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

[{"id":1, "name":"Second Skin Scuba", "salesrep":"SLS"},

{"id":7, "name":"Fallen Arch Running", "salesrep":"BBB"},

{"id":8, "name":"Butternut Squash Inc", "salesrep":"SLS"},

{"id":9, "name":"Spike's Volleyball", "salesrep":"SLS"},

{"id":14, "name":"Birdy's Badminton", "salesrep":"DKP"},

{"id":16, "name":"Thundering Surf Inc.", "salesrep":"DKP"},

{"id":17, "name":"Hard Knocks Skating", "salesrep":"SLS"},

{"id":20, "name":"StickyWicket Cricket", "salesrep":"DKP"},

{"id":22, "name":"Pocket Billiards Co.", "salesrep":"SLS"},

{"id":23, "name":"Sub Par Golf", "salesrep":"SLS"},

{"id":25, "name":"Hearts Darts", "salesrep":"BBB"},

{"id":26, "name":"Jack's Jacks", "salesrep":"BBB"},

{"id":27, "name":"UFO Frisbee", "salesrep":"DKP"},

{"id":28, "name":"Shark Snack Snorkel", "salesrep":"SLS"},

{"id":29, "name":"Chip's Poker", "salesrep":"BBB"},

{"id":50, "name":"Stay Afloat Swimming", "salesrep":"BBB"},

{"id":51, "name":"Dark Alley Bowling", "salesrep":"BBB"},

{"id":52, "name":"Quick Toss Lacrosse", "salesrep":"BBB"},

{"id":54, "name":"Bug in a Rug-by", "salesrep":"SLS"}]

For many APIs, you’ll get back

rectangles of data

• Often for APIs that simply front some

other reporting engine

But for other APIs, you’ll get really

complex structures

[

{

"id": "31df92da-dddf-4de7-a33a-7d03da256a59",

"serial": "QUVMPC784",

"model": "Sierra",

"part": "PXQ",

"guid": "89e4ae21-fad3-472b-8034-71756298a910",

"location": "Novi Bilokorovychi",

"group": "Schultz Group",

"things": [{

"id": "5efab349-fa99-47dd-83ac-d40ebcdd28b3",

"kind": "14N08ZUZV",

"type": "Z8:6J",

"accessories": [

{ "id": "a8489ec7-ccfd-4925-8572-e0b765560c7b", "serial": "82092MH91“ },

{ "id": "49dba824-cb3f-42b8-a25a-35fd5fc841d6", "serial": "TB1GF3340“ }

],

"attachments": [

{ "id": "5e9b4554-1049-43b7-9d99-b349d64d595a", "serial": "L020QT6H6", “installed": true }

],

}, {

"id": "5105d21e-036a-45ae-bc83-ccd7764a269f",

"kind": "Y26V7RD60",

"type": "99:7O",

"accessories": [

{ "id": "a38c0ea2-e9c2-40de-b074-78023c025dba", "serial": "OAH7NH4IA" }

],

"attachments": [

{ "id": "71af40c0-7e98-4677-8152-bff168f05f53", "serial": "NUQHQ75PD", "installed": true },

{ "id": "5a735bbf-65e9-419f-a0d2-10f519854c45", "serial": "1G1JA2E74", "installed": false }

]

}],

"doohickies": [

{ "id": "978c8a5b-41d1-4e08-babf-4ce16c0652cd", "serial": "395225369", "type": "ORANGE" }

],

"script": "http://posterous.com/augue/vel/accumsan/tellus/nisi.js",

"version": 3,

"sequence": "1515101350",

"timestamp": "2017-06-08T05:22:48"

}

]

32 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Complex Data Models – The Why

▪ Model relationship semantics

• An order has items, after all

▪ Keep related data together

• Prevents multiple round trips

• Helps data consistency

{
"Address":"11 Perkins St",
"City":"Boston",
"Cust-num":4,
"Order-num":2,
"Name":"Pedal Power Cycles",
"items": [{

"Item-num":3,
"Price":2.55,
"Qty":4,

}, {
"Item-num":9,
"Price":75,
"Qty":2,

}
]

}

{ "meta":{
"Status":"success",
"exectime":873,
"records":5937984

},
"pagenumber":4,
"morePages" :true,
"results": [

{
"Address":"11 Perkins St",
"City":"Boston",
"Cust-num":4,
"Order-num":2,
"Name":"Pedal Power Cycles",
"items": [{

"Item-num":3,
"Price":2.55,
"Qty":4,

}, {
"Item-num":9,
"Price":75,
"Qty":2,

}
]

}
]

}

▪ Report on query/execution

metadata

• Did the query succeed?

• Is this a partial result?

33 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Normalization
https://myservice/orders/2
{

"Order-num":2,
"Odate":"1990-09-06",
"customer": {

"Cust-num":4,
"Name":"Pedal Power Cycles",
"Address":"11 Perkins St",
"City":"Boston"

},
"orderlines": [

{
"Item-num":3,
"Price":2.55,
"Qty":4

}, {
"Item-num":9,
"Price":75,
"Qty":2

}, {
"Item-num":19,
"Price":19.95,
"Qty":17

}
]

}

TABLE: orders
Order-num: integer, key
Odate: Date

34 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Normalization→Flattening (Objects)
https://myservice/orders/2
{

"Order-num":2,
"Odate":"1990-09-06",
"customer": {

"Cust-num":4,
"Name":"Pedal Power Cycles",
"Address":"11 Perkins St",
"City":"Boston"

},
"orderlines": [

{
"Item-num":3,
"Price":2.55,
"Qty":4

}, {
"Item-num":9,
"Price":75,
"Qty":2

}, {
"Item-num":19,
"Price":19.95,
"Qty":17

}
]

}

TABLE: orders
Order-num: integer, key
Odate: Date
Cust-num: integer
Name: varchar(64)
Address: varchar(64)
City: varchar(64)

35 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Normalization→Arrays (Lists)
https://myservice/orders/2
{

"Order-num":2,
"Odate":"1990-09-06",
"customer": {

"Cust-num":4,
"Name":"Pedal Power Cycles",
"Address":"11 Perkins St",
"City":"Boston"

},
"orderlines": [

{
"Item-num":3,
"Price":2.55,
"Qty":4

}, {
"Item-num":9,
"Price":75,
"Qty":2

}, {
"Item-num":19,
"Price":19.95,
"Qty":17

}
]

}

TABLE: orders
Order-num: integer, key
Odate: Date
Cust-num: integer
Name: varchar(64)
Address: varchar(64)
City: varchar(64)

TABLE: orderlines
Order-num: integer, key
Position: integer, key
Item-num: integer
Price: decimal(10,2)
Qty: integer

TABLE: orders
Order-num: integer, key
Odate: Date
Cust-num: integer
Name: varchar(64)
Address: varchar(64)
City: varchar(64)

TABLE: orderlines
Order-num: integer, key
Position: integer, key

Order-num

(KEY)

Odate Cust-num Name Address City

2 1990-09-06 4 Pedal

Power

Cycles

11 Perkins

St

Boston

Order-num

(KEY)

Position

(KEY)

Item-num Price Qty

2 1 3 2.55 4

2 2 9 75.00 2

2 3 19 19.95 17

37 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Relationships – JOIN in a single endpoint

SELECT orders.Name, orderlines.Price, orderlines.Qty

FROM orders INNER JOIN orderlines

ON orders.Order-num = orderlines.order-num

https://myservice/orders/
{

"Order-num":2,
"Odate":"1990-09-06",
"customer": {

"Cust-num":4,
"Name":"Pedal Power Cycles",
"Address":"11 Perkins St",
"City":"Boston"

},
"orderlines": [

{
"Item-num":3,
"Price":2.55,
"Qty":4

}, {
"Item-num":9,
"Price":75,
"Qty":2

}, {
"Item-num":19,
"Price":19.95,
"Qty":17

}
]

}

TABLE: orders
Order-num: integer, key
Odate: Date
Cust-num: integer
Name: varchar(64)
Address: varchar(64)
City: varchar(64)

TABLE: orderlines
Order-num: integer, key
Position: integer, key

Order-num

(KEY)

Odate Cust-num Name Address City

2 1990-09-06 4 Pedal

Power

Cycles

11 Perkins

St

Boston

Order-num

(KEY)

Position

(KEY)

Item-num Price Qty

2 1 3 2.55 4

2 2 9 75.00 2

2 3 19 19.95 17

38 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Relationships – JOIN across endpoints
https://myservice/customers

{
"Contact":"Alicia Primes",
"Curr-bal":520.77,
"Cust-num":4,
"Discount":2,
"Max-credit":416,
"Name":"Pedal Power Cycles",
"Phone":"6172456969",
"Sales-rep":"BBB",
"St":"MA",
"Ytd-sls":4713.87

}, …What can we do?

▪ Pull everything back (is next week okay?)

▪ Optimizations

• Algorithms

• Filters

https://myservice/orders/
{

"Order-num":2,
"Odate":"1990-09-06",
"customer": {

"Cust-num":4,
"Name":"Pedal Power Cycles",
"Address":"11 Perkins St",
"City":"Boston"

},
"orderlines": [

{
"Item-num":3,
"Price":2.55,
"Qty":4

}, {
"Item-num":9,
"Price":75,
"Qty":2

}, {
"Item-num":19,
"Price":19.95,
"Qty":17

}
]

}

39 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Designing Your Data Model for Integration

▪ Domain specific design is okay

▪ Consider future reporting needs

• Either augment existing data…

• …or provide an alternative endpoint

▪ Avoid limitless and over-generalized nesting

41 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Designing for Change

42 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Schema Evolution – as a Sender

▪ If you're sending the payload, how do you protect clients from

future changes?

43 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Schema Evolution – Beware the following changes

▪ Changing from scalar to array instances

▪ Using the same name for a field when changing its type

• Especially simple to complex types

• Tools’ implementations will lag behind your API

▪ Big structural changes will cause problems for integrators

▪ Date and time representations

• Yes: ISO. Yes: epoch. No: MMDDYY

▪ Floats/Numerics – some JSON systems
put everything into a double.

• Often see numbers quoted for this reason

• What looks like an int may be a long

▪ Hint: Version your APIs!

45 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Designing for Performance

46 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Large Result Sets

▪ The good news:

Your entire database can

now be queried with REST

▪ The bad news:

All 15TB comes back

Like drinking from a firehose

47 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Paging

▪ Common pattern is paging

• Page size/Row offset

• Page size/Page number

• Cursor-driven

• Example from SpaceX →

GET All Rockets

https://api.spacexdata.com/v3/rockets

Returns all rockets

Param Type Description

limit integer Limit results returned, defaults to

all documents returned

offset integer Offset or skip results from the

beginning of the query

48 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Paging and Stability

▪ Common problem is stability

• REST ain’t ACID

– No “consistent read” mode

• If the source is active, inserted or deleted rows can leave “holes”

Key Data

0

…

999

1000

1001

…

1999

2000

Key Data

0

…

999

1000

1001

…

1999

2000

> GET Offset 0, Limit 1000
…returns Keys 0-999

> Delete where key = 999

> GET Offset 1000, Limit 1000

…returns keys 1001-2000 (!)

Key Data

0

…

999

1000

1001

…

1999

2000

Tony Phil

(laughs maniacally)

49 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Filtering

▪ How to design filtering so that it’s easy for others to use

▪ The simpler, the better

• Everybody wants to introduce their own query language

• Resist the urge!

• Do you really need all those operators?

• If so, consider OData. Why reinvent the wheel?

– .Net → NuGet Install-Package Microsoft.AspNet.Odata

– Java → https://olingo.apache.org/

– Standard → https://www.odata.org/ “OData – the best way to REST”

https://olingo.apache.org/
https://www.odata.org/

50 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

80/20 Rule Filtering

▪ Most of the time, people just want to use some simple filters

▪ Query parameters

• Get all data
https://server/endpoint

• Use one filter: Get all data on “little” items
https://server/endpoint?size=little

• Use a different filter: Get all data on “green” items
https://server/endpoint?color=green

• Combine filters: Get all data on Martians
https://server/endpoint?size=little&color=green&object=men

51 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Caching

▪ Congratulations!

▪ Because you used REST and not GraphQL or RPC, you can take

advantage of caching

▪ HTTP Caching only works for HTTP GET requests

▪ HTTP Caching Headers:

• Cache-Control

• Expires

• ETag and If-None-Match

• Apache, nginx, IIS, Tomcat, etc.—most web servers support caching

52 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Compression – Just Do It

▪ “gzip” response compression

• Alternatives?

– “deflate” subsumed by “gzip”

– “brotli” slightly better; not as well supported, source at https://github.com/google/brotli

– “identity” for small payloads? Nah, best to just gzip everything

• Easy to implement

– GZipInputStream/GZipOutputStream (Java)

– GZipStream (.Net)

– zlib (C/C++)

• Minimal performance impact (<5%)

• Transparent to user

https://github.com/google/brotli

54 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Authentication & Security

55 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Authentication

▪ The good news:

You’ve put on a REST interface, so now the whole world can see

your data

▪ The bad news:

The whole world can see your data

56 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Recommended Authentication

▪ None

▪ Basic

▪ Digest

▪ OAuth 1

▪ OAuth 2

▪ SSO

• Kerberos

• Active Directory

▪ Other

58 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Error Handling

59 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

HTTP Status Codes

▪ Everything is not OK

(and that’s okay!)

• Use the HTTP status codes they way

they are meant to be used

▪ Retries

• WSRetry

▪ As a client, what do you do

with errors when you get them

(and how do you decide?)

200 Not Found

201 Not OK

204 Okay?

304 Good

401 Okey Dokey

403 Fair-to-middlin’

404 OK

60 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Say What You Mean, and Mean What You Say
▪ 200 and friends – Everything is fine

• 200 OK – okay, and something is in payload

• 204 No Content – okay, but no payload

– Often used for DELETE

▪ 300 and friends – Who moved my cheese?

• 301 Moved Permanently – I’ve moved over there

• 304 Not Modified

– Used in caching to mean “I already sent you this”

▪ 400 and friends – caller did something wrong

• 401 Unauthorized – need to authenticate (perhaps token expired)

• 403 Forbidden – don’t touch that

• 404 Not Found – it’s not there (not necessarily an error!)

• 429 Too Many Requests – you’re going too fast for me

▪ 500 and friends – server is busted

• It’s not your fault, it’s theirs

• If at first you don’t succeed, give up and come back later – retrying won’t help

61 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

404 Is Tricky

▪ /service/custoxer/4

• Since we don’t have custoxers in our database;
this is properly a 404 Not Found error

▪ /service/customer/4

• We have customers, but not a customer 4, so this also is a 404 Not Found,
but a 404 meaning ‘you’re in the right place, but nobody is home’

▪ /service/customer?id=4

• If there is no customer 4, then the query will succeed in returning an set of
zero rows, so the result should be a 200 OK

62 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Bad JSON

▪ Missing commas

[

{"id":8, "name":"Butternut Squash Inc"}

{"id":23, "name":"Sub Par Golf"}

{"id":27, "name":"UFO Frisbee"}

]

▪ Missing escapes

[

{"id":26, "name":"Jack's \"Jumpin'\" Jacks"},

]

,

,

\ \

73 © 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

In conclusion,

Get all the REST you can.
—the Progress database driver developers ;)

