
Time (and how to get rid of it) 
Gus Björklund, 

Head Groundskeeper, The Parmington Foundation, 

Americas PUG Challenge 
Manchester, NH, USA 
4-7 June 2017 



2 

Abstract 

In this talk, we examine the various ways in which 
time is used during the execution of a transaction by 
multiple concurrent users. One of these is "lock 
latency". 

We then look at how latency can be reduced to quite 
small intervals by careful tuning. 



3 

Notices 

▪  Please ask questions as we go 

▪  YMMV (Your mileage may vary, transportation, meals, 
and accomodations not included). 



"Time is what we want most, 
but... what we use worst." 

-- William Penn 

image by S Sepp - https://creativecommons.org/licenses/by-sa/3.0/deed.en 



5 

Numbers you should know 
(from Jeff Dean @ google) 

thing time 
Read or write L1 cache memory 0.5 ns 
Branch mispredict 5 ns 
Mutex lock/unlock 100 ns 
Read 1 byte from main memory 100 ns 
Send 2K bytes over 1 Gbps network 20,000 ns 
Read 1 MB sequentially from memory  250,000 ns 
Round trip packet within same datacenter  500,000 ns 
1 millisecond 1,000,000 ns 
Disk seek 10,000,000 ns 
Read 1 MB sequentially from network 10,000,000 ns 
Read 1 MB sequentially from disk 30,000,000 ns 
Send packet CA -> Netherlands -> CA  150,000,000 ns 
1 second 1,000,000,000 ns 



6 

Layer Time 
(sec) 

# of Recs # of Ops Time per 
op 

(nsec) 

Relative 

4GL to  –B 0.96 100,000 203,473 4,718 1 

-B  to FS Cache 10.24 100,000 26,711 383,362 81 

FS Cache to SAN 5.93 100,000 26,711 222,006 47 

-B  to SAN Cache** 11.17 100,000 26,711 418,180 89 

SAN Cache to Disk 200.35 100,000 26,711 7,500,655 1590 

-B  to Disk 211.52 100,000 26,711 7,918,834 1678 

** Used concurrent IO to eliminate FS cache effects 

actual measurements made by Tom Bascom on customer AIX system 

More numbers you should know. 
Trust the big B !!! 



7 

Test environment: ATM 

▪ Same as the one in Secret Bunkers 
•  database is about 12 GB 

▪ Simulates ATM withdrawal transaction 
▪  150 concurrent users 

•  execute as many transactions as possible in given time 
•  result reported as "transactions per second". 

▪ Highly update intensive 
•  fetch 3 rows 
•  update 3 rows 
•  create 1 row with 1 index entry 



8 

our test machine 

▪  4 quad-core 2.4 GHz intel processors 

▪  64 GB memory 

▪  16 x 300 GB 10,000 rpm sas drives in RAID 10 

▪  Centos 6 Linux (2.6.32-504.12.2.el6.x86_64) 

▪  OpenEdge 11.7 

▪  ATM 7 



9 

OE 11.7 
database size 12 GB 
150 self-serving clients 
 
-db atm 
-maxAreas 50 
-omsize 4096 
-n 200 
-spin 5000 
-L 10240 
-B 64000 
-bibufs 64 

initial configuration 



let's run some tests 



82  

31  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

200 1 

Title 

m
ill

is
ec

on
ds

 

slow fast 

transaction duration 



82  

31  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

200 1 

Title 

m
ill

is
ec

on
ds

 

slow fast 

transaction duration 

what is going on for 51 of 82 milliseconds ? 



13 

nothing at all. 

for more than half the time. 



14 

nothing at all. 

for more than half the time. 

what can we do about it ?? 



15 

The transaction does the following 
(for 150 users): 

0) execute 4GL code 

1) fetch records from db, reading from cache 

2) generate BI notes 

3) update and create records 

4) create index entries 

5) get and release various kinds of locks 



16 

kinds of locks: 

0) record locks 

1) MTX lock 

2) TXE lock 

3) data buffer locks 

4) bi buffer locks 

5) latches 



17 

Latches are typically held for very short times. 

 

maybe 100 nanoseconds 

on modern computers 



18 

Lock latency: 

 

time from when holder releases lock 

until waiting acquirer has locked it. 

 

No useful work done while waiting. 



19 

test and set 
spin and test 
take a nap 

spin and test 
nap longer 

spin and test 
nap even longer 

Spinlock latches: 



-spin 

-nap 

-napmax 

spin 
nap 
spin 

 
nap 
spin 

 
nap 

 

tim
e 



21 

Tuning 

-napmax 

spin 
nap 
spin 

 
nap 
spin 

 
nap 

 

tim
e 



22 

The dawn rises only 
when the rooster 
crows. 

Burmese proverb 



23 

82  86  83  82  
75  

33  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

200 100 50 25 10 1 

Va
lu

e 
A

xi
s 

Title 

-spin 5,000  vary -napmax 

200 100 50 25 10 2 
-nap 1 

m
ill

is
ec

on
ds

 



24 

Change -spin to 50,000 

Tune –napmax again 



25 

36  33  35  35  35  32  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

200 100 50 25 10 1 

Va
lu

e 
A

xi
s 

Title 

-spin 50,000:  vary -napmax 

200 100 50 25 10 2 
-nap 1 

m
ill

is
ec

on
ds

 



26 

Tuning 

-spin 

spin 
nap 
spin 

 
nap 
spin 

 
nap 

 

tim
e 



27 

4,545  

174  

75  
48  

36  35  35  

0 

50 

100 

150 

200 

250 

none 1000 5000 10000 50000 10000 10 

Va
lu

e 
A

xi
s 

Title 

-napmax 10:  vary -spin 

5 10 25 50 100 1 0 
(thousands) 

m
ill

is
ec

on
ds

 



28 

Longer nap times => higher latch latency 

Higher spin => lower latch latency 

Higher contention => higher latch latency 



Buffer Pool LRU Chain 

replacing 

Hash Table 

LRU Chain “oldest” “newest” 

Page Writer Queue 

M M M 

M M 

aging 

M M M M 

Checkpoint Queue 

database 



30 

Every buffer access causes an LRU chain update 

Can we reduce LRU chain overhead 

and associated latch contention? 



31 

Tuning -lruskips 



32 

86  86  87  88  88  87  89  88  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

none 5 10 25 50 100 250 500 

Va
lu

e 
A

xi
s 

Title 

napmax 250 (default), spin 5,000: vary lruskips 

10 25 50 100 250 5 none 500 

m
ill

is
ec

on
ds

 



33 

35  33  32  32  32  32  32  32  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

none 5 10 25 50 100 250 500 

Va
lu

e 
A

xi
s 

Title 

napmax 250 (default), spin 50,000: vary lruskips 

10 25 50 100 250 5 none 500 

m
ill

is
ec

on
ds

 



34 

35  

32  32  32  32  32  32  32  

30 

40 

none 5 10 25 50 100 200 500 

Va
lu

e 
A

xi
s 

Title 

napmax 10, spin 50,000:  vary lruskips 

10 25 50 100 200 5 none 500 

m
ill

is
ec

on
ds

 



35 

35  32  32  32  32  32  32  32  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

none 5 10 25 50 100 200 500 

Va
lu

e 
A

xi
s 

Title 

napmax 10, spin 50,000:  vary lruskips 

10 25 50 100 200 5 none 500 

m
ill

is
ec

on
ds

 



By tuning, we got rid 
of 51 milliseconds of 
wasted time 



"Experience is a brutal teacher because 
she gives the test first and the lesson afterwards." 

   -- Vernon Sanders Law 



What do we learn from all this? 

0) small changes have small effects 

1)  sometimes big changes have small effects 

2)  proper use of -spin has yuuge effects 

3)  -spin should be higher than we thought 

4)  -napmax should be low 

5)  spin, napmax, lruskips interact 

6)  lruskips 25 to 100 seems sufficient 



39 

Want 
Answers 

 
email: 

   gus642@gmail.com 


