
270: Working with OpenEdge Data 

and Business Logic in a Kendo UI 

Builder Application

June 6th 2017

Anil Kumar Kotha

Edsel Garcia



Disclaimer



3

Agenda

 Introduction

 JSDO – JavaScript Data Object

 Business Entity and Extensions 

 Working with relational and referential data

 Customizing Kendo UI Builder Web Apps

 OpenEdge Security and Kendo UI Builder



4

Introduction

 Single Page Application (SPA) Dev Environment

 Drag and Drop facility

 Predefined templates

 Rich set of controls

 Electron Shell container



5

KUIB App flow

• Module

• Data Provider

• Template

• Customization

KUIB Designer 
or Web App

• Bridge between OE and 
KUIB

• Communication

JSDO
• Business Logic

• Data Processing

OE 
AppServer

• Actual Data

• Triggers

• Roles

OpenEdge 
Database



6

Different Components Involved – Runtime and Design

Components

KUIB 
Designer

JSDO

PDS OE

Web Artifacts

Node.js 
and npm

AngularJS

Bootstrap

Webpack

Transports

REST 
RPC

Web

DOH

Servers

Progress 
Application 

Server 
(PAS)

“Classic” 
OpenEdge
AppServer

Database

OpenEdge 
DB



7

Agenda

 Introduction

 JSDO – JavaScript Data Object

 Business Entity and Extensions

 Working with relational and referential data

 Customizing Kendo UI Builder Web Apps

 OpenEdge Security and Kendo UI Builder



8

JSDO’s role in KUIB Web App



9

JSDO APIs

JSDO Method Business Entity

add() – Create

assign() – Update

remove() – Delete

fill() – Read READ

saveChanges(false) CUD

saveChanges(true) Submit

invoke(“myMethod”) myMethod()



10

Error handling via JSDO

 Use getErrors() API

• Allows us to access all AppServer errors seamlessly

jsdo = new progress.data.JSDO({ name: 'CustOrder' });

...

jsdoErrors = jsdo.eCustomer.getErrors();

 Error handler can be overridden in KUIB



11

Agenda

 Introduction

 JSDO – JavaScript Data Object

 Business Entity and Extensions

 Working with relational and referential data

 Customizing Kendo UI Builder Web Apps

 OpenEdge Security and Kendo UI Builder



12

Modernization
Working with Business Entities

 Start from scratch

 Leverage existing code

 Convert existing code



13

Business Entities

 CRUD Operations

 Significance of Submit

• Transactional operation

 Abstract Business Entity

• OpenEdge.BusinessLogic.BusinessEntity

• Located in DLC/tty/OpenEdge.BusinessLogic.pl



14

Define Service Interface wizard

 Annotations

• File level

• Method level (CRUD + INVOKE)

• Field level

– Semantic types

– Foreign Key



15

Extending a Business Entity

 Change temp-table / dataset definition

 Customizing auto-generated CRUD+S operations code

• Abstract Business Entity is optional

 Server side processing

 Annotations:

• Mapping Types

• Semantic Types

• Foreign Key

• Count



16

Server side processing

 Business Entity should be configured with JFP

• ‘Count’ operation is optional in KUIB

• Auto-filled if BE already has a count method

 Every request is processed in AppServer layer

 Filtering, Paging, Sorting are dependent

 Simple config in KUIB’s data source



17

JFP – JSON Filter Pattern

 Allows data processing at server side

 Additional annotations to ‘Read’ method

 Default Kendo UI DataSource processing is at client side

 Accessed via JSDO’s mapping type - JFP

JSDO Metho



18

Count Operation

 Count operation [Required for Server side processing]

• Fetch number of records in OE database

• Additional operation similar to INVOKE

 Count operation annotation

• JSDO is aware of ‘count’ by default



19

Mappings

 Request mapping  Response mapping



DEMO



21

Agenda

 Introduction

 Business Entity and Extensions

 JSDO – JavaScript Data Object

 Working with relational and referential data

 Customizing Kendo UI Builder Web Apps

 OpenEdge Security and Kendo UI Builder



22

Foreign Key Support

 Placeholder field

 Semantic Type is ‘Lookup’

 Editor Types

• Combo-box

• Drop-down list

 Business Logic should be annotated as below:

• 11.7.1 PDS OE supports tooling



23

Hierarchical and Stacked Data Grids

 Parent/Child data represented in different forms in KUIB webapp

 Supports Inline, Popup, Incell editing modes

 Allows CRUD operations on child table data

 Single relation or multi-relation(s) among tables

 Both parent and child tables should be in single resource



24

Agenda

 Introduction

 JSDO – JavaScript Data Object

 Business Entity and Extensions

 Working with relational and referential data

 Customizing Kendo UI Builder Web Apps

 OpenEdge Security and Kendo UI Builder



25

KUIB and JSDO code under the hood

 JSDO Catalog

• Resources (DataSets and Temp-tables)

• Operations

 Data Source definitions

 Arrays representation

 Metadata

 Generated code uses:

• JSDO Dialect for Kendo UI DataSource



26

Customizing KUIB Code

 Custom Sections

 View Factory

 Public Controller

 Other Assets

 Custom Templates



27

Recommendations

 Encapsulate functionality into high level API methods

• AngularJS code

• Kendo UI components

• Kendo UI DataSource

• dsService



DEMO



29

Agenda

 Introduction

 Business Entity and Extensions

 JSDO – JavaScript Data Object

 Working with relational and referential data

 Customizing Kendo UI Builder Web Apps

 OpenEdge Security and Kendo UI Builder



30

Authentication

 Supported models

• Anonymous

• Basic

• FORM

• SSO (in pipeline)

 JSDO Specific:

• Use progress.data.JSDOSession

• progress.data.Session (plans to deprecate in future)



31

Enabling Authentication at PASOE layer

 Modifications to oeablSecurity.properties file [new in OpenEdge 11.7]

• Located in {DLCWork}/<oepas_instance>\webapps\<webapp>\WEB-INF

 Change client.login.model

 User’s information

• users.properties

• LDAP

• OERealm



32

Authentication – KUIB

 At Data Provider (resource) level

• All Data sources (tables) will use same 

authentication

 Login screen is shown upon Preview

• First module’s resource loaded upon 

successful login



33

Summary

 Custom Business Entities to leverage business logic 

 Flexibility with custom views in KUIB

• Pre-defined views

• User-defined (Blank) view

 Access to large set of Kendo UI components via KUIB

 Use API’s to improve maintainability of code



34

Happy Developing !!!

KUIB is the ‘Key’ to 

Modernization




