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Introduction

 Single Page Application (SPA) Dev Environment

 Drag and Drop facility

 Predefined templates

 Rich set of controls

 Electron Shell container



5

KUIB App flow
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Different Components Involved – Runtime and Design
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JSDO’s role in KUIB Web App
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JSDO APIs

JSDO Method Business Entity

add() – Create

assign() – Update

remove() – Delete

fill() – Read READ

saveChanges(false) CUD

saveChanges(true) Submit

invoke(“myMethod”) myMethod()
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Error handling via JSDO

 Use getErrors() API

• Allows us to access all AppServer errors seamlessly

jsdo = new progress.data.JSDO({ name: 'CustOrder' });

...

jsdoErrors = jsdo.eCustomer.getErrors();

 Error handler can be overridden in KUIB



11

Agenda

 Introduction

 JSDO – JavaScript Data Object

 Business Entity and Extensions

 Working with relational and referential data

 Customizing Kendo UI Builder Web Apps

 OpenEdge Security and Kendo UI Builder



12

Modernization
Working with Business Entities

 Start from scratch

 Leverage existing code

 Convert existing code
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Business Entities

 CRUD Operations

 Significance of Submit

• Transactional operation

 Abstract Business Entity

• OpenEdge.BusinessLogic.BusinessEntity

• Located in DLC/tty/OpenEdge.BusinessLogic.pl
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Define Service Interface wizard

 Annotations

• File level

• Method level (CRUD + INVOKE)

• Field level

– Semantic types

– Foreign Key
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Extending a Business Entity

 Change temp-table / dataset definition

 Customizing auto-generated CRUD+S operations code

• Abstract Business Entity is optional

 Server side processing

 Annotations:

• Mapping Types

• Semantic Types

• Foreign Key

• Count
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Server side processing

 Business Entity should be configured with JFP

• ‘Count’ operation is optional in KUIB

• Auto-filled if BE already has a count method

 Every request is processed in AppServer layer

 Filtering, Paging, Sorting are dependent

 Simple config in KUIB’s data source
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JFP – JSON Filter Pattern

 Allows data processing at server side

 Additional annotations to ‘Read’ method

 Default Kendo UI DataSource processing is at client side

 Accessed via JSDO’s mapping type - JFP

JSDO Metho
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Count Operation

 Count operation [Required for Server side processing]

• Fetch number of records in OE database

• Additional operation similar to INVOKE

 Count operation annotation

• JSDO is aware of ‘count’ by default
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Mappings

 Request mapping  Response mapping



DEMO
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Foreign Key Support

 Placeholder field

 Semantic Type is ‘Lookup’

 Editor Types

• Combo-box

• Drop-down list

 Business Logic should be annotated as below:

• 11.7.1 PDS OE supports tooling
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Hierarchical and Stacked Data Grids

 Parent/Child data represented in different forms in KUIB webapp

 Supports Inline, Popup, Incell editing modes

 Allows CRUD operations on child table data

 Single relation or multi-relation(s) among tables

 Both parent and child tables should be in single resource
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KUIB and JSDO code under the hood

 JSDO Catalog

• Resources (DataSets and Temp-tables)

• Operations

 Data Source definitions

 Arrays representation

 Metadata

 Generated code uses:

• JSDO Dialect for Kendo UI DataSource
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Customizing KUIB Code

 Custom Sections

 View Factory

 Public Controller

 Other Assets

 Custom Templates
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Recommendations

 Encapsulate functionality into high level API methods

• AngularJS code

• Kendo UI components

• Kendo UI DataSource

• dsService



DEMO



29

Agenda

 Introduction

 Business Entity and Extensions

 JSDO – JavaScript Data Object

 Working with relational and referential data

 Customizing Kendo UI Builder Web Apps

 OpenEdge Security and Kendo UI Builder



30

Authentication

 Supported models

• Anonymous

• Basic

• FORM

• SSO (in pipeline)

 JSDO Specific:

• Use progress.data.JSDOSession

• progress.data.Session (plans to deprecate in future)
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Enabling Authentication at PASOE layer

 Modifications to oeablSecurity.properties file [new in OpenEdge 11.7]

• Located in {DLCWork}/<oepas_instance>\webapps\<webapp>\WEB-INF

 Change client.login.model

 User’s information

• users.properties

• LDAP

• OERealm
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Authentication – KUIB

 At Data Provider (resource) level

• All Data sources (tables) will use same 

authentication

 Login screen is shown upon Preview

• First module’s resource loaded upon 

successful login
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Summary

 Custom Business Entities to leverage business logic 

 Flexibility with custom views in KUIB

• Pre-defined views

• User-defined (Blank) view

 Access to large set of Kendo UI components via KUIB

 Use API’s to improve maintainability of code
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Happy Developing !!!

KUIB is the ‘Key’ to 

Modernization




