
Mike Fechner, Consultingwerk Ltd.
mike.fechner@consultingwerk.de

Analyzing ABL Source Code with
Proparse



http://www.consultingwerk.de/ 2



Consultingwerk Ltd.

http://www.consultingwerk.de/ 3

 Independent IT consulting organization
 Focusing on OpenEdge and related technology
 Located in Cologne, Germany, subsidiary in UK
 Customers in Europe, North America, Australia 

and South Africa
 Vendor of tools and consulting services
 27 years of Progress experience (V5 … OE11)
 Specialized in GUI for .NET, Angular, OO, 

Software Architecture, Application Integration



Sample code download

 https://github.com/mikefechner/proparse-samples

 Most sample code has no dependencies 

 Some samples rely on commercial code from 
Consultingwerk

Analyzing ABL with Proparse 4

https://github.com/mikefechner/proparse-samples


Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

5



Why Source Code Analysis?

 Quality Assurance, Linting of Code

 Refactoring, Foundation for converting code 
form one form to another

Analyzing ABL with Proparse 6



Linting

 Linting is the process of flagging suspicions 
code within a programming language 

 Linting requires understanding of source code

 Extension to syntax checks
 Code may compile, but still be wrong

– DEFINE VARIABLE without NO-UNDO
– FIND with no NO-ERROR 

Analyzing ABL with Proparse 7



Refactoring, Code conversion

 Refactoring is the process of restructuring 
computer code without changing its external 
behavior 

 Refactoring requires understanding of code
 Identifying and locating relevant pieces of code
 Ignoring less relevant bits
 Provide ability to change or extract code

Analyzing ABL with Proparse 8



ABL Built in Source Code Analysis 

 Compiler Output
– Cross Reference (XREF, XML-XREF)
– LISTING (Buffer and Transaction Scope)
– PREPROCESS/DEBUG-LISTING

 Profiler Output
– Tracing of executed lines of code + 

performance

Analyzing ABL with Proparse 9



Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

10



Proparse

 Proparse is a utility to return an abstract syntax 
tree for ABL code (AST)

 Static code analysis
 Interpreting the grammar of the ABL
 Knowledge about keywords and their valid 

combinations
 Should understand any piece of ABL code that 

compiles
 Providing a structured view on source code

Analyzing ABL with Proparse 11



Why an abstract syntax tree?

 ABL syntax “flexible”:
– Formatting
– Large number of keywords
– Abbreviated keywords
– Keyword order in statements
– Uppercasing, lower casing, many keywords 

may be used as identifiers
– Single / Double Quotes
– Comments

Analyzing ABL with Proparse 12



Why use an abstract syntax tree

 Because analyzing ABL source code as a text 
file is hard!

Analyzing ABL with Proparse 13



That‘s why: 

Analyzing ABL with Proparse 14



Analyzing ABL with Proparse 15



Proparse

 Original Author: John Green / Joanju
 http://www.joanju.com/proparse/
 http://www.oehive.org/proparse
 Eclipse public license
 Extracts the Abstract Syntax Tree from a 

compilation unit (procedure or class)
 Is NOT a compiler, nor a Syntax Checker

– similar requirements as the compiler to understand 
source code

 Based on ANTLR, quite an ancient version - 2.7
Analyzing ABL with Proparse 16

http://www.joanju.com/proparse/
http://www.oehive.org/proparse


ANTLR

 “Another Tool for Language Recognition”
 Toolkit for building language parses
 Java based
 Generated parsers are Java code
 A lot more tooling available in more recent 

versions of ANTLR

 If you’re not maintaining Proparse, you don’t 
need to use any of that tooling

Analyzing ABL with Proparse 17



Proparse JavaDoc

 http://www.joanju.com/analyst/javadoc/index.htm
l

 Look for
– org.prorefactor.core.JPNode
– org.prorefactor.treeparser.ParseUnit

Analyzing ABL with Proparse 18

http://www.joanju.com/analyst/javadoc/index.html


Proparse

 Multiple public repositories
– OE Hive SVN
– github.com/oehive/proparse
– github.com/consultingwerk/proparse
– github.com/riverside-software/proparse

 After a dormant phase a few years back, it’s 
actively maintained again

 Support for full OpenEdge 11.7 syntax available

Analyzing ABL with Proparse 19



Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

20



Utilities based on Proparse

 Prolint
 SonarSource plug-ins for OpenEdge
 SmartComponent Library

Analyzing ABL with Proparse 21



Prolint

 http://www.oehive.org/prolint
 Tool for automated source code review of 

Progress 4GL code
 Reads one or more source files and examines 

them for bad programming practice
 Mostly procedural syntax support
 Active times around V9 and V10 …

Analyzing ABL with Proparse 22

http://www.oehive.org/prolint


SonarQube by SonarSource

 Commonly used open source Lint Tool
 Support for various programming languages via 

plug-ins, Java, JavaScript, C#, HTML, XML, …
 OpenEdge plug-in developed by Riverside 

Software (Gilles Querret)
– engine open source
– rules commercial

 Available since 2016, permanently new features 
added

Consultingwerk Toolstack 23



SonarQube by SonarSource

 Locates problems or potential bugs 
 Violation of coding-standards
 Code duplication detection
 Unit-Test coverage

 Web-Dashboard
 CLI Utility (HTML or XML Reports)
 Eclipse Integration

Consultingwerk Toolstack 24



Consultingwerk Toolstack 25



SonarLint for Eclipse Demo

 Integration into Progress Developer Studio

Consultingwerk Toolstack 26



SmartComponent Library based Tools

 Commercial ABL developer framework by 
Consultingwerk

 Business Entity Designer round trip development 
is based on Proparse

 Legacy code modernization utilities uses 
Proparse for analyzing legacy code

Analyzing ABL with Proparse 27



Demo

 Business Entity Designer round trip
Development

Analyzing ABL with Proparse 28



Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

29



Proparse.NET

 Proparse is written in Java

 ABL has no built in bridge to Java

 ABL has a bridge to .NET

 .NET saves the day – actually, 
the Mono Project 

Analyzing ABL with Proparse 30



IKVM.NET

 Part of the Mono Project – Open Source 
implementation of the .NET framework

 Java VM implemented in .NET
 Java Byte Code embedded in .NET Assembly 

(.dll file)
 Allows execution of Java code from .NET 

applications
 Since ABL can use (most) .NET Assemblies, 

ABL can use Proparse via IKVM.NET

Analyzing ABL with Proparse 31



Integrating Proparse.NET into OpenEdge 

 Get familiar with the GUI for .NET Programming
guide!!! 

 -assemblies startup parameter
 assemblies.xml file
 Proparse.NET Assemblies available at 

https://github.com/consultingwerk/proparse

 Think of –assemblies like a PROPATH definition 
for .NET classes

Analyzing ABL with Proparse 32

https://github.com/consultingwerk/proparse


assemblies.xml
<?xml version="1.0" encoding="UTF-8" 
standalone="no"?>

<references>

<assembly name="IKVM.OpenJDK.Core, 
Version=7.2.4630.5, Culture=neutral, 
PublicKeyToken=13235d27fcbfff58"/>

<assembly name="IKVM.Runtime, Version=7.2.4630.5, 
Culture=neutral, 
PublicKeyToken=13235d27fcbfff58"/>

<assembly name="proparse.net, Version=4.0.1.1166,
Culture=neutral, 
PublicKeyToken=cda1b098b1034b24"/>

</references>

Analyzing ABL with Proparse 33



Codepage used by Proparse.NET

 Option in prowin32.exe.config / 
prowin.exe.config

 http://www.oehive.org/proparse#comment-2118
 Add ikvm:file.encoding property to the .config 

file
 File is dependent on the OpenEdge version –

don’t break it! That file is important!
 Refer to the .NET framework documentation for 

details

Analyzing ABL with Proparse 34

http://www.oehive.org/proparse#comment-2118


Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

35



Using Proparse from the ABL

1. Setting up environment 

2. Invoking the parser 

3. Iterating the AST

4. Understanding your code
Analyzing ABL with Proparse 36



Setting up the environment for Proparse

 Similar requirements as an ABL compile time 
session

 PROPATH
 Database connections and schema
 SESSION settings like OPSYS, PROVERSION 

and WINDOW-SYSTEM that might be used in 
&IF

Analyzing ABL with Proparse 37



Initializing the Proparse environment

Analyzing ABL with Proparse 38



Session Settings

Analyzing ABL with Proparse 39



Exporting Database Schema

Analyzing ABL with Proparse 40



Initialize the Proparse Session

Analyzing ABL with Proparse 41



Invoke the Parser 

Analyzing ABL with Proparse 42



Walk the Parse Unit

 Proparse represents ABL source as a tree
 Single root
 Every node may have children and siblings –

depending on allowed syntax
 Class: org.prorefactor.core.JPNode
 http://www.joanju.com/analyst/javadoc/index.htm

l?org/prorefactor/core/JPNode.html

Analyzing ABL with Proparse 43

http://www.joanju.com/analyst/javadoc/index.html?org/prorefactor/core/JPNode.html


Walk the Parse Unit

 Starting from pu:getTopNode() // Program_Root
 Process that JPNode instance
 Start from :firstChild(), iterate while :nextSibling()

is valid

Analyzing ABL with Proparse 44



JPNode properties (Java style)

 getType() – the actual type of the node, 
representing a keyword, block structure or identifier 
NodeTypes:getTypeName(oNode:getType())

 getText() – the node’s piece of ABL source code

 getColumn(), getLine(), getFileName()

 firstChild(), nextSibling() – similar to the ABL 
widget trees

Analyzing ABL with Proparse 45



Demo

 Parsing the simple-3.p
 Review recursive loop

Analyzing ABL with Proparse 46



JPNode child types

 Some JPNode’s provide very specific additional 
information, which is implemented through child 
types of JPNode

 BlockNode, FieldRefNode, RecordNameNode, …
 Requires CAST from JPNode reference
 Provides direct properties and references to 

additional types

Analyzing ABL with Proparse 47



Demo

 Parsing the customer-tt.p
 Review recursive loop including 

RecordNameNode handling

Analyzing ABL with Proparse 48



Demo

 Parsing temp-table-sample.p
 Extract TEMP-TABLE fields from ABL source 

into XML file
 Review ProparseHelper methods
 Review TempTableParser methods

Analyzing ABL with Proparse 49



Demo

Analyzing ABL with Proparse 50



Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

51



Maintaining Proparse

 ABL Syntax is evolving, new keywords added in 
almost every release. 
– 11.7 added SERIALIZABLE options for class 

members
– Proparse requires knowledge of keywords 

and syntax
 Some “odd” syntax constructs may cause 

parsing issues (e.g. parenthesis in unexpected 
locations)

Analyzing ABL with Proparse 52



DEF VAR VAR i AS INTEGER NO-UNDO . 

 Error message refers to file, line number and 
column of the token causing the issue.

Analyzing ABL with Proparse 53



Keeping Proparse up to date
 ANTLR grammars need to be extended with new 

syntax constructs
 KEYWORDS need to be added to vocabulary 

(“importVocab”)
 Built-in functions need to be added to “builtinfunc” 

rule
 Almost everything needs to be added to 

“NodeTypes” (keyword, reserved, function, system 
handle, etc…)

 Extended parser (“treeparser01”) – add some scope 
detection and references support

 Parser for preprocessor code evaluation (“proeval”)



Tooling

 Ecliplse, JDT based
 ANTLR IDE doesn't support ANTLR version 2.x 
 Old Eclipse plugin works with Eclipse Mars (4.5.2) 

- http://antlreclipse.sourceforge.net

Analyzing ABL with Proparse 55

http://antlreclipse.sourceforge.net/


Build new version

 Add new keywords to vocabulary –
BaseTokenTypes.txt

 Update grammar file - proparse.g
 ”Compile” grammar file
 Compilation “translate” the grammar file to two Java 

classes that implements the parser: ProParser.java
and ProParserTokenTypes.java

 Add new entries on NodeTypes.java
 Run Unit Test scripts, add new one as needed or 

simply add new syntax samples to be validated



Building Proparse.NET

 Build proparse.jar from Java binaries

Analyzing ABL with Proparse 57



Building Proparse .NET

 Build proparse.net.dll from proparse.jar

 ANT script contained in Github repo
 Requires IKVM.NET tools
 Compare .dll size before and after
Analyzing ABL with Proparse 58



Future tasks

 Reduce redundancy in code caused by legacy
– Proparse
– Prorefactor

 Upgrade to more recent ANTLR
 Keep up with new ABL syntax

Analyzing ABL with Proparse 59



Questions

60http://www.consultingwerk.de/


	Foliennummer 1
	Foliennummer 2
	Consultingwerk Ltd.
	Sample code download
	Agenda
	Why Source Code Analysis?
	Linting
	Refactoring, Code conversion
	ABL Built in Source Code Analysis 
	Agenda
	Proparse
	Why an abstract syntax tree?
	Why use an abstract syntax tree
	That‘s why: 
	Foliennummer 15
	Proparse
	ANTLR
	Proparse JavaDoc
	Proparse
	Agenda
	Utilities based on Proparse
	Prolint
	SonarQube by SonarSource
	SonarQube by SonarSource
	Foliennummer 25
	SonarLint for Eclipse Demo
	SmartComponent Library based Tools
	Demo
	Agenda
	Proparse.NET
	IKVM.NET
	Integrating Proparse.NET into OpenEdge 
	assemblies.xml
	Codepage used by Proparse.NET
	Agenda
	Using Proparse from the ABL
	Setting up the environment for Proparse
	Initializing the Proparse environment
	Session Settings
	Exporting Database Schema
	Initialize the Proparse Session
	Invoke the Parser 
	Walk the Parse Unit
	Walk the Parse Unit
	JPNode properties (Java style)
	Demo
	JPNode child types
	Demo
	Demo
	Demo
	Agenda
	Maintaining Proparse
	DEF VAR VAR i AS INTEGER NO-UNDO . 
	Keeping Proparse up to date
	Tooling
	Build new version
	Building Proparse.NET
	Building Proparse .NET
	Future tasks
	Questions

