
TypeScript for OO Developers
Or, how to stay cool in front of the millennials



Brexit
Let’s just get it out of the way ...









● There is no agenda
● Just me talking TypeScript, javascript and OO
● Trying to follow the slides and examples

○ Constructive criticism will be met with stony silence
○ There will be no talk of my little ponies.

● New questions feature:
○ See the url to ask questions
○ Most popular get moved to the front of the queue ;)
○ Please, be mindful of language and tone - everyone can see what you are writing!

Agenda



http://www.youtube.com/watch?v=kLhn2EThPcU


Who are the OO cool kids ?

● Never!
● Not yet
● “Researching”
● Sometimes. When I’m forced to.
● Mostly
● I’m a 4GL OO wizard. My OO foo is legendary.



What is TypeScript

It is a superset of Javascript language developed and maintained by Microsoft





Microsoft ?

● Yup. Microsoft
● Open source, Cross-platform
● Free
● No runtime libraries
● Developed by Anders Hejlsberg

○ lead architect of C# and creator of Delphi and Turbo Pascal,

● Introduced October 2012
● Adopted by google for Angular2





Getting back to “What is TypeScript ?”

● Static typing 
● Class-based OO programming
● supports definition files

○ https://github.com/DefinitelyTyped/DefinitelyTyped

● Compiles down to standard javascript
● Works on client (browser) and server (node.js) 
● Strict superset of ECMAScript 2015, which is a superset of ECMAScript 5

https://github.com/DefinitelyTyped/DefinitelyTyped
https://github.com/DefinitelyTyped/DefinitelyTyped




ECMAScript === javascript

● See what I did there ?
● TypeScript code (.ts) is transpiled
● Creates new .js code
● Compiler has watchers (compile on save)
● JS build tools (grunt / gulp etc) have ts support



4GL vs JS challenges

● Equals
● Typesafe
● Classes
● Variable declaration



Example of js gotcha

var x = 1;
var y = 2;

if ( x = y ) {
   console.log("yay");
} else {
   console.log("boo");
}



Quick - some OO (TS & 4GL) advantages

● Type-safe
○ No spelling errors

● Code Reuse and Recycling
● Encapsulation
● Makes you sound cool

○ “Injection”, “factory”, “instantiation”, “inheritance” 



Code formatting

● Code formatting in this presentation will offend
● Both 4GL and JS coders
● Tough
● I have to work within the constraints of a slide ;)





Why A TypeScript and 4GLOO presentation ?

● Typescript classes very similar to 4GL OO classes
● Very similar functionality
● Helps with transition to javascript
● Opens new possibilities for the cool 4GL OO developers
● Why not ? ;)



Show me the code! (4GL)
class Greeter:
    def public property greeting as char no-undo get . set .
    constructor(message as char):
        assign this-object:greeting = message;
    end constructor.
    
    method public char greet():
        return "Hello, " + this-object:greeting.
    end method.
end class.



Show me the code! (TypeScript)
class Greeter{
    greeting: string;
    constructor(message: string){
        this.greeting = message;
    }

    greet(){
        return "Hello, " + this.greeting;
    }
}



OO 4GL vs TypeScript: abstracts

● No, not abstracts. Abstracts ;)
● We’ll get to real abstracts later



Files: 4GL

● each class defined in a single .cls file
● Compiles to a single .r 
● Folder structure is the “package” or namespace

○ Shapes/Polygons/Triangle.cls gives Shapes.Polygons.Triangle class
○ Shapes/Polygons/Square.cls gives Shapes.Polygons.Square class

● Using statement allows for shortcuts
○ Using Shapes.*
○ A = new Polygons.Square()



Files: TypeScript

● One or more classes defined per .ts file
● Namespaces defined by , well, namespace ;)

namespace Shapes {
    export namespace Polygons {
        export class Triangle { }
        export class Square { }
    }
}



Files: TypeScript 

● import statement used for shortcuts

import polygons = Shapes.Polygons;
let sq = new polygons.Square();



Compiling

● 4GL: 
○ compile Shapes/Polygons/Square.cls save [options]
○ Produces single .r file per .cls

● TS:
○ tsc [options] shapes.ts
○ Produces single .js file per .ts 

● Both have compiler tools / utilities
○ Eclipse compile on save (4GL & TS)
○ Grunt / gulp file watchers (TS)

● Both have full IDE support (colour highlighting, syntax etc)



Compiler demo
class Greeter{
    greeting: string;
    constructor(message: string){
        this.greeting = message;
    }

    greet(){
        return "Hello, " + this.greeting;
    }
}



Compiler options

https://www.typescriptlang.org/docs/handbook/compiler-options.html

https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.typescriptlang.org/docs/handbook/compiler-options.html


Classes

● Defining a class is very similar to the 4GL

class <name> {
public <item>: <datatype>
public constructor
public method ..



constructors

● JS does not have function overloading
● As a TS constructor is transpiled to a function, overloading is not possible
● Advanced workarounds



Constructor overload

export class ShoppingListItem implements IShoppingListItem {
    constructor(item: IShoppingListItem);
    constructor(name: string, amount: number);
 
    constructor(nameOrItem: string | IShoppingListItem, amount?: number) {
        if (typeof nameOrItem === "object") { } 
            else 
        if (typeof nameOrItem === "string" && typeof amount === "number") {   }
    }
}



Potential problems with such an approach

● Typescript can check constructor parameters
● Javascript cannot

○ Pass in {foo: “bar”} as a parameter, it will be accepted

● Code becomes ugly
○ Can lead to reactions like this





Destructors. This is simple.

● There is no such thing in typescript.





Properties

● Same as 4GL
○ Private
○ Public
○ Protected

class Person {
    private title: string;
    public firstName: string;
    protected name: string;



Properties: getters and setters

class Employee {
    private _fullName: string;

    get fullName(): string { return this._fullName; }

    set fullName(newName: string) {
         this._fullName = newName;
    }
}



Methods

● Same as 4GL
○ Private
○ Public
○ Protected

class Person {
    private move() {};
    public anotherMove() {};
    protected myLittlePony() {};



Statics

● Static properties
● Static methods
● Static classes can be created by throwing an error in the constructor

○ RUNTIME only though … 

class MyClass {
        constructor() { throw new Error("Cannot new class"); }
        static myProp = "Hello";
        static doSomething() { return "World"; }
}



Inheritance

● Classes can extend other classes (inherit)
● Exactly the same as 4GL
● Multiple levels

○ More than 3 is bad,no matter what language you use ;)



class Animal {
    name: string;
    constructor(theName: string) { this.name = theName; }
    move(dist:number = 0) {console.log(`moved ${dist}m`);
    }
}

class Snake extends Animal {
    constructor(name: string) { super(name); }
    move(dist = 5) { super.move(distance);}
}

class Horse extends Animal {
    constructor(name: string) { super(name); }
    move(dist = 45) { super.move(dist); }
}



Interfaces

● Specifies a set of method prototypes and properties 
● No default implementation methods or properties
● Allows you to build different classes that conform to an API
● Each class that uses an Interface must implement all methods and 

properties defined in the interface
● Convention is that interface files start with an I



interface IClockInterface {
    currentTime: Date;
    setTime(d: Date);
}

class Clock implements IClockInterface {
    currentTime: Date;
    setTime(d: Date) {
        this.currentTime = d;
    }
    constructor(h: number, m: number) { }
}



Polymorhism

● More complicated in TypeScript
● Create overload methods using similar techniques to constructors
● Override a method possible by not calling super()

○ See samples/Inheritance.ts



Abstracts

● See, I told you we’d get here
● Very similar to 4GL
● Abstracts are classes than cannot be instantiated by themselves
● Need to inherit an abstract class
● All appropriate properties and methods are available to sub-class



abstract class Animal {
    
    abstract makeSound(): void;
    
    move(): void {
        console.log("roaming the earth...");
    }
}



Events: again, this is simple

● There are no class events
● You can use standard event emitters
● Pub / sub
● Etc







Converting classes : Greeter.cls



http://www.youtube.com/watch?v=RXFQahncrkg

