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HISTORY

▸ John Green (Joanju) 

▸ Initially written in C / C++ 

▸ Java version since 2008 

▸ Now on GitHub
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GITHUB

▸ Main repository is oehive/proparse 

▸ Almost no activity here 

▸ Most active fork is jakejustus/proparse 

▸ Version used in the SonarQube plugin
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WHAT IS PROPARSE ?

▸ A tool to analyse and understand ABL source code 

▸ Different levels: 

▸ Character stream 

▸ Token stream 

▸ Abstract syntax tree 

▸ Symbols



TEXT

ANTLR

▸ Another Tool for Language Recognition 

▸ Why program by hand in five days what you can spend 25 
years automating ?
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PREPROCESSOR & LEXER

▸ Convert a stream of characters to a stream of tokens 

▸ A token is the most simple unit to represent a set of 
characters: 

▸ < is token LEFTANGLE 

▸ <= is token LTOREQUAL 

▸ variable is token VARIABLE
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PARSER

▸ Convert a stream of tokens into a syntax tree
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TREE PARSER

▸ Actions being triggered on the abstract syntax tree 

▸ Where most detailed information can be found 

▸ Recursive structure of SymbolScope 

▸ Top level element is SymbolScopeRoot
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SYMBOL SCOPE

▸ Each symbol scope contains : 

▸ Table buffers, unnamed or not,  

▸ Variables 

▸ Widgets 

▸ Call list 

▸ Child scopes 
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DIFFERENCES BETWEEN VERSIONS

▸ Using Maven build system instead of Ant 

▸ A lot of code cleanup 

▸ But you may not like it 

▸ No ABL bridge anymore 

▸ Performance were horrible 

▸ Might be back, if somebody’s willing to maintain it !
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NEXT DEVELOPMENTS

▸ Deprecate ANTLR 2 

▸ ANTLR 4 is the current version 

▸ Easier said than done 

▸ Allow listeners to be implemented 

▸ Full access to r-code structure in the propath 

▸ ETA : end of Q4
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INTEGRATION FROM CUSTOM SONAR RULE

▸ Custom rule has access to the ParseUnit 

▸   public void lint(ParseUnit unit) 

▸ ParseUnit gives access to: 

▸ AST : public ProgramRootNode getTopNode() 

▸ SymbolScope : public SymbolScopeRoot 
getRootScope()
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REPORT ISSUES

▸ From a node : 

▸ public void reportIssue(JPNode node, String msg) 

▸ From a line number: 

▸ public void reportIssue(int lineNumber, String msg) 

▸ On any include file: 

▸ public void reportIssue(String fileName, int lineNumber, 
String msg)


