
PROPARSE
GILLES QUERRET • RIVERSIDE SOFTWARE



PROPARSE

HISTORY

▸ John Green (Joanju) 

▸ Initially written in C / C++ 

▸ Java version since 2008 

▸ Now on GitHub



PROPARSE

GITHUB

▸ Main repository is oehive/proparse 

▸ Almost no activity here 

▸ Most active fork is jakejustus/proparse 

▸ Version used in the SonarQube plugin



PROPARSE

WHAT IS PROPARSE ?

▸ A tool to analyse and understand ABL source code 

▸ Different levels: 

▸ Character stream 

▸ Token stream 

▸ Abstract syntax tree 

▸ Symbols



TEXT

ANTLR

▸ Another Tool for Language Recognition 

▸ Why program by hand in five days what you can spend 25 
years automating ?



PROPARSE

PREPROCESSOR & LEXER

▸ Convert a stream of characters to a stream of tokens 

▸ A token is the most simple unit to represent a set of 
characters: 

▸ < is token LEFTANGLE 

▸ <= is token LTOREQUAL 

▸ variable is token VARIABLE



TEXT

PREPROCESSOR & LEXER • 

define
KEYWORD

variable
KEYWORD

foo

ID

as

KEYWORD

character

KEYWORD

' '

WS

'  '

WS

'¶→'

WS

' '

WS

‘¶   '

WS

KEYWORD

no-undo



TEXT

PREPROCESSOR & LEXER



TEXT

PREPROCESSOR & LEXER



TEXT

PARSER

▸ Convert a stream of tokens into a syntax tree



TEXT

TREE PARSER

▸ Actions being triggered on the abstract syntax tree 

▸ Where most detailed information can be found 

▸ Recursive structure of SymbolScope 

▸ Top level element is SymbolScopeRoot



TEXT

SYMBOL SCOPE

▸ Each symbol scope contains : 

▸ Table buffers, unnamed or not,  

▸ Variables 

▸ Widgets 

▸ Call list 

▸ Child scopes 



TEXT

DIFFERENCES BETWEEN VERSIONS

▸ Using Maven build system instead of Ant 

▸ A lot of code cleanup 

▸ But you may not like it 

▸ No ABL bridge anymore 

▸ Performance were horrible 

▸ Might be back, if somebody’s willing to maintain it !



TEXT

NEXT DEVELOPMENTS

▸ Deprecate ANTLR 2 

▸ ANTLR 4 is the current version 

▸ Easier said than done 

▸ Allow listeners to be implemented 

▸ Full access to r-code structure in the propath 

▸ ETA : end of Q4



TEXT

INTEGRATION FROM CUSTOM SONAR RULE

▸ Custom rule has access to the ParseUnit 

▸   public void lint(ParseUnit unit) 

▸ ParseUnit gives access to: 

▸ AST : public ProgramRootNode getTopNode() 

▸ SymbolScope : public SymbolScopeRoot 
getRootScope()



TEXT

REPORT ISSUES

▸ From a node : 

▸ public void reportIssue(JPNode node, String msg) 

▸ From a line number: 

▸ public void reportIssue(int lineNumber, String msg) 

▸ On any include file: 

▸ public void reportIssue(String fileName, int lineNumber, 
String msg)


