
www.progress.com

www.progress.com

Contents
Executive Summary ... 3
Preface .. 3
How to use this guide?.. 3
Prerequisite ... 3
Chapter 1 –Why are we here? .. 3
Chapter 2 – Generating query plans ... 4
Chapter 3 – Understanding different query operations from Query plan.. 13
Chapter 4 - Table Scan Vs. Index scan ... 24
Chapter 5 - Join Methods .. 30
Chapter 6 - Aggregations .. 39
Chapter 7 - What happened to my subquery? ... 44
Chapter 8 - Importance of Statistics ... 50
Chapter 9 – What goes into Statistics? ... 74
Chapter 10 - SQL hints .. 86
Chapter 11 – Puzzles ... 93

www.progress.com

Executive Summary In this workshop we will take you through step by step interactive activities where you understand Query plans
generated by OpenEdge SQL and demonstrate how important it is to understand query plans while working on
performance related problems. In this Workshop you will learn

- Generating and understanding Query plans
- Identifying bad queries which are causing performance degradation
- Importance of statistics
- Troubleshooting common performance problems
- Solving problems using the query plan

Preface This guide is designed to quickly introduce you to the steps involved in identifying and fixing OE SQL
performance problems using Query plans and understand different types of statistics and their role in helping
OE SQL optimizer to generate better query plans.

How to use this guide? This guide is designed to flow from one chapter to the next, because each chapter requires knowledge built in
previous chapters. You may decide to skip few chapters if you are aware of the concepts present those
chapters. Throughout this workshop, we will be using JDBC client Squirrel for execution of queries.

Prerequisite This workshop requires basic knowledge on SQL.

Chapter 1 –Why are we here? Having knowledge of concepts presented in this workshop would really make a big difference when you deal
with OE SQL in day to day life. Most of the time in this workshop, you will be working on your machine,
understanding query plans and solving performance problems.

www.progress.com

Chapter 2 – Generating query plans In this chapter, you will learn different ways to generate Query plan. Query plan is the execution strategy
determined by SQL optimizer to complete the query. For example, for a query like below, one of query plan
can be “Perform the Index scan of CustIdx on table pub.customer with custnum value as 10 and return the
custname as the result”.
SELECT CustName FROM Pub.Customer WHERE CustNum=10;

Connecting to VM:

Search for “mstsc” and select.

www.progress.com

Enter the details of machine, user name and password which is allotted to you and click on connect.

Click on “Yes”.

www.progress.com

a. Start the database and connect to the database using “Squirrel” as the SQL client.
Step 1: Search for the “proenv” and press “Enter”.

www.progress.com

Step 2: Start the database using “proserve” command. This command accepts the database name and the port
number where the database listens.

proserve –db oesqldb –S 9099

Step 3: Start SQuirrel client by searching “Squirrel”.

www.progress.com

Step 4: Double click on “OESQL” alias name and click on “Connect”. User ‘sqldba’ is an existing user password
for this user is “sqldba” (same as user name).

www.progress.com

Step 5: Enable server log to display query plans, by executing below mentioned command and then “Run”
SET PRO_SERVER LOG ON WITH (QUERY_PLAN);

 Step 6: Run the below query for which we want to see the query plan then “Run”
SELECT Custnum FROM Pub.Customer WHERE Custnum = 10;

Click on Run

www.progress.com

Step 7: Open the log file with name “SQL_server_X_XXXX_XXXX_A.log” at location C:\OpenEdge\WRK

www.progress.com

Step 8: Query plan using the System Table, Pub.”_Sql_QPlan”
Run the below mentioned query in Squirrel window.
SELECT "_Description" FROM Pub."_Sql_Qplan" WHERE "_Pnumber"=(SELECT MAX("_Pnumber")
FROM PUB."_Sql_Qplan" WHERE "_Ptype">0);

www.progress.com

Step 2-9: Create the below view which helps us in looking at the query plan with ease. Throughout this session
we will be using this view to check the query plan.
CREATE VIEW Qplan AS SELECT "_Description" FROM Pub."_Sql_Qplan" WHERE
"_Pnumber"=(SELECT MAX("_Pnumber") FROM PUB."_Sql_Qplan" WHERE "_Ptype">0)

www.progress.com

Chapter 3 – Understanding different query operations from Query plan
In this chapter, most of the query operations are explained with examples. You need to execute below queries,
where each query will demonstrate one or some set of query operations using query plans.

a. Table scan
b. Index scan
c. Project
d. Restrict
e. Join
f. Aggregation
g. Sort
h. Union
i. TIDUNION
j. Dynamic Index (DIDX)

Query 1 – Below query demonstrates “Project” and “Index Scan” operations.
SELECT Name, Address FROM Pub.Customer WHERE Name='Hoops';

www.progress.com

Then run select on Qplan view to see the Query plan
SELECT "_Description" FROM Qplan;

SELECT COMMAND.
PROJECT [17] (
| PROJECT [15] (
| | PUB.CUSTOMER. [2](
| | | INDEX SCAN OF (
| | | | Name,
| | | | | (PUB.CUSTOMER.Name) = (Hoops))
| |)
| , PUB.CUSTOMER.Name
| , PUB.CUSTOMER.Address
|)
, PEXPR1
, PEXPR2
)

www.progress.com

Query 2 – Below query demonstrates “Restrict” and “Table Scan” operations.
SELECT Name, Address FROM Pub.Customer WHERE City='Boston';

Now Check Query plan.

SELECT COMMAND.
PROJECT [18] (
| RESTRICT [6] (
| | PROJECT [16] (
| | | PUB.CUSTOMER. [2](
| | | | TABLE SCAN
| | |)
| | , PUB.CUSTOMER.Name

www.progress.com

| | , PUB.CUSTOMER.Address
| | , PUB.CUSTOMER.City
| |)
|
| | (PEXPR3) = (Boston)
| | Evaluation callback list(
| | | col id# 6
| |)
|)
, PEXPR1
, PEXPR2
)

Query 3 – Below query demonstrates demonstrate “Join” and “DIDX” operations.

SELECT COUNT(*) FROM Pub.Customer C INNER JOIN Pub.Order O ON C.Salesrep = O.Salesrep;

www.progress.com

Now Check Query plan

SELECT COMMAND.
PROJECT [22] (
| PROJECT [21] (
| | JOIN [7][AUG_NESTED_LOOP-JOIN](
| | | PROJECT [16] (
| | | | PUB.C. [1](
| | | | | TABLE SCAN
| | | , PUB.C.SalesRep
| | | , PUB.C.rowid
| | ,
| | | (PEXPR1) = (PEXPR3)
| | | -- above defines ANL left side keys <
| | ,
| | | INDEX SCAN OF DYN. INDEX ON SYSPROGRES
| | | | [Dynamic Index with key == fld lis
| | | | [Pexpr map for Dynamic Index data
| | | | PEXPR1, PEXPR2]
| | | | [Fldids
| | | | FldId 0, FldId 1]
| | | | [Dynamic Index] TMPTBL000000f5BL00
| | | | | (SYSPROGRESS.TMPTBL000000f4.0)
| | | | PROJECT [19] (
| | | | | PUB.O. [2](
| | | | | | TABLE SCAN

www.progress.com

| | | | , PUB.O.SalesRep
| | | | , PUB.O.rowid
| | | |)
| | |
| | |)
| |)
| , count (*)
|)

Query 4 – Below query demonstrates “Aggregation” operation.

SELECT Salesrep, COUNT (Ordernum) FROM Pub.Order GROUP BY salesrep;

www.progress.com

Now check Query plan

SELECT COMMAND.
PROJECT [21] (
| HASH AGGREGATE [20] [INTO TMPTBL00000120] (
| | PROJECT [15] (
| | | PUB.ORDER. [3](
| | | | TABLE SCAN
| | |)
| | , PUB.ORDER.SalesRep
| | , PUB.ORDER.Ordernum
| |)
| , PEXPR1
| , count (PEXPR2)
| | GROUP BY (
| | , PEXPR1
| |)
|)
, PEXPR1
, PEXPR2
)

www.progress.com

Query 5 - Below query demonstrates “Union” and “Sort” operations.

SELECT Country, City FROM Pub.Customer
UNION

SELECT Country, City FROM Pub.Supplier
ORDER BY Country, City;

www.progress.com

Now check Query plan

SELECT COMMAND.
PROJECT [34] distinct (
| SORT [31] IN TMPTBL0000017c(
| | UNION [10](
| | | PROJECT [3] (
| | | | PROJECT [19] (
| | | | | PUB.CUSTOMER. [2](
| | | | | | TABLE SCAN
| | | | |)
| | | | , PUB.CUSTOMER.Country
| | | | , PUB.CUSTOMER.City
| | | | , PUB.CUSTOMER.rowid
| | | |)
| | | , PEXPR1
| | | , PEXPR2
| | |)
| | ,
| | | PROJECT [9] (
| | | | PROJECT [27] (
| | | | | PUB.SUPPLIER. [6](
| | | | | | TABLE SCAN
| | | | , PUB.SUPPLIER.Country
| | | | , PUB.SUPPLIER.City
| | | | , PUB.SUPPLIER.rowid
| | | |)
| | | , PEXPR1
| | | , PEXPR2
| | , PEXPR1
| | , PEXPR2
| | SORT BY (
| | , Sort project expression #0 == PEXPR1

www.progress.com

| | , Sort project expression #1 == PEXPR2

Query 6 – Below query demonstrates TIDUNION operation.

SELECT custnum, name, Address, City from pub.customer where custnum=10 OR name = 'Hoops';

Now check the query plan

www.progress.com

SELECT COMMAND.
PROJECT [28] (
| PROJECT [26] (
| | TIDUNION [29] (
| | | PROJECT [37] (
| | | | PUB.CUSTOMER. [34](
| | | | | INDEX SCAN OF (
| | | | | | CustNum,
| | | | | | | (PUB.CUSTOMER.CustNum)
| | | |)
| | | , PUB.CUSTOMER.rowid
| | | , PUB.CUSTOMER.CustNum
| | |),
| | | PROJECT [45] (
| | | | PUB.CUSTOMER. [42](
| | | | | INDEX SCAN OF (
| | | | | | Name,
| | | | | | | (PUB.CUSTOMER.Name) =
| | | |)
| | | , PUB.CUSTOMER.rowid
| | | , PUB.CUSTOMER.Name
| | |)
| |)
| , PUB.CUSTOMER.CustNum
| , PUB.CUSTOMER.Name
| , PUB.CUSTOMER.Address
| , PUB.CUSTOMER.City
|)

www.progress.com

Chapter 4 - Table Scan Vs. Index scan In this chapter, you will be asked to run a simple query which does table scan and capture the number of IOs
using promon utility. Then, you will be asked to create an index and run the same query again and check the
number of IOs using promon utility. Then, we compare the number of IOs which took place in table scan versus
index scan. In both the cases, we will look at query plan to confirm the query operation.

How to start promon?
Go to proenv window and type below command and select option 5. Option 5 will display the number of
records read.

promon oesqldb

www.progress.com

Check the number of DB Requests before running SQL query

Now, run the below query which results in table scan.

SELECT TOP 50 ItemNum, Price FROM Pub.OrderLine WHERE ItemNum=10 ORDER BY ItemNum;

www.progress.com

Now, Check the number of Record read in promon.

Now check the query plan and confirm that it is doing Table Scan.

_Description
--
SELECT COMMAND.
PROJECT [25] TOP 50 (
| SORT [24] IN TMPTBL00000024(
| | RESTRICT [6] (
| | | PROJECT [17] (
| | | | PUB.ORDERLINE. [2](
| | | | | TABLE SCAN
| | | |)
| | | , PUB.ORDERLINE.Itemnum
| | | , PUB.ORDERLINE.Price
| | |)
| |
| | | (PEXPR1) = (10)
| | | Evaluation callback list(
| | | | col id# 4
| | |)
| |)
| | SORT BY (
| | , Sort project expression #0 == PEXPR1
|),
| , PEXPR1

www.progress.com

| , PEXPR2
|)
, PEXPR1
, PEXPR2
)

Now, let us create an index on ItemNum column of Pub.OrderLine table.

CREATE INDEX ItemNum ON Pub.OrderLine (ItemNum);

www.progress.com

Refresh the promon screen by pressing “Enter”

Now, run the same query again and check the number of records read and the time taken.
SELECT TOP 50 ItemNum, Price FROM Pub.OrderLine where ItemNum = 10 Order by ItemNum;

www.progress.com

Now, check the number of records read.

Observation – Did you observe the drastic change in the number of records read during Index scan when
compared to Table scan? This difference is because, Index scan will have intelligence to read only the required
records and skip all other records of a table.

www.progress.com

Chapter 5 - Join Methods In this chapter, we will explain the different join methods used by OE-SQL and you will be learning what are
“Good” join methods (Augmented Nested Loops and Merge Joins in OE world) and what is a “Bad” join method
(Nested Loop). Basically, “Good” joins are the ones which uses physical index or Dynamic index on the right
side of the join to evaluate the join conditions. Here, you will be asked to run a join query which results in “Bad”
join and then, create an index and then, asked to run the same query again to see the “Good” join. We will
check the join methods through query plans. You will also use promon utility to check the number of IOs in
both cases. There can be cases where, SQL optimizer selects “Nested Loop Join” which might be better than
other choices.

Nested Loop Joins:

Run the Below query which results in Nested Loop Join

SELECT COUNT (*) FROM Pub.Sitem si, Pub.OrderLine ol WHERE si.Price > ol.Price;

www.progress.com

Now check the number of DB Requests.

 Now, check the plan

_Description
--
SELECT COMMAND.

www.progress.com

PROJECT [22] (
| PROJECT [21] (
| | JOIN [3][NESTED_LOOP-JOIN](
| | | PROJECT [16] (
| | | | PUB.SI. [1](
| | | | | TABLE SCAN
| | | |)
| | | , PUB.SI.Price
| | | , PUB.SI.rowid
| | |)
| | ,
| | | <no join operator exists>
| | ,
| | | (PEXPR1) > (PEXPR3)
| | ,
| | | PROJECT [19] (
| | | | PUB.OL. [2](
| | | | | TABLE SCAN
| | | |)
| | | , PUB.OL.Price
| | | , PUB.OL.rowid
| | |)
| |)
| , count (*)
|)
, PEXPR1

www.progress.com

Augmented Nested Loop Joins:

Now, in order to get ANL join, create an index on Pub.OrderLine table
CREATE INDEX PriceIdx ON Pub.OrderLine (Price);

 Now, run the same query again. This time, it takes ANL.
SELECT COUNT (*) FROM Pub.Sitem si, Pub.OrderLine ol WHERE si.Price > ol.Price;

www.progress.com

Check the number of DB requests

Check the query plan

www.progress.com

_Description
--
SELECT COMMAND.
PROJECT [22] (
| PROJECT [21] (
| | JOIN [3][AUG_NESTED_LOOP-JOIN]
| | | [RHS-SORTED(-ASC-DUPS)](
| | | PROJECT [16] (
| | | | PUB.SI. [1](
| | | | | TABLE SCAN
| | | |)
| | | , PUB.SI.Price
| | | , PUB.SI.rowid
| | |)
| | ,
| | | (PEXPR1) > (PEXPR3)
| | | -- above defines ANL left side keys <
| | ,
| | | PROJECT [19] (
| | | | PUB.OL. [2](
| | | | | INDEX SCAN OF (
| | | | | | PRICEIDX,
| | | | | | | (PUB.OL.Price) < (null
| | | |)
| | | , PUB.OL.Price
| | | , PUB.OL.rowid
| | |)
| |)
| , count (*)
|)
, PEXPR1
)

Observation: Did you observe the drastic difference in number of records read? It is because, right side of the
join in ANL has the index scan, which reads only the required records from that table.

www.progress.com

Augmented Nested Loop joins with Dynamic Index:
When there is no index available for join, then SQL creates Dynamic Index during the runtime on the Right Side
Table of Join. This join is called as ANL with DIDX (DIDX stands for Dynamic Index). This is also called as Hash
Join.
Run the below query (Note that, there is no index available on ShipToId column of Pub.Order or Pub.ShipTo).

SELECT COUNT (*) FROM Pub.Order o, Pub.Shipto s where s.ShipToId = o.ShipToId

www.progress.com

Check the query plan, it should generate Dynamic Index.

_Description
--
SELECT COMMAND.
PROJECT [22] (
| PROJECT [21] (
| | JOIN [3][AUG_NESTED_LOOP-JOIN](
| | | PROJECT [16] (
| | | | PUB.O. [1](
| | | | | TABLE SCAN
| | | |)
| | | , PUB.O.ShipToID
| | | , PUB.O.rowid
| | |)
| | ,
| | | (PEXPR1) = (PEXPR3)
| | | -- above defines ANL left side keys <
| | ,
| | | INDEX SCAN OF DYN. INDEX ON SYSPROGRES
| | | | [Dynamic Index with key == fld lis
| | | | [Pexpr map for Dynamic Index data

www.progress.com

| | | | PEXPR1, PEXPR2]
| | | | [Fldids
| | | | FldId 0, FldId 1]
| | | | [Dynamic Index] TMPTBL00000011BL00
| | | | | (SYSPROGRESS.TMPTBL00000010.0)
| | | | PROJECT [19] (
| | | | | PUB.S. [2](
| | | | | | INDEX SCAN OF (
| | | | | | | custnumshipto, - F
| | | | |)
| | | | , PUB.S.ShipToID
| | | | , PUB.S.rowid
| | | |)
| | |
| | |)
| |)
| , count (*)
|)
, PEXPR1
)

www.progress.com

Chapter 6 - Aggregations In this chapter, we will explain the different aggregation methods used by OE-SQL and then, you will be asked
to run a query which results in “Hash Aggregation”. Then, we will create an index and run the same query which
now results in “Stream Aggregation”. Basically, “Hash aggregation” uses “Hash Table” to group the same
column values, whereas, “Stream Aggregation” uses the “Index scan” operation on the grouping columns and
thus does not require any “Hash Table” to group the same column values. We will compare the difference
between these two aggregation methods in terms of execution time and the reason behind this difference. All
this will be done by analyzing the query plan for both the cases.

Hash Aggregation:
Run the below query which results in Hash Aggregation.
SELECT LineNum, COUNT(LineNum) FROM Pub.OrderLine GROUP BY LineNum ORDER BY LineNum ;

www.progress.com

Check number of Records Read

Now, check the query plan.

www.progress.com

_Description
--
SELECT COMMAND.
PROJECT [27] (
| SORT [26] IN TMPTBL00000319(
| | HASH AGGREGATE [20] [INTO TMPTBL00000318
| | | PROJECT [16] (
| | | | PUB.ORDERLINE. [3](
| | | | | TABLE SCAN
| | | |)
| | | , PUB.ORDERLINE.Linenum
| | |)
| | , PEXPR1
| | , count (PEXPR1)
| | | GROUP BY (
| | | , PEXPR1
| | |)
| |)
| | SORT BY (
| | , Sort project expression #0 == PEXPR1
|),
| , PEXPR1
| , PEXPR2
|)
, PEXPR1
, PEXPR2
)

 Now, create an index on LineNum column of table Pub.OrderLine.
 CREATE INDEX LineNumIdx ON Pub.OrderLine(LineNum);

www.progress.com

 Now, run the same query again.
SELECT LineNum, COUNT(LineNum) FROM Pub.OrderLine GROUP BY LineNum ORDER BY LineNum ;

Now, check the number of records read.

www.progress.com

Now, check the query plan

www.progress.com

_Description
--
SELECT COMMAND.
PROJECT [27] (
| PROJECT (STREAM AGGREGATE) [32] (
| | PROJECT [16] (
| | | PUB.ORDERLINE. [3](
| | | | INDEX SCAN OF (
| | | | | LINENUMIDX, - FIRST)
| | |)
| | , PUB.ORDERLINE.Linenum
| |)
| , PEXPR1
| , count (PEXPR1)
| | GROUP BY (
| | , PEXPR1
| |)
|)
, PEXPR1
, PEXPR2
)

Observation: Did you notice the drastic difference in number of records read? In fact, in case of Stream
Aggregation, it did not even read a single record. It is because, all the details which were required by query
were already present in Index itself.

Chapter 7 - What happened to my subquery? In this chapter you will learn how subqueries are transformed into other basic query operations by running
below two queries containing subqueries and analyzing query plans generated. Knowing query transformations
is important in troubleshooting the performance problems.

Let us start with simple co-related subquery
SELECT COUNT (*) FROM Pub.Customer C WHERE EXISTS (SELECT O.CustNum FROM Pub.Order O WHERE
C.CustNum = O.CustNum);

www.progress.com

SELECT COMMAND.
PROJECT [55] (
| PROJECT [54] (
| | PROJECT [53] distinct (
| | | JOIN [48][AUG_NESTED_LOOP-JOIN]
| | | | [RHS-SORTED(-ASC-DUPS)](
| | | | RESTRICT [10] (
| | | | | PROJECT [40] (
| | | | | | HASH AGGREGATE [36] [INTO TMPTBL00000387] (
| | | | | | | JOIN [31][AUG_NESTED_LOOP-JOIN]
| | | | | | | | [RHS-SORTED(-ASC-DUPS)](
| | | | | | | | PROJECT [26] (
| | | | | | | | | PUB.O. [3](
| | | | | | | | | | INDEX SCAN OF (
| | | | | | | | | | | CustOrder, - FIRST)
| | | | | | | | |)

www.progress.com

| | | | | | | | , PUB.O.CustNum
| | | | | | | | , PUB.O.rowid
| | | | | | | |)
| | | | | | | ,
| | | | | | | | (PEXPR1) = (PEXPR3)
| | | | | | | | -- above defines ANL left side keys <relop> right side keys.
| | | | | | | ,
| | | | | | | | PROJECT [30] distinct (
| | | | | | | | | PROJECT [22] (
| | | | | | | | | | PUB.C. [23](
| | | | | | | | | | | INDEX SCAN OF (
| | | | | | | | | | | | CustNum,
| | | | | | | | | | | | | (PUB.C.CustNum) = (null))
| | | | | | | | | |)
| | | | | | | | | , PUB.C.CustNum
| | | | | | | | |)
| | | | | | | | , PEXPR1
| | | | | | | |)
| | | | | | |)
| | | | | | , pro_nonempty (*)
| | | | | | , PEXPR3
| | | | | | | GROUP BY (
| | | | | | | , PEXPR3
| | | | | | |)
| | | | | |)
| | | | | , PEXPR1
| | | | | , PEXPR2
| | | | |)
| | | |
| | | | | (0) < (PEXPR1)
| | | |)
| | | ,
| | | | (PEXPR2) = (PEXPR3)
| | | | -- above defines ANL left side keys <relop> right side keys.
| | | ,
| | | | PROJECT [46] (
| | | | | PUB.C. [1](
| | | | | | INDEX SCAN OF (
| | | | | | | CustNum,
| | | | | | | | (PUB.C.CustNum) = (null))
| | | | |)
| | | | , PUB.C.CustNum
| | | | , PUB.C.rowid
| | | |)
| | |)
| | , PEXPR3
| | , PEXPR4
| |)
| , count (*)
|)
, PEXPR1
)

www.progress.com

Let us look at second subquery transformation
SELECT CustNum, Name, Address FROM Pub.Customer C WHERE NOT EXISTS (SELECT O.CustNum FROM
Pub.Order O WHERE C.CustNum = O.CustNum) ;

SELECT COMMAND.
PROJECT [63] (
| PROJECT [62] distinct (
| | JOIN [55][AUG_NESTED_LOOP-JOIN]
| | | [RHS-SORTED(-ASC-DUPS)](
| | | RESTRICT [12] (
| | | | PROJECT [43] (
| | | | | PROJECT (STREAM AGGREGATE) [251] (
| | | | | | OUTER JOIN [33][AUG_NESTED_LOOP-JOIN][OJ SQL Gen]
| | | | | | | [RHS-SORTED(-ASC-DUPS)](
| | | | | | | PROJECT [32] distinct (
| | | | | | | | PROJECT [24] (
| | | | | | | | | PUB.C. [25](
| | | | | | | | | | INDEX SCAN OF (
| | | | | | | | | | | CustNum, - FIRST)

www.progress.com

| | | | | | | | |)
| | | | | | | | , PUB.C.CustNum
| | | | | | | |)
| | | | | | | , PEXPR1
| | | | | | |)
| | | | | | ,
| | | | | | | (PEXPR1) = (PEXPR2)
| | | | | | | -- above defines ANL left side keys <relop> right side keys.
| | | | | | ,
| | | | | | | PROJECT [28] (
| | | | | | | | PUB.O. [5](
| | | | | | | | | INDEX SCAN OF (
| | | | | | | | | | CustOrder,
| | | | | | | | | | | (PUB.O.CustNum) = (null))
| | | | | | | |)
| | | | | | | , PUB.O.CustNum
| | | | | | | , PUB.O.rowid
| | | | | | |)
| | | | | |)
| | | | | , count (PEXPR3)
| | | | | , PEXPR1
| | | | | | GROUP BY (
| | | | | | , PEXPR1
| | | | | |)
| | | | |)
| | | | , PEXPR1
| | | | , PEXPR2
| | | |)
| | |
| | | | (0) = (PEXPR1) [Null-Null EQ]
| | |)
| | ,
| | | (PEXPR2) = (PEXPR3)
| | | -- above defines ANL left side keys <relop> right side keys.
| | ,
| | | PROJECT [53] (
| | | | PUB.C. [3](
| | | | | INDEX SCAN OF (
| | | | | | CustNum,
| | | | | | | (PUB.C.CustNum) = (null) [Null-Null EQ])
| | | |)
| | | , PUB.C.CustNum
| | | , PUB.C.Name
| | | , PUB.C.Address
| | | , PUB.C.rowid
| | |)
| |)
| , PEXPR3
| , PEXPR4
| , PEXPR5
| , PEXPR6
|)
, PEXPR1
, PEXPR2
, PEXPR3

www.progress.com

)

www.progress.com

Chapter 8 - Importance of Statistics In this chapter, you will learn the different types of Statistics available in OE-SQL and their importance in
generating good query plans to have better performance. Basically, statistics provides insights on table, index
and column data which will be used by OE-SQL optimizer to come up with optimal query plans.

a. Importance of Table statistics – To explain the importance of these statistics, you need to run
provided join query and check the number of IOs using promon utility. And then, you need to
run the table statistics command on tables used by the provided join query and run the same
query again to verify the difference between number of IOs took place with former case.

Execute the following query and check the time taken for execution.

SELECT COUNT (*) FROM Pub.Item I, Pub.OrderLine_Large OL where I.price = OL.ExtendedPrice;

www.progress.com

Now, check the query plan. You can notice that, DIDX is created on the large table and this caused query to run
slower.

_Description
--
SELECT COMMAND.
PROJECT [22] (
| PROJECT [21] (
| | JOIN [3][AUG_NESTED_LOOP-JOIN](
| | | PROJECT [16] (
| | | | PUB.I. [1](
| | | | | TABLE SCAN
| | | |)
| | | , PUB.I.Price
| | | , PUB.I.rowid
| | |)
| | ,
| | | (PEXPR1) = (PEXPR3)
| | | -- above defines ANL left side keys <
| | ,
| | | INDEX SCAN OF DYN. INDEX ON SYSPROGRES
| | | | [Dynamic Index with key == fld lis
| | | | [Pexpr map for Dynamic Index data
| | | | PEXPR1, PEXPR2]
| | | | [Fldids
| | | | FldId 0, FldId 1]
| | | | [Dynamic Index] TMPTBL00000003BL00
| | | | | (SYSPROGRESS.TMPTBL00000001.0)
| | | | PROJECT [19] (
| | | | | PUB.OL. [2](
| | | | | | TABLE SCAN

www.progress.com

| | | | |)
| | | | , PUB.OL.ExtendedPrice
| | | | , PUB.OL.rowid
| | | |)
| | |
| | |)
| |)
| , count (*)
|)
, PEXPR1
)

 Now, let us update the table statistics for the 2 tables involved in the join.
UPDATE TABLE STATISTICS FOR Pub.Item;

www.progress.com

UPDATE TABLE STATISTICS FOR Pub.OrderLine_Large;

 Need to Reconnect to the database in order to see the effect of Table Statistics. For this, go to the
“Session” tab of Squirrel client and click on “Reconnect”.

www.progress.com

 Now, run the same query again and notice the time difference.
SELECT COUNT (*) FROM Pub.Item I, Pub.OrderLine_Large OL where I.price = OL.ExtendedPrice;

 Now, check what caused the change in execution time by almost half!! For that, let us check the query plan
this time for this same query.

www.progress.com

_Description
--
SELECT COMMAND.
PROJECT [22] (
| PROJECT [21] (
| | JOIN [3][AUG_NESTED_LOOP-JOIN](
| | | PROJECT [19] (
| | | | PUB.OL. [2](
| | | | | TABLE SCAN
| | | |)
| | | , PUB.OL.ExtendedPrice
| | | , PUB.OL.rowid
| | |)
| | ,
| | | (PEXPR1) = (PEXPR3)
| | | -- above defines ANL left side keys <
| | ,
| | | INDEX SCAN OF DYN. INDEX ON SYSPROGRES
| | | | [Dynamic Index with key == fld lis
| | | | [Pexpr map for Dynamic Index data
| | | | PEXPR1, PEXPR2]
| | | | [Fldids
| | | | FldId 0, FldId 1]
| | | | [Dynamic Index] TMPTBL00000002BL00
| | | | | (SYSPROGRESS.TMPTBL00000001.0)
| | | | PROJECT [16] (
| | | | | PUB.I. [1](
| | | | | | TABLE SCAN
| | | | |)
| | | | , PUB.I.Price
| | | | , PUB.I.rowid
| | | |)
| | |
| | |)
| |)
| , count (*)
|)
, PEXPR1

www.progress.com

Observation:
We can clearly notice that, having table statistics helped SQL Optimizer to select the join order which is more
optimal. That is, SQL optimizer, now identified that creation of Dynamic Index on the Large table amounts to
excessive cost, hence, it selected the join order where the Large table is kept on left side and Dynamic Index
is created on smaller table.

Before Table Statistics: After Table Statistics:

www.progress.com

b. Importance of Index statistics - To explain the importance of these statistics, you need to run
provided join query and check the number of IOs using promon utility. And then, you need to
run the index statistics command on tables used by the provided join query and run the same
query again to verify the difference between number of IOs took place with former case.

Now, let us see how index stats effects the performance of a query.
Table Pub.OrderLine_Large already has following 2 indexes.

i) LineNum_Large created on LineNum column
ii) OrderNum_Large created on OrderNum colum.

Now, run the below query.
SELECT TOP 1 ItemNum, OrderNum FROM Pub.OrderLine_Large WHERE LineNum=1 AND OrderNum=10 ORDER
BY ItemNum;

www.progress.com

Now, check the number of Records read

Now, check the query plan. We can notice that it selected index which is created on LineNum column of
Pub.OrderLine_Large table.

www.progress.com

_Description
--
SELECT COMMAND.
PROJECT [31] TOP 1 (
| SORT [30] IN TMPTBL00000000(
| | RESTRICT [10] (
| | | PROJECT [23] (
| | | | PUB.ORDERLINE_LARGE. [2](
| | | | | INDEX SCAN OF (
| | | | | | LINENUM_LARGE,
| | | | | | | (PUB.ORDERLINE_LARGE.L
| | | |)
| | | , PUB.ORDERLINE_LARGE.Itemnum
| | | , PUB.ORDERLINE_LARGE.Ordernum
| | |)
| |
| | | (PEXPR2) = (10)
| | | Evaluation callback list(
| | | | col id# 2
| | |)
| |)
| | SORT BY (
| | , Sort project expression #0 == PEXPR1
|),
| , PEXPR1
| , PEXPR2
|)
, PEXPR1
, PEXPR2
)

 Now, update the Index Statistics for table Pub.OrderLine_Large.
UPDATE INDEX STATISTICS FOR Pub.OrderLine_Large;

www.progress.com

 Reconnect to Database in order to get the effects of Index Statistics

Now, run the same query again.
SELECT TOP 1 ItemNum, OrderNum FROM Pub.OrderLine_Large WHERE LineNum=1 AND OrderNum=10 ORDER
BY ItemNum;

www.progress.com

Now, check the number of Records Read in promon Window.

 Now, check the query plan for this same query.

www.progress.com

_Description
--
SELECT COMMAND.
PROJECT [31] TOP 1 (
| SORT [30] IN TMPTBL00000000(
| | PROJECT [27] (
| | | RESTRICT [10] (
| | | | PROJECT [23] (
| | | | | PUB.ORDERLINE_LARGE. [2](
| | | | | | INDEX SCAN OF (
| | | | | | | ORDERNUM_LARGE,
| | | | | | | | (PUB.ORDERLINE_LAR
| | | | |)
| | | | , PUB.ORDERLINE_LARGE.Itemnum
| | | | , PUB.ORDERLINE_LARGE.Ordernum
| | | | , PUB.ORDERLINE_LARGE.Linenum
| | | |)
| | |
| | | | (PEXPR3) = (1)
| | | | Evaluation callback list(
| | | | | col id# 3
| | | | | [can terminate scan]
| | | |)
| | |)
| | , PEXPR1
| | , PEXPR2
| |)
| | SORT BY (
| | , Sort project expression #0 == PEXPR1
|),
| , PEXPR1
| , PEXPR2
|)
, PEXPR1
, PEXPR2
)

www.progress.com

Observation:
What caused the dramatic improvement in query execution time and number of records read!!! With the help
of index statistics SQL Optimizer could differentiate and compare the costs of two different indexes and
selected the index on OrderNum (OrderNum_Large) as it contains more number of unique values and hence
filters more rows.

 Before Index Statistics After Index Statistics

www.progress.com

c. Importance of Column statistics – There are 2 flavors of column statistics, one which just

updates column statistics for columns which has index on them and the other one, which
collects column statistics for all the columns of the table. We will use the flavor which collects
statistics for all the columns to explain the importance of these statistics. You need to run
provided join query and check the number of IOs using promon utility. And then, you need to
run the column statistics command on tables used by the provided join query and run the
same query again to verify the difference between number of IOs took place with former case.

First, let us check if the Table Statistics exists for the tables which we will be using in our example query to
demonstrate the importance of column statistics. If you think, table and index statistics are enough, then you
may need to re-think about this perspective after this illustration.
Below query checks if the table statistics are present for tables, Pub.Order_Medium, Pub.OrderLine_Medium
and Pub.POLine_Medium.
SELECT * FROM Pub."_SysTblStat" WHERE "_TblId" IN (SELECT "_File-Number" FROM Pub."_File"
WHERE"_File-Name" LIKE '%medium%');

 We can notice that each table has same number of rows (19716).

www.progress.com

Now, let us run the below query to see the effect of column statistics.

SELECT COUNT (*) FROM Pub.OrderLine_Medium OL, Pub.POLine_Medium PO, Pub.Order_Medium O
WHERE OL.ItemNum=PO.ItemNum AND O.OrderNum=OL.OrderNum AND O.CustNum < 2 AND OL.LineNum <
4 AND PO.Qty > 1;

 Now, check the query plan.
_Description
--
SELECT COMMAND.
PROJECT [53] (
| PROJECT [52] (
| | JOIN [5][AUG_NESTED_LOOP-JOIN](
| | | JOIN [3][AUG_NESTED_LOOP-JOIN](
| | | | RESTRICT [55] (
| | | | | PROJECT [42] (
| | | | | | PUB.OL. [1](
| | | | | | | TABLE SCAN
| | | | | |)
| | | | | , PUB.OL.Itemnum
| | | | | , PUB.OL.Ordernum
| | | | | , PUB.OL.Linenum
| | | | | , PUB.OL.rowid
| | | | |)
| | | |
| | | | | (PEXPR3) < (4)
| | | | | Evaluation callback list(
| | | | | | col id# 3
| | | | |)
| | | |)
| | | ,

www.progress.com

| | | | (PEXPR1) = (PEXPR5)
| | | | -- above defines ANL left side ke
| | | ,
| | | | INDEX SCAN OF DYN. INDEX ON SYSPRO
| | | | | [Dynamic Index with key == fld
| | | | | [Pexpr map for Dynamic Index
| | | | | PEXPR1, PEXPR2, PEXPR3
| | | | | [Fldids
| | | | | FldId 0, FldId 1, FldId 2
| | | | | [Dynamic Index] TMPTBL00000003
| | | | | | (SYSPROGRESS.TMPTBL0000000
| | | | | RESTRICT [54] (
| | | | | | PROJECT [46] (
| | | | | | | PUB.PO. [2](
| | | | | | | | TABLE SCAN
| | | | | | |)
| | | | | | , PUB.PO.Itemnum
| | | | | | , PUB.PO.Qty
| | | | | | , PUB.PO.rowid
| | | | | |)
| | | | |
| | | | | | (PEXPR2) > (1)
| | | | | | Evaluation callback list(
| | | | | | | col id# 5
| | | | | |)
| | | | |)
| | | |
| | | |)
| | |)
| | ,
| | | (PEXPR2) = (PEXPR8)
| | | -- above defines ANL left side keys <
| | ,
| | | INDEX SCAN OF DYN. INDEX ON SYSPROGRES
| | | | [Dynamic Index with key == fld lis
| | | | [Pexpr map for Dynamic Index data
| | | | PEXPR1, PEXPR2, PEXPR3]
| | | | [Fldids
| | | | FldId 0, FldId 1, FldId 2]
| | | | [Dynamic Index] TMPTBL00000004BL00
| | | | | (SYSPROGRESS.TMPTBL00000002.0)
| | | | RESTRICT [56] (
| | | | | PROJECT [50] (
| | | | | | PUB.O. [4](
| | | | | | | TABLE SCAN
| | | | | |)
| | | | | , PUB.O.Ordernum
| | | | | , PUB.O.CustNum
| | | | | , PUB.O.rowid
| | | | |)
| | | |
| | | | | (PEXPR2) < (2)
| | | | | Evaluation callback list(
| | | | | | col id# 3
| | | | |)

www.progress.com

| | | |)
| | |
| | |)
| |)
| , count (*)
|)
, PEXPR1

Reason for Slower execution:
If we analyze, the intermediate join (between Pub.OrderLine_Medium and Pub.POLine_Medium) produced
around 3.6 million rows!!!
SELECT COUNT(*) FROM Pub.OrderLine_Medium OL, Pub.POLine_Medium PO
WHERE OL.ItemNum=PO.ItemNum AND OL.LineNum<4 AND PO.Qty>1;

OrderLine

JOIN

JOIN

Order

POLine

3.6 million rows

www.progress.com

Now, run the column statistics for the 3 tables involved in the query.
UPDATE ALL COLUMN STATISTICS FOR Pub.Order_Medium;
UPDATE ALL COLUMN STATISTICS FOR Pub.OrderLine_Medium;
UPDATE ALL COLUMN STATISTICS FOR Pub.POLine_Medium;

www.progress.com

You need to Reconnect to see the effect of Column Statistics.

www.progress.com

Now, run the same query again.
SELECT COUNT (*) FROM Pub.OrderLine_Medium OL, Pub.POLine_Medium PO, Pub.Order_Medium O
WHERE OL.ItemNum=PO.ItemNum AND O.OrderNum=OL.OrderNum AND O.CustNum < 2 AND OL.LineNum <
4 AND PO.Qty > 1;

Now, check the query plan.

_Description
--
SELECT COMMAND.
PROJECT [53] (
| PROJECT [52] (
| | JOIN [66][AUG_NESTED_LOOP-JOIN](
| | | JOIN [65][AUG_NESTED_LOOP-JOIN](
| | | | RESTRICT [55] (
| | | | | PROJECT [42] (
| | | | | | PUB.OL. [1](
| | | | | | | TABLE SCAN
| | | | | |)
| | | | | , PUB.OL.Itemnum
| | | | | , PUB.OL.Ordernum
| | | | | , PUB.OL.Linenum
| | | | | , PUB.OL.rowid
| | | | |)
| | | |
| | | | | (PEXPR3) < (4)
| | | | | Evaluation callback list(
| | | | | | col id# 3
| | | | |)
| | | |)

www.progress.com

| | | ,
| | | | (PEXPR2) = (PEXPR5)
| | | | -- above defines ANL left side ke
| | | ,
| | | | INDEX SCAN OF DYN. INDEX ON SYSPRO
| | | | | [Dynamic Index with key == fld
| | | | | [Pexpr map for Dynamic Index
| | | | | PEXPR1, PEXPR2, PEXPR3
| | | | | [Fldids
| | | | | FldId 0, FldId 1, FldId 2
| | | | | [Dynamic Index] TMPTBL00000003
| | | | | | (SYSPROGRESS.TMPTBL0000000
| | | | | RESTRICT [56] (
| | | | | | PROJECT [50] (
| | | | | | | PUB.O. [4](
| | | | | | | | TABLE SCAN
| | | | | | |)
| | | | | | , PUB.O.Ordernum
| | | | | | , PUB.O.CustNum
| | | | | | , PUB.O.rowid
| | | | | |)
| | | | |
| | | | | | (PEXPR2) < (2)
| | | | | | Evaluation callback list(
| | | | | | | col id# 3
| | | | | |)
| | | | |)
| | | |
| | | |)
| | |)
| | ,
| | | (PEXPR1) = (PEXPR8)
| | | -- above defines ANL left side keys <
| | ,
| | | INDEX SCAN OF DYN. INDEX ON SYSPROGRES
| | | | [Dynamic Index with key == fld lis
| | | | [Pexpr map for Dynamic Index data
| | | | PEXPR1, PEXPR2, PEXPR3]
| | | | [Fldids
| | | | FldId 0, FldId 1, FldId 2]
| | | | [Dynamic Index] TMPTBL00000004BL00
| | | | | (SYSPROGRESS.TMPTBL00000002.0)
| | | | RESTRICT [54] (
| | | | | PROJECT [46] (
| | | | | | PUB.PO. [2](
| | | | | | | TABLE SCAN
| | | | | |)
| | | | | , PUB.PO.Itemnum
| | | | | , PUB.PO.Qty
| | | | | , PUB.PO.rowid
| | | | |)
| | | |
| | | | | (PEXPR2) > (1)
| | | | | Evaluation callback list(
| | | | | | col id# 5

www.progress.com

| | | | |)
| | | |)
| | |
| | |)
| |)
| , count (*)
|)
, PEXPR1
)

Reason for faster execution:
We can notice that, due to column statistics in place intermediate join is now between Pub.Order_Medium
and pub.OrderLine_Medium which produces 1120 rows and that is why it is much faster.

SELECT COUNT(*) FROM Pub.OrderLine_Medium OL, Pub.Order_Medium O
WHERE O.OrderNum=OL.OrderNum AND O.CustNum < 2 AND OL.LineNum<4;

www.progress.com

Observation: Having column statistics helped SQL Optimizer to come up with more optimal join order which
made the overall query execution much faster. For instance, with the help of column statistics in place, SQL
Optimizer could identify that, filter on OrderNum of table Pub.Order can filter more number of rows, because
it has more number of unique values and selected this table as part of the intermediate join.

OrderLine

JOIN

JOIN

POLine

Order

1120 rows

www.progress.com

Chapter 9 – What goes into Statistics?
In this chapter you will learn what is inside the statistics and how this information helps SQL Optimizer to come
up with optimal query plans.

First let us see about Table Statistics. The System Table involved in this is, Pub.”_SysTblStat”. Let us see what
goes into this table when we update the Table statistics. Go to Squirrel window, and check for this table
structure.
Click on “Objects” Tab (just beside the SQL Tab).

www.progress.com

Expand the alias “OESQL”

 Expand the “SYSTEM TABLE” Item.

www.progress.com

Look for Pub.”_SysTblStat” and click on it. Notice the columns of this table.

 Columns we are interested in are “_TblId” & “_Value”. Column “_TblId” denotes the Table Identifier for which
Table Statistics are collected and column “_Value” denotes the number of rows the table contains.

www.progress.com

Now, go back to “SQL” Tab and run the below query to see table statistics information of table
Pub.Order_Medium. The number 19716 denotes the table cardinality and other value denotes the timestamp
when table statistics ran last time.

SELECT * FROM Pub."_SysTblStat" WHERE "_Tblid" = (SELECT "_File-Number" FROM Pub."_File" WHERE "_File-
Name" = 'Order_Medium');

www.progress.com

Now, let us see what goes into Index Statistics. The System Table which is used in this is, Pub.”_SysIdxStat”.
Check what goes into this system table when we update Index Statistics.

First, see that the index statistics are not present for table Pub.Customer

SELECT * FROM Pub."_SysIdxStat" WHERE "_Tblid" = (SELECT "_File-Number" FROM Pub."_File" WHERE "_File-
Name" = 'Customer');

www.progress.com

Now, let us run the index statistics for this table, Pub.Order.
UPDATE INDEX STATISTICS FOR Pub.Customer;

Now, run the same query again to see what went into Index Statistics System Table, Pub.”_SysIdxStat”.
SELECT * FROM Pub."_SysIdxStat" WHERE "_Tblid" = (SELECT "_File-Number" FROM Pub."_File" WHERE "_File-
Name" = 'Customer');

www.progress.com

We can notice that, there are 3 indexes, each containing 5 or more than 5 properties. Property value “5”
denotes number of unique values, property “6” denotes the number of levels in index, property “7” denotes
the number of blocks this index occupied, property “8” denotes size of the index in bytes and property “11”
denotes the max dup (highest number of duplicate values that SQL found).

Now, let us check what goes into Column Statistics. The system table involved in this is, Pub.”_SysColStat”
and various system tables specific to data type of column, such as Pub.”_SysIntStat” or Pub.”_SysNumStat”.
These System tables basically represents Histogram which stores information about column data. Table,
Pub.”_SysColStat” stores the number of unique values in each bucket (there will be total 40 buckets as of
OpenEdge 11.6) and systable pub.”_Sys<data_Type>Stat” stores the boundary values of each bucket.

Sample histogram might look like below

Bucket Number 1 2 3 4 5 6 7 … 39 40
Unique count 1 3 5 8 12 15 20 … 380 400
Boundary value 5 10 20 100 25 100 20 … 10 30

0
20
40
60
80

100
120
140

1 5 12 20 40 49 58 72 83 94 103 120 143 156 180 220 270 299 325 400

Fre
que

ncy

Boundary Values

www.progress.com

First, check that the column statistics are not present for table Pub.Customer.

SELECT * FROM Pub."_SysColStat" WHERE "_Tblid" = (SELECT "_File-Number" FROM Pub."_File" WHERE "_File-
Name" = 'Customer');

www.progress.com

And check the table Pub.”_SysIntStat” for integer columns of Pub.Customer table.
SELECT * FROM Pub."_SysIntStat" WHERE "_Tblid" = (SELECT "_File-Number" FROM Pub."_File" WHERE "_File-
Name" = 'Customer');

www.progress.com

Now, update the column statistics for table Pub.Customer.

UPDATE ALL COLUMN STATISTICS FOR Pub.Customer;

 Now, run the same query to check what went into Pub.”_SysColStat” and Pub.”_SysIntStat” tables.
SELECT * FROM Pub."_SysColStat" WHERE "_Tblid" = (SELECT "_File-Number" FROM Pub."_File" WHERE "_File-
Name" = 'Customer');

www.progress.com

SELECT * FROM Pub."_SysIntStat" WHERE "_Tblid" = (SELECT "_File-Number" FROM Pub."_File" WHERE "_File-
Name" = 'Customer');

SELECT * FROM Pub."_SysnVarCharStat" WHERE "_Tblid" = (SELECT "_File-Number" FROM Pub."_File" WHERE
"_File-Name" = 'Customer');

www.progress.com

SELECT * FROM Pub."_SysnumStat" WHERE "_Tblid" = (SELECT "_File-Number" FROM Pub."_File" WHERE
"_File-Name" = 'Customer');

Here, “_Attribute’ represents the bucket number of histogram and “_Value” represents the boundary value of
that bucket.

www.progress.com

Chapter 10 - SQL hints In this chapter you will learn different hints which are supported by OE-SQL and their importance in
troubleshooting the performance problems.

a. NoExecute – Useful in cases, where you just want to check the query plan and do not want to
execute the actual query. For example, you know some queries are running very slow and you
want to know what is the plan used by such queries quickly. Below example will show the
usage of “NoExecute”.

SELECT COUNT (*) FROM Pub.POLine PO, Pub.OrderLine_Large OL where PO.ItemNum = OL.ItemNum AND
PO.LineNum=OL.LineNum NOEXECUTE;

www.progress.com

Now, you can check the query plan.

www.progress.com

b. No reorder – Useful when you suspect that the join order used by SQL optimizer is not efficient
and want to validate the query plan/execution time by forcing SQL optimizer to choose
specified join order. Below example will show the usage of “No reorder”.

Let us use the same query as the one we used to illustrate the effect of column statistics

SELECT COUNT (*) FROM Pub.OrderLine_Medium OL, Pub.POLine_Medium PO, Pub.Order_Medium O {NO
REORDER}
WHERE OL.ItemNum=PO.ItemNum AND O.OrderNum=OL.OrderNum AND O.CustNum < 2 AND OL.LineNum <
4 AND PO.Qty > 1;

Now, if you check the query plan, it uses the given join order instead of re-ordering to create the best possible
plan.

_Description
--
SELECT COMMAND.
PROJECT [53] (
| PROJECT [52] (
| | JOIN [5][AUG_NESTED_LOOP-JOIN](
| | | JOIN [3][AUG_NESTED_LOOP-JOIN](
| | | | RESTRICT [55] (
| | | | | PROJECT [42] (
| | | | | | PUB.OL. [1](
| | | | | | | TABLE SCAN
| | | | | |)
| | | | | , PUB.OL.Itemnum
| | | | | , PUB.OL.Ordernum
| | | | | , PUB.OL.Linenum
| | | | | , PUB.OL.rowid

www.progress.com

| | | | |)
| | | |
| | | | | (PEXPR3) < (4)
| | | | | Evaluation callback list(
| | | | | | col id# 3
| | | | |)
| | | |)
| | | ,
| | | | (PEXPR1) = (PEXPR5)
| | | | -- above defines ANL left side ke
| | | ,
| | | | INDEX SCAN OF DYN. INDEX ON SYSPRO
| | | | | [Dynamic Index with key == fld
| | | | | [Pexpr map for Dynamic Index
| | | | | PEXPR1, PEXPR2, PEXPR3
| | | | | [Fldids
| | | | | FldId 0, FldId 1, FldId 2
| | | | | [Dynamic Index] TMPTBL00000026
| | | | | | (SYSPROGRESS.TMPTBL0000002
| | | | | RESTRICT [54] (
| | | | | | PROJECT [46] (
| | | | | | | PUB.PO. [2](
| | | | | | | | TABLE SCAN
| | | | | | |)
| | | | | | , PUB.PO.Itemnum
| | | | | | , PUB.PO.Qty
| | | | | | , PUB.PO.rowid
| | | | | |)
| | | | |
| | | | | | (PEXPR2) > (1)
| | | | | | Evaluation callback list(
| | | | | | | col id# 5
| | | | | |)
| | | | |)
| | | |
| | | |)
| | |)
| | ,
| | | (PEXPR2) = (PEXPR8)
| | | -- above defines ANL left side keys <
| | ,
| | | INDEX SCAN OF DYN. INDEX ON SYSPROGRES
| | | | [Dynamic Index with key == fld lis
| | | | [Pexpr map for Dynamic Index data
| | | | PEXPR1, PEXPR2, PEXPR3]
| | | | [Fldids
| | | | FldId 0, FldId 1, FldId 2]
| | | | [Dynamic Index] TMPTBL00000027BL00
| | | | | (SYSPROGRESS.TMPTBL00000025.0)
| | | | RESTRICT [56] (
| | | | | PROJECT [50] (
| | | | | | PUB.O. [4](
| | | | | | | TABLE SCAN
| | | | | |)
| | | | | , PUB.O.Ordernum

www.progress.com

| | | | | , PUB.O.CustNum
| | | | | , PUB.O.rowid
| | | | |)
| | | |
| | | | | (PEXPR2) < (2)
| | | | | Evaluation callback list(
| | | | | | col id# 3
| | | | |)
| | | |)
| | |
| | |)
| |)
| , count (*)
|)
, PEXPR1
)

c. Index hints – Useful when you suspect that the index selected by SQL optimizer is less optimal
than the index which you expect would perform better. You can specify the index which
should be used by SQL optimizer using “Force Index Hints”. Below example will show the
usage of “Force index hint”.

SELECT COUNT (*) FROM Pub.OrderLine_Large WHERE LineNum=3 AND OrderNum=10;

www.progress.com

Now, check the query plan. It selected index, OrderNum_Large.

 Now, run the same query with force index hints.
SELECT COUNT (*) FROM Pub.OrderLine_Large FORCE (INDEX (LineNum_Large)) WHERE LineNum=3 AND
OrderNum=10;

www.progress.com

Now, check the query plan.

www.progress.com

Chapter 11 – Puzzles In this chapter you will be given two queries having performance problems which performs bad. You are
supposed to solve these two performance problems by understanding the reason for bad performance and
tuning your database, such that these queries performs better. Note that, obvious way of executing all type of
statistics on all the involved tables is not allowed here (This will help us to understand the reason behind the
slowness of the query).

Important Note:
Below queries might take more than couple of minutes to complete the execution, so make sure to execute
the QUERY_TIMEOUT command, so that query aborts after 60 seconds.

SET PRO_CONNECT QUERY_TIMEOUT 60

Query 1: Below query performs very bad, how do you tune your database to make sure that, it performs better?

select top 30 po.price, po.qty, po.itemnum, po.linenum from pub.poline_large po, pub.orderline_large ol
where po.linenum=ol.linenum and po.itemnum = ol.itemnum order by po.price, po.qty;

Query 2: Below query performs very bad, how do you tune your database to make sure that, it performs better?

select count (*) from pub.order_10k O, pub.orderline_10k ol, pub.customer_10k c where ol.country=c.country
and o.custnum=c.custnum and o.ordernum < 2;

