
Tales of the Secret
Bunker 2016 (231)
Dump and Load Edition
Mike Furgal – Director MDBA and Pro2 Services
Gus Bjorklund - Lackey

2

find directions where location-name = "secret bunker"

3

Type II storage areas have lessened the need
to do regular dump and load processing,
however you still need to dump and load to
maintain good performance. The frequency of
the dump and load tends to be every 3 to 5
years.

4

The Bunkerteers took it upon themselves to
test various dump and load technologies

5

What needs to be dumped?

§  Data Definitions
§  Data
§  Sequence Current Values
§  Security

•  _user
•  SQL Permissions

§  Audit Rules
§  Proutil Describe
§  Etc

6

Before you dump

§  Backup the database
§  Verify the backup

•  Best approach would be to restore the database

§  Run a tabanlys
•  Used to compare after the load to make sure we got all the data

§  Make a note of:
•  db block size, ai block size, bi block size, code page, etc
•  who has DBA rights

§  DO YOU HAVE ENOUGH DISK SPACE ?

7

How to Load

§  Data Definitions
§  Data
§  Sequence Current Values
§  Security

•  _user
•  SQL Permissions

§  Audit Rules
§  May be more

8

After You Load

§  Backup the database
§  Run a tabanlys

•  Compare the row count to the original
§  Proutil Describe

•  Compare it to the original
•  Bi Blocksize, BI Cluster Size, AI Blocksize, etc

§  Enable After Imaging
§  Rebaseline OE Replication

what could go wrong?

10

mike

11

Data Dumping and Loading Options

ASCII Options
§  Ascii Dump through

the dictionary
§  Ascii Load through the

dictionay
•  With and without active

indexes

§  Bulkload

Buffer Copy
§  Buffer Copy from

one database to
another

Binary Options
§  Binary Dump
§  Binary Load

12

On to the Tests

13

bunker

15

Bunker Machine

§  4 quad-core 2.4 GHz Intel processors
•  4800.25 bogomips

§  64 GB memory
§  8 x 146 GB 10,000 rpm sas drives

•  2 RAID 10
•  6 RAID 0 for /opt/tmp

§  16 x 300 GB 10,000 rpm drives
•  RAID 10 for /opt/db

§  8 x 300 GB 10,000 rpm drives
•  RAID 10 for /opt/db1

§  Centos Linux 6.7
§  OpenEdge 11.5.1

New this machine costs
$35,000 USD.

Used we found it for
$3,500 USD

BIGROW test runs in 4 seconds
24 MB/Second

17

Database Statistics

§  Size: 36 GB
§  Tables: 835
§  Indexes: 1,736
§  Areas

•  49 Data Areas

•  49 Index Areas

Table Rows Size
Table 1 13,495,717 4.6G
Table 2 52,307,552 3.5G
Table 3 1,873,601 2.1G
Table 4 2,432,884 1.3G
Table 5 9,430,367 1007.8M

18

gus

19

ASCII^H^H^H^H^HText Dump

§  Using the data dictionary to dump the data programatically
•  by running prodict/dump_d.p

§  Where to put dump files?
•  Same filesystem 86:12
•  Different filesystems 85:33

§  Making the filesystem cache smaller made a slight difference
•  86:12 vs 87:46

20

key order does not match record storage order

Index
Leaf

Blocks K1 K2 K3 K4 K5 K6 K7 K8

Index Keys

Record
Blocks

21

Scatter Matters

§  The database used was freshly dumped and loaded. To get past
this, we ran a scatter analysis program which looks at the logical
scatter of the database

§  Changed the primary index on the top 43 largest tables
•  Row counts were greater than 500,000
•  % of rows logically scattered > 10

§  Comparison
•  Non scattered dump: 87:46
•  Scattered dump: 133:21 --- 52% slower!! This is important!

22

Text Load

§  Using the dictionary load programmatically with prodict/load_d.p
•  Loading into preallocated space: 376:20
•  Loading into variable extents: 365:06
•  Loading from a different filesystem: 354:15

§  Loading no active indexes: 276:04
•  Loading the data: 231:34
•  Index rebuild: 44:33

§  Bulkload: 110:05
•  Loading the data: 65:32
•  Index rebuild: 44:33

Best Text Dump and Load Result
233:09

3 hours, 53 minutes, 9 seconds

By:
 Dictionary Text dump,
 Bulkload, and
 Index Rebuild

25

mike

26

Buffer Copy

§  The approach here is to connect to thre source database and buffer-copy all the data to the
target database.

§  Tests performed
•  Single User

•  Multi-User

•  With active Indexes

•  No active indexes

•  Parallel

FOR EACH s.<table> NO-LOCK:

 BUFFER-COPY s.<table> to t.<table>.

END.

27

Buffer Copy Results

Buffer Copy
Single User 257:80
Single User no index 134:31 + 44:33 = 179:01
Single User no index scattered 179:36 + 44:33 = 224:06
Multi User Scattered no index 193:11 + 44:33 = 237:44
Multi User Scattered by area parallel 130:21

Multi User no index by area parallel 82:39 + 44:33 = 127:09

The parallel processing used 8 processors running at the same time

28

How to Parallelize the process

§  A bunch of sophisticated analysis was done to
optimize this process.

30

How to Parallelize the process

§  A bunch of sophisticated analysis was done to
optimize this process.

§  Take the size of the largest table and use that as a guide

§  Combing all the table into their respecive areas

§  Break them up into N sized units

•  Where N is the size of the largest table

§  This process is very complex and borders on rocket science

The longest thread took 130 minutes
The shortest thread took 68 minutes

32

gus

33

Binary Dump

§  Build scripts to dump out all the data.
§  Tests

•  Single Users

•  Read Only

•  Multi user

•  Parallel

34

Binary Dump
Dump non-scattered data 10:17
Dump Scattered 46:20
Dump non-scattered -index 0 8:34
Dump Scattered -index 0 8:35

It’s 4x slower to dump the scattered data

Notice the similar times for the non-scattered and scattered table scan dumps.
Even the (expert?) bunkerteers do stupid experiments

Using -index 0 does a table scan. While this is the fasted dump method,
the order of the rows will not be useful for most applications

35

Binary Dump Results

Binary Dump

Single user 46:20

36

Binary Dump Results

Binary Dump

Single user 46:20
Single User with large -B and lruskips 44:13
Multi User with large -B and lruskips 42:46
Single User with -RO 45:07
Single User with -RO with large -B and lruskips 43:10

Much special equipment was needed

38

Binary Dump Results

Binary Dump

Single user 46:20
Single User with large -B and lruskips 44:13
Multi User with large -B and lruskips 42:46
Single User with -RO 45:07
Single User with -RO with large -B and lruskips 43:10
Parallel MU by Area with large -B and lruskips 27:45
Parallel -RO by area with large -B and lruskips 28:44
Parallel MU By Area -Bp 64 with large -B and lruskips 29.14

39

mike

40

A Simple Parallel Processor
Thread Scheduler

for i in `cat tables`
do
 currentThread=`ls -1 *.working 2> /dev/null | wc –l`
 if [$currentThread -le $threads]
 then
 ./dump_table.sh $i > $i.out &
 else
 while [1]
 do
 currentThread=`ls -1 *.working 2> /dev/null | wc –l`
 if [$currentThread -le $threads]
 then
 break
 fi
 sleep 0.1
 done
 ./dump_table.sh $i > $i.out &
 fi
 sleep 0.2
done
wait

Worker Thread

echo $$ > $$.working
proutil scattered -C dump $1 ./bdump
rm -f $$.working

41

1100

1200

1300

1400

1500

1600

1700

1800

0 5 10 15 20

S
ec

on
ds

Number of Processes

Multi Process Dump

Area
Table

42

gus

43

Binary Load

§  Binary load tests include
•  Single User

•  Multi User

•  Parallel loads by area

•  Single user with build indexes

•  Multi user with build indexes

•  Parallel load by area with build indexes

44

Binary Load Results

Binary Load
Single User 36:17 + 44:33 = 80:50
Multi User 20:52 + 44:33 = 65:28
Parallel Multi User 17:27 + 44:33 = 62:00
Single User Build indexes 75:41
Multi User build indexes 61:40
Parallel Multi User build indexes 46:49

The best dump and load result is:

Parallel dump by table 20:22
Parallel load by area and build indexes 46:49
Total time excluding backups, etc 67:06

45

Results Summary
Results
Slowest Round Trip

• Dictionary Dump
• Dictionary Load
• Indexes Active

133:21
367:20
500:41 (8:20:41)

Fastest TEXT

• Dictionary Dump
• Bulkload
• Index Rebuild

133:21
65:32
44:33���
243:26 (4:03:26)

Fastest Buffer Copy

• Parallel by area
• Indexes Inactive

82:39
44:33
127:09 (2:07:09)

Fastest Binary

• Parallel dump by table
• Parallel Load build indexes

20:22
46:49
67:06 (1:07:06)

46

