PROGRESS

piudge@progress.com

Peter Judge PF{OGRESS

VS, Fresentation Layer

User Interface is the implementation of the intended User
Experience in terms of page layout, page transitions and page
control elements ']

Presentation layer is the design and implementation of the code
and other resources that provide that Ul

What'’s the difference? Aren’t they the same thing?

Differently put, Ul is what you see, PL is what shows it to you.

PROGRESS

for each Customer:
display CustNum
with frame f1Cust 1 down.
end.

How many of you recognise this? Most of you ©

PROGB?SS

You can argue that FOR EACH CUSTOMER is a presentation layer in itself. There’s code, there’s
interaction with a human or 2. All set, right?

So | guess to clarify what | mean by presentation layer in the context of this session. Today we’ll look
a little deeper into the design aspect of the presentation layer, although we’ll do so largely through
code.

|
The Beginning: A Very Good Place To Start FROHESS
for each customer:
displ custnum

with frame fCust 1 down.
end.

What do we have here? A way to

... get data
... show data

... process inputs

It’s quite a powerful few lines of code ...
This code contains all of the concepts and code that we need/want to work on

It gets data, shows data and handles user input.

| 2
The Beginning: A Very Good Place To Start FROHESS
for each customer:
displ custnum

with frame fCust 1 down.

end.
What do we have here? A way to

... get data
... show data

... process inputs

No way to process inputs? Think about the ‘press spacebar to continue’ message .

This is not very nice code for a number of reasons
1. Direct DB access
2. No way to intercept user input in ABL

|
The Beginning: A Very Good Place To Start FROHESS
for each customer:
displ custnum

with frame fCust 1 down.

end.
What do we have here? A way to

... get data
... show data

... process inputs

No way to process inputs? Think about the ‘press spacebar to continue’ message .

This is not very nice code for a number of reasons
1. Direct DB access
2. No way to intercept user input in ABL

e Beginning: A Very Good Place To Sta PROGRESS

for each customer:
displ custnum
with frame fCust 1 down.

|
end.
What do we have here? A way to

... getdata

... show data

No way to process inputs? Think about the ‘press spacebar to continue’ message .

This is not very nice code for a number of reasons
1. Direct DB access
2. No way to intercept user inputin ABL

An Important Improvement

define temp-table ttCustomer no-undo
like Customer.

run GetCustomers
(input cWhereClause,
output temp-table ttCustomer).

for each ttCustomer:
displ custnum
with frame fCust 1 down.

end.

Much better.

Having something like GetCustomers() is very important since it allows us to populate ttCustomer
any way we want to. We can filter, sort, slice and dish, mashup and futz with our data any way we
want, WITHOUT having to change the display. We have a contract (of sorts) contained in the temp-
table definition, and if we mess things up — like remove the CustNum field —the compiler lets us

know all about it.

Direct DB connection broken in this program, but still Ul issues remain. Still local.

A Further Modest Improvement

define temp-table ttCustomer no-undo
field CustNum as integer
/* fields */.

hAppServer
iconnect("-AppService asPugChallengell").

run GetCustomers on hAppServer
(input cWhereClause,
output temp-table ttCustomer).

for each ttCustomer:
displ custnum
with frame fCust 1 down.

end.

Notice that we’ve changed the temp-table definition to define the fields, rather than using “Like
Customer”. We’ve now completely broken the dependency on the database in our Ul code.
getCustomers() obviously still needs to know where to get the data from, but the Ul has no clue.

Ok, now we have a decent starting point. We run on the AppServer, which means we get
performance benefits: more machine, typically. We can also ask for a subset of data by passing filter

criteria.

This is a very simple starting point, but it’s intended to illustrate the concepts and separate concerns
that we’re dealing with.

PRDGHESS

Time to look at real* code

* relatively real-ish, at any rate

Client/customerwin.w

11

customerwin.w

12 3011 Progress Softwars Corporation Allrghts reserved

Let’s put this in terms of our earlier categorisations

12

perform ui logic
hold things together

getCustomerData on hAppServer
define query on ttCustomer
query navigation etc

rames, controls, pages
define buttons / links & ‘on choose’ triggers

13 ©2011 Progress Softuare Coreration Allights reserves

Now each action has it’s own program / component

13

PRDGHESS

Tying the pieces together

Client/customerwin.w

14

Presentation Layer Design PROBHESS
Always working with 3 parts
1. Something to hold data
2. Something to show the data to a user
We also need something to hold everything together

= Multiple designs that combine these 3 concepts
+ MVC (fiodelview Controller)
+ PAC (presentation‘abstractioncontrol)
- MVP (fodel-view presenten)
+ MVVM (fodel-viewEviewsmodel)

Data: Not a DAO but a client-side proxy of business entity.
Ok so more like 4 parts.

There are many named designs - or patterns - for implementing this stuff. MVC, MVP, ...
Note that they all have 3 parts. Even MVVM is really only 3 parts.

MVC — controller takes user input directly

PAC — controller takes user input directly

MVP — lets view take some input

MVVM - view-model is effectively a controller. Introduced for Silverlight

15

PROGRESS.

Contains local data, access to business logic

Model /
Abstraction
Presenter /
Controller / —
Control / .
View-Model Presentation

Handles inter-component) Draws Ul; Receives user input
communication; Can contain Ul logic

16 2011 Progress Sotware Gorpeeation, Al Aghis reserved

The directions and strength of the connections also differentiate the patterns. Conceptually, they’re
all quite similar, and hence a lot of confusion about what differentiates them. I'll try to explain.

Model-View-Controller (MVC)

MVC Granddaddy of them all
All communication through Controller
Mouse Click t©y Controller oy Model t) Controller oy View

PAC (Presentation-Abstraction-Control)
Used as hierarchical structure of agents
Triad of presentation, abstraction and control parts

Triads only communicate through control part

MVP (Model-View-Presenter)
Derivative of MVC, mostly for building Ul
Presenter becomes "middle-man”
View is responsible for handling Ul events
Mouse Click® View § Presenter B Model § View
D Presenter o View

“Grandaddy” MVC typically associated with frameworks, it is essentially an architecture.
Controlflow: Many flavoursControl flow is generally as follows:
The user interacts with the user interface in some way (for example, by pressing a mouse
button).
The controller handles the input event from the user interface, often via a
registered handler or callback, and converts the event into an appropriate user action,
understandable for the model.
The controller notifies the model of the user action, possibly resulting in a change in the
model's state.
A view queries the model in order to generate an appropriate user interface (for example the
view lists the shopping cart's contents). The view gets its own data from the model. In some
implementations, the controller may issue a general instruction to the view to render itself.
In others, the view is automatically notified by the model of changes in state that require a
screen update.
The user interface waits for further user interactions, which restarts the control flow cycle.

PAC has same flow as MVC : presentation -> control -> abstraction -> control -> presentation

The model-view-presenter software pattern originated in the early 1990s at Taligent, a joint venture
of Apple, IBM, and HP, a

Other versions of model-view-presenter allow some latitude with respect to which class handles a

particular interaction, event, or command. This is often more suitable for web-based architectures,
where the view, which executes on a client's browser, may be the best place to handle a particular

interaction or command.

17

http://en.wikipedia.org/wiki/Taligent
http://en.wikipedia.org/wiki/Apple_Inc.
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/HP

Model-View-ViewModel (MVVM) PRDEHESS

Derivative of PresentationModel :

The essence of a Presentation Model is of a fully self-contained
class that represents all the data and behavior of the Ul window,
but without any of the controls used to render that Ul on the
screenl’

MVVM a specialization of this the more general PM
pattern, tailor-made for the WPF and Silverlight platforms!!

Model and View are same as for MVP/MVC

1. Martin Fowler, Presentation Model (htip:/imatinfowler comisasDevPresentationiodst him |
2 Josh Smih, WPF Apps With The M
b

PresentationModel/ViewModel means that even without seeing the Ul we know what the Ul looks
like (as it were).

WVVM is pretty MS-specific (XAML etc).

PRDGHESS

What does OERA use?

19

MVP Pattern

= Supervising Presenter
* Good fit for ABL tight data binding
= Presenter does some Work

~~~~~~~~ ;

Passive View
View, Model have no
dependencies
Presenter does all Work

Using Model-View-Presenter (you might have seen that coming :)
Allows Views to do some work — necessary with multiple Ul techs (.cls, .p etc)
Supervising Presenter Variant/Pattern allows View / Model communication

Fits well within OpenEdge Reference Architecture
Though can be used outside OERA

While the decision of design patterns to use should be technology-agnostic as far as
possible, the ABL’s heritage of providing strong or tight data binding constructs in the
language — going back to the DISPLAY and UPDATE statements and continued in the
OpenEdge ProBindingSource object — mean that the Supervising Presenter is a pattern
well-suited to ABL applications’ presentation layers.

20



OpenEdge Reference Architecture ‘pﬁbsne'ss
Presentation Enterprise Services

Business Components

Data Access

ainjonjselju] uowwod

Data Sources

As you’d expect from the title of this talk, it fits into Presentation Layer. Talks to Business
Components, Common Infrastructure

21



MVP in the OERA Presentation Layer PROBHESS

Presenter i

View S

(@)
o
E
3
<)
-
=1
=
=
g
2
5
c
3
€
5
o

Business Components

Note that the Model becomes a conduit to the data layer (business components). So in OERA the
Model typically talks to a Business Entity

22



customer_eventhandler.p

perform ui logic
hold things together

customer_clientdata.p

getCustomerData on hAppServer
define query on ttCustomer
query navigation etc

customer_abl_gui.p

customer_net_gui.cls
customer_web_ui.p

rames, controls, pages
define buttons / links & ‘on choose’ triggers

23 ©2011 Progress Softuare Cororation Allights reserves

Now each action has it’s own program / component

23



customer_eventhandler.p

perform ui logic
hold things together

customer_clientdata.p
getCustomerData on hAppServer
define query on ttCustomer
query navigation etc

customer_abl_gui.p

define UL (frames, controls, pages)
define buttons / links & ‘on choose’ triggers

24 3011 Progress Softwars Corporation Allrghts reserved

This pattern lets us swap out the model-side code for different models, without the

presenter/views caring

24



summary PROGRESS

= Reusable, consistent logic across Ul technologies
+ We already knew about business logic reuse
+ Now have reusable Ul logic

= Better separation of concerns

+ View does Ul
* Model does Data

+ Presenter does Thinking m

= Supports incremental migration , x

= Easier testing, clearer points of failure
-

Separation of concerns:
*View ... easier to build new Uis
* Means that we can swap out things like Models too, without affecting the other components.

Testing: Maybe fewer bugs. More like fewer places for bugs to appear

25



PROGRESS

OERI Model View Presenter Architecture

hitp:!/communities progress.com/pcom/docs/DOC-105108

+ AutoEdge|TheFactory

hitp://communities progres
» OERA Presentation Layer

hitp:/communities. progress.com/pcom/docs/DOC-34978

m/peomicommunity/psdn/openedgel

MVC hitpiitheim.ifi uio no/~tryaverithemes/myeimyc-index.htm

+ Portland Pattern Repository

MVC hitp./ic2.comicgiwiki?ModelViewController
MVP hitp./fc2 comicgih
MVWM

wiki?MadelViewPresenter

/imsdn microsoft com/en-us/magazine/dd419663 aspx

odel-Pattern.aspx

hitp/iwvww.nikhilk /S v/

hitp:/ien wikipedia.or View ViewModel

+  httpAwwaw nikhilk netView-ViewModel-Interaction. aspx
“Build your own CAB"” (nice overview of many topics)

hitp miere ler/2007/07/26/the-build-your-own-cab-series-table-of-contents!

2011 Progress Sofware Corperation Allrghts reserved.

26



27



S 7 ; 7.‘
<. T/ '*'!

PROGRESS
REVOLUTION

Sept. 19 — 22, 2011
Boston Westin Waterfront Hotel
and Boston Convention & Exhibition Center PROGRESS

| PROGRESS

software

28



