
1

What’s the difference? Aren’t they the same thing?

Differently put, UI is what you see, PL is what shows it to you.

2

How many of you recognise this? Most of you 

3

You can argue that FOR EACH CUSTOMER is a presentation layer in itself. There’s code, there’s
interaction with a human or 2. All set, right?

So I guess to clarify what I mean by presentation layer in the context of this session. Today we’ll look
a little deeper into the design aspect of the presentation layer, although we’ll do so largely through
code.

4

It’s quite a powerful few lines of code …

This code contains all of the concepts and code that we need/want to work on

It gets data, shows data and handles user input.

5

No way to process inputs? Think about the ‘press spacebar to continue’ message .

This is not very nice code for a number of reasons
1. Direct DB access
2. No way to intercept user input in ABL

6

No way to process inputs? Think about the ‘press spacebar to continue’ message .

This is not very nice code for a number of reasons
1. Direct DB access
2. No way to intercept user input in ABL

7

No way to process inputs? Think about the ‘press spacebar to continue’ message .

This is not very nice code for a number of reasons
1. Direct DB access
2. No way to intercept user input in ABL

8

Much better.

Having something like GetCustomers() is very important since it allows us to populate ttCustomer
any way we want to. We can filter, sort , slice and dish, mashup and futz with our data any way we
want, WITHOUT having to change the display. We have a contract (of sorts) contained in the temp-
table definition, and if we mess things up – like remove the CustNum field – the compiler lets us
know all about it.

Direct DB connection broken in this program, but still UI issues remain. Still local.

9

Notice that we’ve changed the temp-table definition to define the fields, rather than using “Like
Customer”. We’ve now completely broken the dependency on the database in our UI code.
getCustomers() obviously still needs to know where to get the data from, but the UI has no clue.

Ok, now we have a decent starting point. We run on the AppServer, which means we get
performance benefits: more machine, typically. We can also ask for a subset of data by passing filter
criteria.

This is a very simple starting point, but it’s intended to illustrate the concepts and separate concerns
that we’re dealing with.

10

Client/customerwin.w

11

Let’s put this in terms of our earlier categorisations

12

Now each action has it’s own program / component

13

Client/customerwin.w

14

Data: Not a DAO but a client-side proxy of business entity.
Ok so more like 4 parts.

There are many named designs - or patterns - for implementing this stuff. MVC, MVP, …
Note that they all have 3 parts. Even MVVM is really only 3 parts.

MVC – controller takes user input directly
PAC – controller takes user input directly
MVP – lets view take some input
MVVM – view-model is effectively a controller. Introduced for Silverlight

15

The directions and strength of the connections also differentiate the patterns. Conceptually, they’re
all quite similar, and hence a lot of confusion about what differentiates them. I’ll try to explain.

16

“Grandaddy” MVC typically associated with frameworks, it is essentially an architecture.
Controlflow: Many flavoursControl flow is generally as follows:

The user interacts with the user interface in some way (for example, by pressing a mouse
button).
The controller handles the input event from the user interface, often via a
registered handler or callback, and converts the event into an appropriate user action,
understandable for the model.
The controller notifies the model of the user action, possibly resulting in a change in the
model's state.
A view queries the model in order to generate an appropriate user interface (for example the
view lists the shopping cart's contents). The view gets its own data from the model. In some
implementations, the controller may issue a general instruction to the view to render itself.
In others, the view is automatically notified by the model of changes in state that require a
screen update.
The user interface waits for further user interactions, which restarts the control flow cycle.

PAC has same flow as MVC : presentation -> control -> abstraction -> control -> presentation

The model-view-presenter software pattern originated in the early 1990s at Taligent, a joint venture
of Apple, IBM, and HP, a

Other versions of model-view-presenter allow some latitude with respect to which class handles a
particular interaction, event, or command. This is often more suitable for web-based architectures,
where the view, which executes on a client's browser, may be the best place to handle a particular
interaction or command.

17

http://en.wikipedia.org/wiki/Taligent
http://en.wikipedia.org/wiki/Apple_Inc.
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/HP

PresentationModel/ViewModel means that even without seeing the UI we know what the UI looks
like (as it were).

WVVM is pretty MS-specific (XAML etc).

18

19

Using Model-View-Presenter (you might have seen that coming :)
Allows Views to do some work – necessary with multiple UI techs (.cls, .p etc)
Supervising Presenter Variant/Pattern allows View / Model communication

Fits well within OpenEdge Reference Architecture
Though can be used outside OERA

While the decision of design patterns to use should be technology-agnostic as far as

possible, the ABL’s heritage of providing strong or tight data binding constructs in the

language – going back to the DISPLAY and UPDATE statements and continued in the

OpenEdge ProBindingSource object – mean that the Supervising Presenter is a pattern

well-suited to ABL applications’ presentation layers.

20

As you’d expect from the title of this talk, it fits into Presentation Layer. Talks to Business
Components, Common Infrastructure

21

Note that the Model becomes a conduit to the data layer (business components). So in OERA the
Model typically talks to a Business Entity

22

Now each action has it’s own program / component

23

This pattern lets us swap out the model-side code for different models, without the
presenter/views caring

24

Separation of concerns:
•View … easier to build new Uis
• Means that we can swap out things like Models too, without affecting the other components.

Testing: Maybe fewer bugs. More like fewer places for bugs to appear

25

26

27

28

