

User Authentication using the Client Principle Object

Presented By: Chris Longo

User Authentication using the Client
Principle Object

User Authentication using the Client Principle Object

Agenda
● What is the Client Principal Object?

● Why is it useful?

● How do I implement the CP Object?

User Authentication using the Client Principle Object

Application Context
● Unique set information associated with a

specific user's application session.
● UserID, PlantID, Session
● Effects:

● Authentication
● Authorization
● Query Filtering
● Conditional Processing

User Authentication using the Client Principle Object

Stateful App Environment
● User application sessions are uniquely bound to

a single OpenEdge Client.
● Context persists on the OpenEdge Client

● Shared Vars
● Persistent procedures
● UserID()

User Authentication using the Client Principle Object

Stateless App Environment
● User application sessions share OpenEdge

Clients.
● User Context must be re-establish with each

OpenEdge Client Interaction.

User Authentication using the Client Principle Object

What is a Client Principal Object?
● Dynamic ABL Object

● Attribute / Methods
● Maintains a User's Identity

● UserID / Roles
● SessionID / Session Expiration

● Sets effective UserID() for a database.
● Does not authenticate UserID and Password

User Authentication using the Client Principle Object

Importance of a CP Object
● Establish User Context
● Maintaining a user's identity in a stateless

environment.
● Used to maintain an identity authenticated

using an external registry other then _User.
● Application specific user registry
● LDAP

● Auditing

User Authentication using the Client Principle Object

Establishing a User's Identity
● OpenEdge Client connect to a database:

● Authenticate using _User table

● Login.p

● Provide -U <userid> -P <passwd>

● Setuserid() UserID() functions provides identity
context for the connected databases.

User Authentication using the Client Principle Object

Establishing a User's Identity
● Application Tables / External Registry

● Application specific code to Authenticate UserID
and Password.

● May not have and effect on UserID value set for the
the connected database.

● Use the CP Object to apply an application user's
identity.

User Authentication using the Client Principle Object

AppServer/Webspeed Agents
● Client Session Identity is established as an

agent connects to a database.
● Most likely at startup

● Agent is shared by many users but the Identity
remains set to the UserID of the process that
started the Agents.

User Authentication using the Client Principle Object

Session Context
● A User's Identity is part of application session

context.
● Established between and client and an agent with

each interaction.
● Need UserID function to recognize session

context.
● Specifically a user's identity.

User Authentication using the Client Principle Object

CP Object
● The CP Object becomes part of a user's

session context.

● It can be used to set the UserIDs of all
connected databases at run-time

User Authentication using the Client Principle Object

Steps to Using CP Object
● Establish an Authentication Domain
● Create CP Object
● Assign three key attribute

● UserID
● Domain Name
● SessionID

● Seal CP Object
● Domain AccessKey

● Use It
● Set UserIDs for connected database

User Authentication using the Client Principle Object

Authentication Domains relationship
with a CP Object

● Defined internally using the Data Admin Tool
● Alternately defined externally
● Provides encrypted key (access-key).
● Access-key used to seal and validate CP Objects.

User Authentication using the Client Principle Object

Authentication Domain Setup

User Authentication using the Client Principle Object

Security Policy
● An authentication domain must be loaded for a

session.
● Security Policy system handle loads domains

into the Trusted Domain Registry.
● security-policy:load-domain('dbName')

– Domain Registry Locked Automatically
● security-policy:register-domain('DomainName, AccessKey)

– security-policy:lock-registeration()

User Authentication using the Client Principle Object

Create CP Object

 CREATE CLIENT-PRINCIPAL hClientPrincipal.
 /* Set CP Object Values */
 hClientPrincipal:SESSION-ID = BASE64-ENCODE(GENERATE-UUID).
 hClientPrincipal:USER-ID = pcUserID.
 hClientPrincipal:DOMAIN-NAME = 'bravepoint.com'.
 hClientPrincipal:DOMAIN-TYPE = 'Internal'.
 hClientPrincipal:LOGIN-EXPIRATION-TIMESTAMP =
 ADD-INTERVAL(NOW, 60, 'seconds').
 hClientPrincipal:ROLES = pcRoles.
 hClientPrincipal:SET-PROPERTY('UserPlant', 'Norcross').

User Authentication using the Client Principle Object

Authenticate User Identity
IF Identity.IdentityKey <> ENCODE(pcPasswd) THEN DO:
 /* This will set the state-detail attribute */
 hClientPrincipal:AUTHENTICATION-FAILED
 ('UserName Password authenitication failed.').

 pcMessage = 'UserName Password authenitication failed.'.
END.

User Authentication using the Client Principle Object

CP Object State
● LOGIN-STATE Attribute

● LOGIN
● LOGOUT
● EXPIRED
● FAILED

● AUTHENTICATION-FAILED()
● Used on an unsealed CP Object
● LOGIN-STATE is set to failed.
● STATE-DETAIL Attribute is set to the supplied reason.

User Authentication using the Client Principle Object

Seal CP Object
● The Domain Access Key was previously defined using the Data

Admin tool or setup manually using register-domain().

 hClientPrincipal:SEAL(cDomainAccessKey)

User Authentication using the Client Principle Object

Set DB Identity
● SET-DB-CLIENT will set the effective UserID for all

connected databases or those explicitly specified.

 SET-DB-CLIENT(hClientPrincipal)

User Authentication using the Client Principle Object

CP Object Portability
● CP Object provides methods to import and

export it's values.
● CP Object exports and imports from a raw data

type.

 DEFINE VAR rCP AS RAW NO-UNDO.

 rCP = hClientPrincipal:EXPORT-PRINCIPAL().

User Authentication using the Client Principle Object

CP Object and Session Context
● Alternative #1:

● Pass the raw CP Object as a parameter back to the
client.
– Client gets full access to all the CP Objects Attributes.
– Raw data type might present issue with non ABL clients.
– Security threat?

User Authentication using the Client Principle Object

CP Object and Session Context
● Alternative #2

● Store the CP Object in a session context DB Table.
– CPObject.SessionID AS CHARACTER
– CPObject.ContextObject AS RAW

● Pass an encrypted token containing the associated
sessionID back to the client.
– SecureToken is used to reconstitute the CP Object each

time a user interacts with an agent.
– SecureToken is a character string.

User Authentication using the Client Principle Object

CP Object and Session Context
 /* Store the CP Object as part of a user's session context. */
 rCP = hClientPrincipal:EXPORT-PRINCIPAL().
 DO TRANSACTION:
 CREATE bCPObject.
 ASSIGN
 bCPObject.SessionID = hClientPrincipal:SESSION-ID
 bCPObject.ContextObject = rCP.
 END.

User Authentication using the Client Principle Object

CP Object Identity Authentication

 cSessionID = STRING(DECRYPT(BASE64-DECODE(pcSecToken), rEncryptKey))
 NO-ERROR.

 /* Create an empty CP Object. */
 CREATE CLIENT-PRINCIPAL hClientPrincipal.

 /* Find the session context row containing the previosuly saved
 CP Object Data. */

FIND bCPObject WHERE bCPObject.SessionID = cSessionID NO-LOCK NO-ERROR.
IF NOT AVAIL bCPObject THEN
 UNDO, THROW NEW Progress.Lang.AppError('Unable to authenticate
user. Could not find CPObject context.', 104).

/* Load the CP Object. So you left with a CP Object as it
 existed after you sealed it during createCPObject. */

hClientPrincipal:IMPORT-PRINCIPAL(bCPObject.ContextObject).

User Authentication using the Client Principle Object

Validate CP Object
● VALIDATE-SEAL(domainKey)

● Validates the CPObject's MAC, which was
previously generated via the SEAL().

● Must supply the DomainKey used to seal the
CPObject.

● LOGOUT()
● In validates a sealed CP Object
● No longer use it to set DB UserIDs
● Sets the LOGIN-STATE to LOGOUT

User Authentication using the Client Principle Object

Validate CP Object

hClientPrincipal:IMPORT-PRINCIPAL(bCPObject.ContextObject).
IF NOT hClientPrincipal:VALIDATE-SEAL(cDomainAccessKey) THEN DO:
 hClientPrincipal:LOGOUT().
 UNDO, THROW NEW Progress.Lang.AppError(
 SUBSTITUTE('CP Object Validation Failed. Login-State = &1',
 hClientPrincipal:LOGIN-STATE), 105).
END.

User Authentication using the Client Principle Object

Session Expiration
● SEAL-TIMESTAMP

● Automatically set.
● Date and time of when the CP Object was sealed.

● LOGIN-EXPIRATION-TIMESTAMP
● Programmatically set to some point in the future.
● LOGIN-STATE set to 'Expired' if not sealed prior to

the value set in this attribute.

User Authentication using the Client Principle Object

Session Expiration
/* Check expiration */
 IF hClientPrincipal:LOGIN-EXPIRATION-TIMESTAMP < NOW THEN DO:
 /* This will set the state-detail attribute */
 hClientPrincipal:AUTHENTICATION-FAILED
 ('User Session Expired.').
 hClientPrincipal:LOGOUT().
 DO TRANSACTION:
 FIND CURRENT bCPObject EXCLUSIVE-LOCK.
 prCP = hClientPrincipal:EXPORT-PRINCIPAL().
 bCPObject.ContextObject = prCP.
 END.
 END.

User Authentication using the Client Principle Object

Demo App

UI Client

asAuthenticate asBroker2

--CPObject Table
--Domain Registry

User Authentication using the Client Principle Object

Demo App

UI Client

asAuthenticate asBroker2

--CPObject Table
--Domain Registry

User Creds

Validate
Identity

User Authentication using the Client Principle Object

Demo App

UI Client

asAuthenticate asBroker2

--CPObject Table
--Domain Registry

Security
Token

User Authentication using the Client Principle Object

Demo App

UI Client

asAuthenticate asBroker2

--CPObject Table
--Domain Registry

Query DB
Send SecToken

Authenticate User
Execute Request

User Authentication using the Client Principle Object

Demo App

UI Client

asAuthenticate asBroker2

--CPObject Table
--Domain Registry

App Data

User Authentication using the Client Principle Object

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

