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Agenda
● What is the Client Principal Object?

● Why is it useful?

● How do I implement the CP Object?
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Application Context
● Unique set information associated with a 

specific user's application session.
● UserID, PlantID, Session
● Effects:

● Authentication
● Authorization
● Query Filtering
● Conditional Processing
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Stateful App Environment
● User application sessions are uniquely bound to 

a single OpenEdge Client.
● Context persists on the OpenEdge Client

● Shared Vars
● Persistent procedures
● UserID()
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Stateless App Environment
● User application sessions share OpenEdge 

Clients.
● User Context must be re-establish with each 

OpenEdge Client Interaction.
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What is a Client Principal Object?
● Dynamic ABL Object

● Attribute / Methods
● Maintains a User's Identity

● UserID / Roles
● SessionID / Session Expiration

● Sets effective UserID() for a database.
● Does not authenticate UserID and Password
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Importance of a CP Object
● Establish User Context
● Maintaining a user's identity in a stateless 

environment.
● Used to maintain an identity authenticated 

using an external registry other then _User.
● Application specific user registry
● LDAP

● Auditing
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Establishing a User's Identity
● OpenEdge Client connect to a database:

● Authenticate using _User table

● Login.p

● Provide -U <userid> -P <passwd>

● Setuserid() UserID() functions provides identity 
context for the connected databases.
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Establishing a User's Identity
● Application Tables / External Registry

● Application specific code to Authenticate UserID 
and Password.

● May not have and effect on UserID value set for the 
the connected database.

● Use the CP Object to apply an application user's 
identity.
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AppServer/Webspeed Agents
● Client Session Identity is established as an 

agent connects to a database. 
● Most likely at startup

● Agent is shared by many users but the Identity 
remains set to the UserID of the process that 
started the Agents.
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Session Context
● A User's Identity is part of application session 

context.
● Established between and client and an agent with 

each interaction.
● Need UserID function to recognize session 

context.
● Specifically a user's identity.
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CP Object
● The CP Object becomes part of a user's 

session context.

● It can be used to set the UserIDs of all 
connected databases at run-time
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Steps to Using CP Object
● Establish an Authentication Domain
● Create CP Object
● Assign three key attribute

● UserID
● Domain Name
● SessionID

● Seal CP Object
● Domain AccessKey

● Use It
● Set UserIDs for connected database
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Authentication Domains relationship 
with a CP Object

● Defined internally using the Data Admin Tool
● Alternately defined externally
● Provides encrypted key (access-key).
● Access-key used to seal and validate CP Objects.
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Authentication Domain Setup
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Security Policy
● An authentication domain must be loaded for a 

session.
● Security Policy system handle loads domains 

into the Trusted Domain Registry.
● security-policy:load-domain('dbName')

– Domain Registry Locked Automatically
● security-policy:register-domain('DomainName, AccessKey)

– security-policy:lock-registeration()
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Create CP Object
         

 CREATE CLIENT-PRINCIPAL hClientPrincipal.
 /* Set CP Object Values */
 hClientPrincipal:SESSION-ID = BASE64-ENCODE(GENERATE-UUID).
 hClientPrincipal:USER-ID = pcUserID.
 hClientPrincipal:DOMAIN-NAME = 'bravepoint.com'.
 hClientPrincipal:DOMAIN-TYPE = 'Internal'.
 hClientPrincipal:LOGIN-EXPIRATION-TIMESTAMP = 
                                   ADD-INTERVAL(NOW, 60, 'seconds').
 hClientPrincipal:ROLES = pcRoles.
 hClientPrincipal:SET-PROPERTY('UserPlant', 'Norcross').
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Authenticate User Identity
IF Identity.IdentityKey <> ENCODE(pcPasswd) THEN DO:
  /* This will set the state-detail attribute */ 
  hClientPrincipal:AUTHENTICATION-FAILED
     ('UserName Password authenitication failed.').
  
  pcMessage =  'UserName Password authenitication failed.'.
END.
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CP Object State
● LOGIN-STATE Attribute

● LOGIN
● LOGOUT
● EXPIRED
● FAILED

● AUTHENTICATION-FAILED()
● Used on an unsealed CP Object
● LOGIN-STATE is set to failed.
● STATE-DETAIL Attribute is set to the supplied reason.
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Seal CP Object
● The Domain Access Key was previously defined using the Data 

Admin tool or setup manually using register-domain().

      hClientPrincipal:SEAL(cDomainAccessKey)
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Set DB Identity
● SET-DB-CLIENT will set the effective UserID for all 

connected databases or those explicitly specified.

   SET-DB-CLIENT(hClientPrincipal)
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CP Object Portability
● CP Object provides methods to import and 

export it's values.
● CP Object exports and imports from a raw data 

type.

       DEFINE VAR rCP AS RAW NO-UNDO.

       rCP = hClientPrincipal:EXPORT-PRINCIPAL().
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CP Object and Session Context
● Alternative #1:

● Pass the raw CP Object as a parameter back to the 
client.
– Client gets full access to all the CP Objects Attributes.
– Raw data type might present issue with non ABL clients.
– Security threat? 
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CP Object and Session Context
● Alternative #2

● Store the CP Object in a session context DB Table.
– CPObject.SessionID AS CHARACTER
– CPObject.ContextObject AS RAW

● Pass an encrypted token containing the associated 
sessionID back to the client.
– SecureToken is used to reconstitute the CP Object each 

time a user interacts with an agent.
– SecureToken is a character string.
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CP Object and Session Context
       /* Store the CP Object as part of a user's session context. */
    rCP = hClientPrincipal:EXPORT-PRINCIPAL().
    DO TRANSACTION:
      CREATE bCPObject.
      ASSIGN
         bCPObject.SessionID = hClientPrincipal:SESSION-ID
         bCPObject.ContextObject = rCP.
    END.
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CP Object Identity Authentication
           
 cSessionID = STRING(DECRYPT(BASE64-DECODE(pcSecToken), rEncryptKey)) 
 NO-ERROR.
        
       
 /* Create an empty CP Object. */
 CREATE CLIENT-PRINCIPAL hClientPrincipal.
        
 /* Find the session context row containing the previosuly saved
    CP Object Data. */
 
FIND bCPObject WHERE bCPObject.SessionID = cSessionID NO-LOCK NO-ERROR.
IF NOT AVAIL bCPObject THEN
          UNDO, THROW NEW Progress.Lang.AppError('Unable to authenticate 
user. Could not find CPObject context.', 104).
           
        
/* Load the CP Object. So you left with a CP Object as it
   existed after you sealed it during createCPObject. */

hClientPrincipal:IMPORT-PRINCIPAL(bCPObject.ContextObject).
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Validate CP Object
● VALIDATE-SEAL(domainKey)

● Validates the CPObject's MAC, which was 
previously generated via the SEAL().

● Must supply the DomainKey used to seal the 
CPObject.

● LOGOUT()
● In validates a sealed CP Object
● No longer use it to set DB UserIDs
● Sets the LOGIN-STATE to LOGOUT
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Validate CP Object
 
hClientPrincipal:IMPORT-PRINCIPAL(bCPObject.ContextObject).
IF NOT hClientPrincipal:VALIDATE-SEAL(cDomainAccessKey) THEN DO:
    hClientPrincipal:LOGOUT().
    UNDO, THROW NEW Progress.Lang.AppError(
    SUBSTITUTE('CP Object Validation Failed. Login-State = &1',    
    hClientPrincipal:LOGIN-STATE), 105).
END.
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Session Expiration
● SEAL-TIMESTAMP

● Automatically set.
● Date and time of when the CP Object was sealed.

● LOGIN-EXPIRATION-TIMESTAMP
● Programmatically set to some point in the future.
● LOGIN-STATE set to 'Expired' if not sealed prior to 

the value set in this attribute.
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Session Expiration
/* Check expiration */  
 IF hClientPrincipal:LOGIN-EXPIRATION-TIMESTAMP < NOW THEN DO:
  /* This will set the state-detail attribute */ 
   hClientPrincipal:AUTHENTICATION-FAILED
   ('User Session Expired.').
   hClientPrincipal:LOGOUT().
   DO TRANSACTION:
      FIND CURRENT bCPObject EXCLUSIVE-LOCK.
      prCP = hClientPrincipal:EXPORT-PRINCIPAL().
      bCPObject.ContextObject = prCP.
   END. 
 END.  
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Demo App

UI Client

asAuthenticate asBroker2

--CPObject Table
--Domain Registry
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Demo App

UI Client

asAuthenticate asBroker2

--CPObject Table
--Domain Registry

User Creds

Validate
Identity
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Demo App

UI Client

asAuthenticate asBroker2

--CPObject Table
--Domain Registry

Security
Token
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Demo App

UI Client

asAuthenticate asBroker2

--CPObject Table
--Domain Registry

Query DB
Send SecToken

Authenticate User
Execute Request
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Demo App

UI Client

asAuthenticate asBroker2

--CPObject Table
--Domain Registry

App Data
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Questions?
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