
Eclipse Plug-in Development

Utilizing Progress Developer Studio for OpenEdge
11.x APIs

Yogesh Devatraj
Progress Software

© 2013 Progress Software Corporation. All rights reserved. 2

Agenda

  Overview Eclipse

  History & Evolution of Eclipse platform

  Overview of Eclipse Architecture

  Tooling support for Plug-in development

  Getting started with PDSOE 11.x APIs

  Demo : Using PDSOE APIs to visualize OpenEdge
project dependencies.

  Q&A

© 2013 Progress Software Corporation. All rights reserved. 3

Overview

“An integrated development environment (IDE)
for anything and nothing in particular.”

  Not just another set of tools, but a framework.

  A component-based platform that could serve as the
foundation for building tools for developers.

  Let focus on building new tool, instead of dealing with
infrastructure issues.

© 2013 Progress Software Corporation. All rights reserved. 4

History & Evolution

 Some of the initial code that was donated was based
on VisualAge for Java, developed by IBM.

  First version (1.0) released Nov 2001.
  In early 2004, the Eclipse Foundation was

formed to manage and expand the growing
Eclipse community.

  Eclipse 3.X, first major release under this
foundation.

  Eclipse 4.X, next generation major new
version, released in July 2012.

© 2013 Progress Software Corporation. All rights reserved. 5

Eclipse & Equinox

  From v3.0 , Eclipse has adapted
OSGi over its proprietary plug-in
system.

  Equinox, reference
implementation of OSGi R4
specification, base of Eclipse
plug-in system.

  Equinox is responsible for
developing and delivering the
OSGi framework implementation
used for all of Eclipse as well as
open for all

  OSGi:bundle = Eclipse:plug-in

© 2013 Progress Software Corporation. All rights reserved. 6

Basic Architecture : Eclipse Platform

Java Virtual Machine

Eclipse
Platform

Platform Runtime

Workbench

Workspace

JFace

SWT

PDE

JDT

Your Plug-in

Help

Team

© 2013 Progress Software Corporation. All rights reserved. 7

What is a Plug-in ?

“A plugin is essentially a JAR file with a manifest
which describes itself, its dependencies, and how
it can be utilized, or extended”

  In Eclipse, everything is a plug-in.

  Describes itself to the system using an OSGi manifest
(MANIFEST.MF) file and a plug-in manifest (plugin.xml)
file.

  Uses extension point to interact with each other.

  Can expose functionality as contributions to other
extensions or define their own extension points, to
which other bundles may contribute

© 2013 Progress Software Corporation. All rights reserved. 8

Basic Architecture : Eclipse Plug-in

Plug-in A Plug-in B

Extension
point P

Interface I

Extension

Implementation C

Contribute

Implements

Creates & Call •  Plug-in A
•  Declares extenuation point A
•  Declares Interface to implement

•  Plug-in B
•  Contribute to extension point by providing

implementation C for I.
•  Plug-in A instantiate C and call interface methods.

© 2013 Progress Software Corporation. All rights reserved. 9

<extension
 point="com.eclipse.plugin.sample.extension.greet">
 <client
 class="com.eclipse.plugin.sample.extension.NewGreeter">
 </client>
</extension>`

<extension-point id="com.eclipse.plugin.sample.extension.greet"
name="Greetter" schema="schema/
com.eclipse.plugin.sample.extension.grrt.exsd"/>

<schema
targetNamespace="com.eclipse.plugin.sam
ple.extension" xmlns="http://
www.w3.org/2001/XMLSchema">

<annotation>
 <appinfo>
 <meta.schema

plugin="com.eclipse.plugin.sample.exten
sion"
id="com.eclipse.plugin.sample.exte
nsion.greet" name="Greet"/>

 </appinfo>
 <documentation/>
 </annotation>
 <element name="extension">

 <complexType>
 <sequence minOccurs="1"

maxOccurs="unbounded">

 <element ref="client"/>
 </sequence>
 <attribute name="point"

type="string" use="required">
 <annotation>
 <documentation/>
 </annotation>
 </attribute>

 <attribute name="id" type="string">
 <annotation>
 <documentation/>
 </annotation>
 </attribute>
<attribute name="name" type="string">
 <annotation>
 <documentation/>
 <appinfo>
 <meta.attribute

translatable="true"/>
 </appinfo>
 </annotation>
 </attribute>
 </complexType>
 </element>

 <element name="client">
 <complexType>
 <attribute name="class"

type="string" use="required">
 <annotation>
 <documentation/>
 <appinfo>
 <meta.attribute

kind="java"/>
 </appinfo>
 </annotation>
 </attribute>
 </complexType>
 </element>

</schema>

Extension point & extension

© 2013 Progress Software Corporation. All rights reserved. 10

Extensions in action : PDSOE DB Structure View

<extension point="org.eclipse.ui.views">
 <view
 name="DB Structure"
 icon="icons/16/database.gif"
 category="com.openedge.pdt.core.views"
 class="net.sourceforge.sqlexplorer.plugin.views.DBView"
 id="com.progress.dbnavigator.plugin.views.DBView">
 </view>
</extension>

© 2013 Progress Software Corporation. All rights reserved. 11

Plug-in loading & activation

  Each eclipse plug-in has its own class loader.
  Starting/stopping any plug-in independently

 Having multiple version of same plug-in

  Restrict class visibility to only exported

  Lazy activation
 Gets activated only on when needed.

  Scalable for larger set of installed plug-ins

 Helps to decrease start-up time.

  Lazy activation doesn’t stop plug-in UI contribution
disappear till plug-in load.

© 2013 Progress Software Corporation. All rights reserved. 12

Plug-in : OSGi Manifests

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Plugin
Bundle-SymbolicName: test.sample.plugin;
singleton:=true
Bundle-Version: 1.0.0.qualifier
Bundle-Activator:
test.sample.plugin.Activator
Require-Bundle: org.eclipse.ui,
 org.eclipse.core.runtime
Bundle-ActivationPolicy: lazy
Bundle-RequiredExecutionEnvironment:
JavaSE-1.6
Export-Package: test.sample.plugin

Plug-in on which it
depends

List of packages
available for others

© 2013 Progress Software Corporation. All rights reserved. 13

Plug-in : plugin.xml structure

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"?>
<plugin>
 <extension
 point="org.eclipse.ui.commands">
 <category
 name="Sample Category"
 id="test.sample.plugin.commands.category">
 </category>
 <command
 name="Sample Command"
 categoryId="test.sample.plugin.commands.category"
 id="test.sample.plugin.commands.sampleCommand">
 </command>
 </extension>
.....
 <extension-point id="test.sample.plugin.myextension"
 name="test.sample.plugin.myextension"
 schema="schema/test.sample.plugin.myextension.exsd">
 </extension-point>

Introducing new
Command by

contributing to
org.eclipse.ui.com
mands extension

point.

Exposing
extension for

other to contribute

© 2013 Progress Software Corporation. All rights reserved. 14

Eclipse platform : Workspace

Java Virtual Machine

Eclipse
Platform

Platform Runtime

Workbench

Workspace

JFace

SWT

PDE

JDT

Your Plug-in

Help

Team

© 2013 Progress Software Corporation. All rights reserved. 15

Eclipse platform : Workspace

  Central hub for user’s file.

  Each element is referred as
Resource.

  A resource can be project, folder
or file.

  Hierarchy
  Workspace

  Project
  Folders

  Files

  Project

  Files

© 2013 Progress Software Corporation. All rights reserved. 16

Workspace : Resource

  Workspace organize resource as tree for faster
traversing.

  Resource supports several kind of extendable metadata
  Persistent properties

  Session properties

 Markers

  Project Natures

  Supports change listener to monitor state/lifecycle.

  You can even have derived or linked resources.

  APIs are available to manipulate resource state or
properties.

© 2013 Progress Software Corporation. All rights reserved. 17

Resource APIs

FileInputStream fileStream = null;
try {
/* Get reference of current workspace */

 IWorkspaceRoot myWorkspaceRoot = ResourcesPlugin.getWorkspace
().getRoot();

 /* Get/find Project reference from the current workspace */
 IProject myWebProject = myWorkspaceRoot.getProject("MyWeb");
 /* open the project if necessary */
 if (myWebProject.exists() && !myWebProject.isOpen()) {
 myWebProject.open(null);
 }
 IFolder imagesFolder = myWebProject.getFolder("images");
 if (imagesFolder.exists()) {
 /* create a new file */
 IFile newLogo = imagesFolder.getFile("newLogo.png");
 fileStream = new FileInputStream("newLogo.png");
 newLogo.create(fileStream, false, null);
 }

} catch (Exception e) {
 e.printStackTrace();

} finally{
 if(fileStream != null){
 fileStream.close();
 }

}

© 2013 Progress Software Corporation. All rights reserved. 18

Eclipse Workbench

Java Virtual Machine

Eclipse
Platform

Platform Runtime

Workbench

Workspace

SWT

PDE

JDT

Your Plug-
in

Help

Team

JFace

© 2013 Progress Software Corporation. All rights reserved. 19

Eclipse Workbench : SWT

“Standard Widget Toolkit”

  Generic graphics and GUI widget set

 buttons, lists, text, menus, trees, styled text...

  SWT overcomes problems faced by AWT as well as
Swing.

  Simple, Small, Fast & native

  OS-independent API

  Uses native widgets where available

  Emulates widgets where unavailable

© 2013 Progress Software Corporation. All rights reserved. 20

Eclipse Workbench : SWT

Windows 7 : Windows XP : Linux : Mac OS

© 2013 Progress Software Corporation. All rights reserved. 21

Eclipse Workbench : JFace

“JFace is set of UI frameworks for common UI tasks”

  Provides utility object to use or classes to extend to
achieve common functionality.

  Handler common UI programming tasks like
  Viewer (List, Table & Tree)

  Image & font registries

  Dialog & Wizards

  Field assist

  Unlike SWT, JFace allows to work directly on your
domain model.

© 2013 Progress Software Corporation. All rights reserved. 22

JFace : Table Viewer Example

Input

Content Provider

Label Provider Model

Table Viewer

© 2013 Progress Software Corporation. All rights reserved. 23

Eclipse Workbench

  Workbench brings together all UI components.

  Centred around

  Editor

  Views

 Menus

  Toolbars

  Status bar

© 2013 Progress Software Corporation. All rights reserved. 24

Eclipse Workbench

Menu Bar

Toolbar

Perspective
Shortcut

Explore

Property
View

Message/Status
Area

Editor

Outline
View

Editor status
Area

Problems
View

© 2013 Progress Software Corporation. All rights reserved. 25

Editor ,Views & Perspective

  Editor
  Editors appear in workbench editor area

  Contribute actions to workbench menu and tool bars

 Open editors are stacked

  View
  Views provide information on some object

  Views augment editors & other view
 Example: Outline view summarizes content or Properties view

describes selection

  Perspective
  A perspective defines the initial set and layout of views

menu, toolbar and editors in the Workbench window.

 Workbench supports customizing any perspective

© 2013 Progress Software Corporation. All rights reserved. 26

Tooling Support for Plug-in Development

“Plug-in Development Environment (PDE) provides tools to
create, develop, test, debug, build and deploy Eclipse plug-
ins, fragments, features, update sites and RCP products.”

PDE main components

  UI : A rich set of models, tools and editors
to develop plug-ins and OSGi bundles

  Form-Based Manifest Editor

  New Project Creation Wizards

  Import/Export Wizards

  Launcher

  Views

  Plug-in Registry

  Plug-in Dependency

Java JVM

Eclipse Platform

Java Development Tool

Plug-in Development Environment

© 2013 Progress Software Corporation. All rights reserved. 27

Tooling Support for Plug-in Development

  API Tools : Tooling to assist API documentation and
maintenance

•  Compatibility Analysis

•  API Restriction Tags

•  Version Number Validation

  PDE Build : Ant based tools and scripts to automate
build processes.

© 2013 Progress Software Corporation. All rights reserved. 28

D I S C L A I M E R

•  Further part of session discusses internal API’s
for Progress Developer Studio for OpenEdge
(PDSOE) 11.X and are subject to change at any
time without notice. Use at your own risk.

•  PDSOE APIs are neither public nor supported.

•  Please contact product management to get
more details about these APIs.	

D I S C L A I M E R

© 2013 Progress Software Corporation. All rights reserved. 29

PDSOE 11.X API : Overview

  To extends eclipse platform to add ABL application
development support

 Ex: Create and configure OpenEdge project from
your own plug-in

  APIs organized as

 OE project creation and configurations

 Handling OE project PROPATH & other properties.

 Database connection configuration

 Creating launch configuration

 Need to PDSOE plug-ins to use these APIs.

© 2013 Progress Software Corporation. All rights reserved. 30

PDSOE 11.X API : Getting Started

  Have OpenEdge 11.0 installation.

  Eclipse Plug-in Development Environment 3.6

  Use Eclipse update manager to install PDSOE plug-ins

 Help->Software Update ->Available Software

 Select “Add Site”->”Local”

 Locate P2 repos at DLC/oeide/Architect_repo

 Select newly added site from list.

 It will take care all dependencies.

  Use integrateArchitect.bat to provision PDSOE repos to
target development eclipse environment.

© 2013 Progress Software Corporation. All rights reserved. 31

Creating and Configuring OpenEdge Project

  OpenEdge projected adapted Faceted framework in 11.0
release.

  OpenEdge project supported facets
 OpenEdge

  AppServer

  ChUI

  Dynamics

 WebSpeed

 GUI for .Net

  Facet will take care of configuring & resolving dependencies.

© 2013 Progress Software Corporation. All rights reserved. 32

Installing OpenEdge Facet

//Create project working copy
IFacetedProjectWorkingCopy workingPrjCopy =
FacetedProjectFramework.createNewProject();
workingPrjCopy.setProjectName(getProjectName());

//Get OpenEdge Project Facet
IProjectFacet oeProjectFacet = ProjectFacetsManager.getProjectFacet
(IOpenEdgeFacetConstants.OPENEDGE_FACET_ID);
if (oeProjectFacet == null) {

 throw new RuntimeException("Unable to retrieve OpenEdge facet.");
}
IProjectFacetVersion openedgeFacetVersion = oeProjectFacet.getDefaultVersion();

//Install OE Facet to newly created project.
workingPrjCopy.addProjectFacet(openedgeFacetVersion);
try {

 workingPrjCopy.commitChanges(monitor);
} catch (CoreException e) {

 throw new RuntimeException("Unable to install OpenEdge Facet");
}

© 2013 Progress Software Corporation. All rights reserved. 33

Update project properties while installing Facet.

//update properties
Set<Action> actions = workingPrjCopy.getProjectFacetActions();
for (Action action : actions) {

 final IProjectFacetVersion projectFacetVersion =
action.getProjectFacetVersion();

 final IProjectFacet projectFacet =
projectFacetVersion.getProjectFacet();

if(IOpenEdgeFacetConstants.OPENEDGE_FACET_ID.equals(projectFacet.getId
())&& Type.INSTALL == action.getType()){

 IDataModel dataModel = (IDataModel)action.getConfig();
dataModel.setBooleanProperty
(IOpenEdgeDataModelProperties.CREATE_SOURCE_DIRECTORY, true);
dataModel.setBooleanProperty
(IOpenEdgeDataModelProperties.CREATE_BUILD_DIRECTORY, true);

 }
}

© 2013 Progress Software Corporation. All rights reserved. 34

Update project properties while installing Facet.

Property	
 Name	
 Allowed	
 Values	
 Default	
 Value	
 Descrip7on	

IOEProjectDataMode
lProperties.CREATE
_SOURCE_DIRECTORY	

TRUE/FALSE	
 False	
 Set	
 this	
 property	
 to	
 create	
 “src"	

directory	
 under	
 project.	

IOEProjectDataMode
lProperties.SOURCE
_DIRECTORY_PATH	

Valid	
 path	
 Custom	
 source	
 directory	
 path	

for	
 the	
 project	

IOEProjectDataMode
lProperties.CREATE
_BUILD_DIRECTORY	

TRUE/FALSE	
 False	
 Set	
 this	
 property	
 to	
 create	
 “r-­‐
code"	
 directory	
 under	
 project.	

IOEProjectDataMode
lProperties.BUILD_
DIRECTORY_PATH	

Valid	
 path	
 Custom	
 	
 build	
 directory	
 for	
 the	

project.	

IOEProjectDataMode
lProperties.USE_PR
OJECT_ROOT	

True/false	
 true	
 Set	
 this	
 property	
 to	
 “true”	
 to	

use	
 project	
 root	
 directory	
 for	

source	
 and	
 r-­‐code.	

© 2013 Progress Software Corporation. All rights reserved. 35

IOpenEdgeProject

  PDSOE maintains wrapper reference
(IOpenEdgeProject) for every eclipse project
(org.eclipse.core.resources.IProject)
with OpenEdge facet installed.

 IOpenEdgeProject maintains additional information
specific to OpenEdge project like PROPATH, database
connection, runtime etc

  Get IOpenEdgeProject reference from
OpenEdgeProjectManager

 // Returns null if passed project is not OpenEdge natured
IOpenEdgeProject oeproject = OEProjectPlugin.getDefault()
.getOpenEdgeModel().getOpenEdgeProject(project);

© 2013 Progress Software Corporation. All rights reserved. 36

PROPATH

  PROPATH maintains list of entries where the AVM
searches for files and procedures.

  Every OpenEdge project has own PROPATH.

  OpenEdge projects use an xml file (.propath) in the
project’s root directory to store PROPATH information.

  Closely monitored for any changes and changes picked
up by OE project environment.

© 2013 Progress Software Corporation. All rights reserved. 37

PROPATH Entry Type

PROPATH Entry Type Description

PROPATH_DIRECTORY Refers to a file on the local file system by
absolute path

CONTAINER A container is a PropathEntry that resolves to
multiple values.
Extend com.openedge.pdt.core to
introduce your own.

SOURCE_DIRECTORY A source directory points to a folder within the
project.

PROCEDURE_LIBRARY A procedure points to the location of an
OpenEdge .pl file.

© 2013 Progress Software Corporation. All rights reserved. 38

Adding/Updating Project PROPATH

  Create PROPATH Entry

  Persisting to .propath

//Adding PROPATH enty for source
//source folder under project directory
IFolder sourceFolder = project.getFolder(new Path("src"));
sourceFolder.create(false, true, monitor);
//PROPATH Entry
PropathEntry srcEntry = new PropathEntry
(PropathConstants.SOURCE_DIRECTORY);
srcEntry.setPath(PropathConstants.ROOT_VARIABLE + "/" +

 sourceFolder.getName());
srcEntry.setEnvironment(new PropathEnvironmentEntry
(PropathConstants.ALL_ENVIRONMENTS));

IFile propathFile = project.getFile(PropathConstants.PROPATH_NAME);
PropathWriter propathWriter = new PropathWriter(propathFile);
PropathEntry propathEntries[] = new PropathEntry[] {rootEntry, srcEntry,
stdLibs};
propathWriter.savePropathDefinition(propathEntries, monitor);

© 2013 Progress Software Corporation. All rights reserved. 39

Database Connection

  OpenEdge project need connection to handle database
related operations.

  PDSOE manage set of database connections profiles at
workspace level.

  OpenEdge project can be associated with one or more
database connection profile.

  This information is persisted in .dbconnection under
project’s root.

  Connection profiles are shared among workspace
project, but each AVM has its own connection to
database.

© 2013 Progress Software Corporation. All rights reserved. 40

Creating & associating DB connection

  Create DB connection profile

  Persist & associate to project

//Create database connection profile
String databaseName = new Path(getDatabaseConnection())

 .removeFileExtension().lastSegment();
DatabaseConnectionProfile dbProfile = new DatabaseConnectionProfile
(databaseName);
dbProfile.setPhysicalName(getDatabaseConnection());
UUID uuid = UUID.randomUUID();
dbProfile.setIdentifier(uuid.toString());

DatabaseConnectionManager dbMgr = OEProjectPlugin.getDefault
().getDatabaseConnectionManager();
//Persist DB connection profile
dbMgr.addDatabaseConnectionProfile(new DatabaseConnectionProfile[]
{dbProfile});
//Associate to OpenEdge project
dbMgr.assignDatabaseConnectionProfile(new DatabaseConnectionProfile[]
{dbProfile}, project);

© 2013 Progress Software Corporation. All rights reserved. 41

Accessing & setting project properties

  IOpenEdgeProjectConfiguration interface provides a
read-only view of the properties associated with the
project.

  Monitor project properties

IOpenEdgeProjectConfiguration oeProjectConfig = oeproject.getConfiguration;
Ipath rCodePath = oeProjectConfig.getRcodePath();

//Creating Listener
IProjectPropertyUpdateListener listener = new
IProjectPropertyUpdateListener() {

public void propertiesUpdated(IOpenEdgeProject oeproject) {
//un-register listerner
configuration.removePropertyUpdateListener(this);
// Do you job ...

}
};
//Registering listener
configuration.addPropertyUpdateListener(listener);

© 2013 Progress Software Corporation. All rights reserved. 42

Updating OpenEdge project properties

Register
Property
Modifier

Update
Project

properties

Unregister
Property
Modifier

//Property Modifier
IProjectPropertyModifier modifier = new IProjectPropertyModifier() {

 //.. …
}
//Register Property Modifier
oeproject.getConfiguration().addPropertyModifier(modifier);
//Update Project properties
OEProperties.setProperty(oeprojec,
IOEProjectProperties.P_PRO_VERSION, proversion);
// Unregister modifier to rebuild project configuration
oeproject.getConfiguration().removePropertyModifier(modifier)

© 2013 Progress Software Corporation. All rights reserved. 43

Access OpenEdge project runtime

  Each OpenEdge project is associated with either its own
AVM runtime or shared AVM runtime.

  Each OE project has reference to its associated runtime.

IAVMClient runtime = oeProject.getRuntime();
boolean connected = runtime.isConnected();
if(connected){

boolean available = runtime.isAvailable();
if(available){

//your stuff here..
} else {
` // register listener to get notified on AVM runtime state

runtime.addAVMRuntimeListener(new AVMRuntimeListenerAdapter
() {

@Override
public void runtimeAvailable(IAVMClient runtime) {
//your stuff here..
}

});
}

}

© 2013 Progress Software Corporation. All rights reserved. 44

Custom launch configuration

  Extend org.eclipse.debug.ui.launchShortcuts
extension point.

  Provide implementation for ILaunchShortcut2.launch
(Iselection, String) or ILaunchShortcut2.launch
(IEditorPart, String)

  Configure launch configuration with

 ABL file to be execute

 Launch mode Run or Debug.

 PROPATH & ABL runtime

 Temporary working directory.

© 2013 Progress Software Corporation. All rights reserved. 45

Demo

© 2013 Progress Software Corporation. All rights reserved. 46

OpenEdge Projects Dependency Graph

October 6–9, 2013 • Boston
 #PRGS13

www.progress.com/exchange-pug
Special low rate of $495 for PUG Challenge

attendees with the code PUGAM

And visit the Progress booth to learn more about the
Progress App Dev Challenge!

