
Beginner’s guide to

continuous integration
Gilles QUERRET ● Riverside Software ● US PUG Challenge 2013

What’s continuous integration ?

▪ Build, deployment and tests are long and boring tasks

▪ Development cycles are shorter, but integration is still long

▪ Continuous integration is a set of tools and techniques to automate those tasks,
and provide notifications as soon as possible

Development Build Deploy Test
Back to

development

Continuous integration overview

Development

Back to
development

Continuous
integration

server

Build Deploy Test

Development

Build Deploy Test

Development

Build Deploy Test

Fe
e

d
b

a
ck

Fe
e

d
b

a
ck

Continuous integration advantages

▪ Fix problems as soon as possible

▪ Save valuable time for developers

▪ Confidence in what’s released

▪ Higher project quality

Continuous integration process

▪ Check out from source code repository

▪ Build project

▪ Execute unit tests

▪ Deploy to target system

▪ Full tests (optional)

▪ Provide feedback

Let’s start !

▪ Go to http://jenkins-ci.org

▪ Download Jenkins WAR file

▪ Execute WAR file

▪ Go to http://localhost:8080

A new job in Jenkins

▪ Create a new job

▪ Choose a job name
and select « Free-style
project »

▪ Then click « OK »

New job : source code repository

▪ Select the source code
repository for your
project

▪ CVS and Subversion
by default

▪ Mercurial, Git, Perforce
and so on available as
plugins

New job : build steps

▪ Default build steps are :

▪ Windows batch command /
Shell script

▪ Maven

▪ Ant

New job : explanation of existing build steps

▪ Windows batch commands / Shell scripts :

▪ Hard to maintain, not portable, rely on hand-crafted tools for OpenEdge

▪ Maven :

▪ The new default build system for Java – OpenSource

▪ Convention over configuration, dependencies management

▪ Ant :

▪ The old default build system for Java (but still widely used, and not only for Java) – OpenSource and stable
since more than 10 years

▪ XML syntax (can be cumbersome), repeatable builds, LOTS of build tasks

Using Ant with OpenEdge

▪ Ant provides a nice structure to add your plugins

▪ PCT is an Ant open source plugin for OpenEdge

▪ Started almost exactly 10 years ago !

▪ Handles the most common OpenEdge related tasks :

▪ Database management (create DB, dump/load DF files, dump/load data, …)

▪ Build (r-code from .w/.p.cls, SpeedScript, …)

▪ Libraries (PL management, diff between PL, …)

▪ Procedure execution (with propath, DB connections, options, …)

A sample build script

<?xml version="1.0" encoding="utf-8"?>

<project name="MyProject" default="dist">

 <taskdef resource="PCT.properties" />

 <target name="target1">

 <!-– Some build tasks -->

 </target>

 <target name="target2" depends="target1">

 <!-– Some build tasks -->

 </target>

</project>

A sample build script

<target name="db">

 <mkdir dir="database/db" />

 <PCTCreateBase dbName="sports" destDir="database/db"

 dlcHome="${DLC}" schemaFile="database/dump/sports.df" />

</target>

A sample build script

<target name="build" depends="db">

 <mkdir dir="build" />

 <PCTCompile destDir="build" dlcHome="${DLC}" >

 <fileset dir="src" includes="**/*.p,**/*.w,**/*.cls" />

 <DBConnection dbName="sports" dbDir="database/db" singleUser="true" />

 <propath>

 <pathelement location="src" />

 </propath>

 </PCTCompile>

</target>

A sample build script

<target name="dist" depends="build">

 <mkdir dir="dist" />

 <PCTLibrary destFile="dist/sports.pl" baseDir="build" dlcHome="${DLC}" />

 <zip destFile="dist/sports.zip">

 <fileset dir="dist" includes="*.pl" />

 <fileset dir="resources" includes="**/*.jpg" />

 </zip>

</target>

Back to Jenkins

▪ Just add an Ant build step,
executing « dist » target.

▪ Dependencies between tasks
will take care of creating
database and compiling code

▪ Build file name is not
provided: default is build.xml

▪ Notice we can pass
properties as parameters :
multiple jobs can use the
same build script with
different values

Job configuration page

▪ Archiving build output

▪ As a convention, the ‘dist’
directory contains build
artifacts

Execute first build

And now ?

▪ Build pipeline

▪ Automated tests using the REST adapter

▪ Slaves

▪ Deployment to virtual machines

▪ Manage dependencies

▪ Dashboard view

▪ Source code analysis

Build pipeline

▪ Dependencies
between jobs

▪ Unit tests are
triggered by the main
job

▪ Followed by a
deployment to virtual
machines

Automated tests

▪ Tests are executed
just after the build

▪ Under Win32, OE
11.2, but different
configurations are
being used

▪ See Mike Fechner
package for unit tests

▪ Or have a look at
Prounit

▪ Or use API on
appservers, with
OpenAPI or REST
adapter

Slaves

▪ Public Jenkins instance for Apache Software foundation manages more than 300 jobs

▪ With so many jobs, you need to dispatch them on different machines

▪ Jenkins provides a simple yet powerful master/slave mechanism, where jobs can be assigned to
slaves, while the UI (configuration and reports) are still on the master server

▪ Extremely useful not only to dispatch load, but also to test on different configurations

Deploy to virtual machines

▪ Snapshot is your best friend

▪ Define snapshots for various configuration (OpenEdge, OS, and other requirements)

▪ When a build is completed, use the VIX (or EC2) API to :

▪ Restore to snapshot

▪ Copy artifacts to virtual machine

▪ Execute your installer (or upgrade process)

▪ Pause your virtual machine (or not !)

Manage dependencies

▪ Keep your builds small

▪ Build artifacts can be kept in Jenkins, or uploaded to an artifact repository

▪ Grab dependencies when building downstream jobs (copy artifacts Jenkins plugin or download
from artifact repository)

▪ During development, download them from Jenkins or artifact repository

▪ Define requirements : OpenEdge, Sonic, … which shouldn’t be managed by the repository

Dashboard view

Source code analysis

Questions ?

References

▪ Ant : http://ant.apache.org

▪ PCT : http://code.google.com/p/pct

▪ Jenkins : http://jenkins-ci.org

http://ant.apache.org/
http://code.google.com/p/pct
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/

