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What’s continuous integration ? 

▪ Build, deployment and tests are long and boring tasks 

▪ Development cycles are shorter, but integration is still long 

▪ Continuous integration is a set of tools and techniques to automate those tasks, 
and provide notifications as soon as possible 
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Continuous integration advantages 

▪ Fix problems as soon as possible 

▪ Save valuable time for developers 

▪ Confidence in what’s released 

▪ Higher project quality 

 

 

 



Continuous integration process 

▪ Check out from source code repository 

▪ Build project 

▪ Execute unit tests 

▪ Deploy to target system 

▪ Full tests (optional) 

▪ Provide feedback 

 



Let’s start ! 

▪ Go to http://jenkins-ci.org 

▪ Download Jenkins WAR file 

▪ Execute WAR file 

▪ Go to http://localhost:8080 

 



A new job in Jenkins 

▪ Create a new job 

▪ Choose a job name 
and select « Free-style 
project » 

▪ Then click « OK » 



New job : source code repository 

▪ Select the source code 
repository for your 
project 

 

▪ CVS and Subversion 
by default 

▪ Mercurial, Git, Perforce 
and so on available as 
plugins 



New job : build steps 

▪ Default build steps are : 

▪ Windows batch command / 
Shell script 

▪ Maven 

▪ Ant 



New job : explanation of existing build steps 

▪ Windows batch commands / Shell scripts : 

▪ Hard to maintain, not portable, rely on hand-crafted tools for OpenEdge 

▪ Maven : 

▪ The new default build system for Java – OpenSource 

▪ Convention over configuration, dependencies management 

▪ Ant : 

▪ The old default build system for Java (but still widely used, and not only for Java) – OpenSource and stable 
since more than 10 years 

▪ XML syntax (can be cumbersome), repeatable builds, LOTS of build tasks 

 



Using Ant with OpenEdge 

▪ Ant provides a nice structure to add your plugins 

▪ PCT is an Ant open source plugin for OpenEdge 

▪ Started almost exactly 10 years ago ! 

▪ Handles the most common OpenEdge related tasks : 

▪ Database management (create DB, dump/load DF files, dump/load data, …) 

▪ Build (r-code from .w/.p.cls, SpeedScript, …) 

▪ Libraries (PL management, diff between PL, …) 

▪ Procedure execution (with propath, DB connections, options, …) 



A sample build script 

<?xml version="1.0" encoding="utf-8"?> 

<project name="MyProject" default="dist"> 

  <taskdef resource="PCT.properties" /> 

  <target name="target1"> 

    <!-– Some build tasks --> 

  </target> 

  <target name="target2" depends="target1"> 

    <!-– Some build tasks --> 

  </target> 

</project> 

 



A sample build script 

<target name="db"> 

  <mkdir dir="database/db" /> 

  <PCTCreateBase dbName="sports" destDir="database/db"  

        dlcHome="${DLC}" schemaFile="database/dump/sports.df" /> 

</target> 

 



A sample build script 

<target name="build" depends="db"> 

  <mkdir dir="build" /> 

  <PCTCompile destDir="build" dlcHome="${DLC}" > 

    <fileset dir="src" includes="**/*.p,**/*.w,**/*.cls" /> 

    <DBConnection dbName="sports" dbDir="database/db" singleUser="true" /> 

    <propath> 

      <pathelement location="src" /> 

    </propath> 

  </PCTCompile> 

</target> 

 



A sample build script 

<target name="dist" depends="build"> 

  <mkdir dir="dist" /> 

  <PCTLibrary destFile="dist/sports.pl" baseDir="build" dlcHome="${DLC}" /> 

  <zip destFile="dist/sports.zip"> 

    <fileset dir="dist" includes="*.pl" /> 

    <fileset dir="resources" includes="**/*.jpg" /> 

  </zip> 

</target> 

 



Back to Jenkins 

▪ Just add an Ant build step, 
executing « dist » target. 

▪ Dependencies between tasks 
will take care of creating 
database and compiling code 

▪ Build file name is not 
provided: default is build.xml 

▪ Notice we can pass 
properties as parameters : 
multiple jobs can use the 
same build script with 
different values 



Job configuration page 

▪ Archiving build output 

▪ As a convention, the ‘dist’ 
directory contains build 
artifacts 



Execute first build 

 



And now ? 

▪ Build pipeline 

▪ Automated tests using the REST adapter 

▪ Slaves 

▪ Deployment to virtual machines 

▪ Manage dependencies 

▪ Dashboard view 

▪ Source code analysis 

 



Build pipeline 

▪ Dependencies 
between jobs 

▪ Unit tests are 
triggered by the main 
job 

▪ Followed by a 
deployment to virtual 
machines 

 



Automated tests 

▪ Tests are executed 
just after the build 

▪ Under Win32, OE 
11.2, but different 
configurations are 
being used 

▪ See Mike Fechner 
package for unit tests 

▪ Or have a look at 
Prounit 

▪ Or use API on 
appservers, with 
OpenAPI or REST 
adapter 



Slaves 

▪ Public Jenkins instance for Apache Software foundation manages more than 300 jobs 

▪ With so many jobs, you need to dispatch them on different machines 

▪ Jenkins provides a simple yet powerful master/slave mechanism, where jobs can be assigned to 
slaves, while the UI (configuration and reports) are still on the master server 

▪  Extremely useful not only to dispatch load, but also to test on different configurations 



Deploy to virtual machines 

▪ Snapshot is your best friend 

▪ Define snapshots for various configuration (OpenEdge, OS, and other requirements) 

▪ When a build is completed, use the VIX (or EC2) API to : 

▪ Restore to snapshot 

▪ Copy artifacts to virtual machine 

▪ Execute your installer (or upgrade process) 

▪ Pause your virtual machine (or not !) 

 



Manage dependencies 

▪ Keep your builds small 

▪ Build artifacts can be kept in Jenkins, or uploaded to an artifact repository 

▪ Grab dependencies when building downstream jobs (copy artifacts Jenkins plugin or download 
from artifact repository) 

▪ During development, download them from Jenkins or artifact repository 

▪ Define requirements : OpenEdge, Sonic, … which shouldn’t be managed by the repository 



Dashboard view 

 



Source code analysis 

 



Questions ? 

 



References 

▪ Ant : http://ant.apache.org 

▪ PCT : http://code.google.com/p/pct 

▪ Jenkins : http://jenkins-ci.org 

 

http://ant.apache.org/
http://code.google.com/p/pct
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/

