
1

Let me begin by introducing myself. I have been a Progress Application
Partner since 1986 and for many years I was the architect and chief
developer for our ERP application. In recent years, I have refocused on the
problems of transforming and modernizing legacy ABL applications. I have
been personally responsible as architect, tool maker, and programmer for
producing on the order of 2 million lines of ABL code.

2

Here is our agenda for the day. We are going to first talk about a little
background and then review a number of best practice standards in a
number of categories.

3

First, let’s ask ourselves why we even care about best practice standards.

If one wrote code and never looked at it again, one might not care what the
code looked like … although I would still argue that many of the standards
we will talk about today also help in getting the code to work right in the first
place. But, the ugly truth is that the cost of developing software in the first
place, especially business software, is only a small fraction of the total cost
of ownership of that software over its life. Business needs keep changing …
and at an ever increasing pace, as Progress keeps reminding us. Small
data sets become big data sets become huge data sets. So, anything that
helps reduce the cost of maintenance is going to pay significant dividends. A
key element is how easily one can find the part that needs changing, and
then understand how that part works, so one is able to see how the code has
to change. Another key element to reducing costs of modification lies in
avoiding future changes, e.g., for performance problems, because one
created the right code in the first place. And, of course, stable code which
does what it is supposed to only has to be changed when requirements
change, but buggy software needs changing all the time.

4

In short, following best practice produces better code and better code results
in a better application and lower costs.

5

6

Next, let’s consider briefly where best practice standards come from.

The simple answer is that they arise from the community. In other
languages, we might have books and websites to point to as standards, but
in ABL those are few and often go out of date. There is no one authority we
can safely look to, not even PSC since their documentation is filled with
examples that many would say do not illustrate best practice. Standards are
talked about in the on-line communities, often in reaction to their being
violated.

7

One has to learn what sources to trust and which to question when looking
for standards. The best guideline is to not unquestionably accept a standard
from any source, but to think about why the standard has been advanced
and what impact it will have. When you understand the reasons, then you
have the basis to make your own judgments. Of course, if the standard
comes from your boss, you may have to follow it regardless, but that
shouldn’t keep you from making your own judgments.

8

Many shops adopt the style and techniques of the code which they have in
their own shop already as their own best practice standards. Often, the
rationale is that much of the code came from an ISV and someone selling
their software must know more about Progress than the locals do. This is
often a bad mistake since there is a lot of code from ISVs that reflects 20
year old standards, all too often standards that weren’t even very good 20
years ago, and they are poor models for modern code.

9

For those who have been used to my rôle in recent years as an evangelist
for object oriented programming, I will note that I am going to make little
reference to OO today. Many of the principles here also apply to OO, but
OO also tends to define its own principles which I have discussed
elsewhere.

10

In the review of standards which follows, I have divided standards into
categories based on what seemed like their principle impact, but many,
perhaps most standards often have more than one impact or benefit.

While the emphasis is on what one should do, one can’t discuss this area
without also saying what not to do.

The list I present today is necessarily incomplete, but hopefully it will get you
thinking and make it easier for you to make your own judgments.

11

12

First, let’s discuss a couple just plain bad anti-standards.

While I hate to start off on the negative, let’s first consider “standards” that
are just plain bad. They are bad because:
• There are alternative techniques that are less risk prone; or
• The “standard” doesn’t really mean or do what you think it does; or
• The “standard” deceives the reader.
Or all three!

13

There are many people who use the CAN-DO verb for general pattern
matching. This is a mistake because it was specifically designed for testing
IDs and has many special cases that can provide puzzling effects. There
was recently someone on the PEG who used CAN-DO extensively for
pattern matching in their application and was suddenly facing massive
rework because of the recent addition of @ as a new special character for
separating an ID into name and domain components and he had @ in his
patterns. Ouch.

If you say FIND FIRST then you imply that you are finding the first of a group
which has the same keys. If the keys actually specify a unique record, then
you are deceiving the reader. If you are actually finding the first in a group
and treating it differently, then you are violating normal form. Moreover, the
supposed performance advantage which some claim as the reason for doing
this doesn’t exist.

Clearly, there are lots of these and I could probably do an entire talk on what
not to do, but today I want to emphasize the positive, so I have just thrown
out these two because they have come up recently.

14

15

OK, let’s get to the standards, starting with those relating primarily to format
and readability.

Just to make things confusing, there are two common ways in which
standards, particularly format related ones, are talked about in on-line
communities. One is that someone will advocate a standard and someone
will then advocate nearly the opposite. The other is that someone will say
that the details of a standard don’t matter, just that one has one and sticks
with it.

16

While it is certainly true that any standard is … usually … better than no
standard, this doesn’t mean that the choice of formatting standards is
entirely arbitrary. In a set of standards, picking one choice or another may
not make a huge difference, i.e., the big contrast is between following a
standard and not. But, that doesn’t mean that there aren’t sound bases for
the choices one makes. Readability, for example, is something that we know
about from a much wider context base than just ABL code.

17

First, let’s consider standards which are offered for the overall structure of
the program. Typically, these don’t have to do with readability, but rather
with documentation either in the form of compact overall documentation at
the top of the program and/or comments within the program, specifically
documenting change. These are something of a mixed bag. If the choice is
between following one of these standards and doing no documentation at all,
then clearly following the standard is a plus. If one is editing code in vi on
character terminals, maybe this is the best one can hope for. But, putting
material into the program makes the actual code longer, possibly a lot longer,
and the in-line aspects make the code harder to read because they break up
the flow of the code with information which is not related to understanding
what the code is doing. Moreover, one can’t really tell the whole story of the
change history with this simple mechanism since any restructuring … a
frequent need … will destroy the continuity.

18

Therefore, personally, I think the better solution is to implement:
• Proper change control software to fully track the history; and
• One of several approaches to providing real, structured documentation,

including UML modeling.

19

Similarly, there is broad support for comments among those who advocate
standards. Here, I think one should separate the purpose from the
mechanism. Clearly, documenting the trivial gets in the way of
understanding and wastes effort. But, at the same time, documenting the
purpose some code is supposed to fulfill, the algorithm which the code
implements, any background one might need to understand the code,
alternate algorithms, i.e., anything about the code that is not obvious from
reading the code itself, is highly valuable, possibly even fundamental.
Consider whether the best way to do this is using in-line comments or some
other form of documentation.

20

So let’s consider some specifics.

Some advocate capitalizing keywords, as PSC does, and others advocate lower case key
words. Consistency is clearly important to optimize readability, but I have always felt that
capitalization was emphasis and that by capitalizing the keyword one was placing the
emphasis in the wrong place. In a for each, for example, it is the table name which is most
important, not the verb. It is also an old principle of readability that not only are capitals
harder to read, but mixed case is preferable to all lower case. To me, this provides a strong
argument in favor of mixed case table, field, and variable names and lower case keywords.
Obviously, opinions vary!

I don’t know anyone who is opposed to indentation, but there are certainly arguments for
many different indentation standards. I have my personal preferences, of course, but I think
this is an area where having a consistent standard is far more important than exactly what
that standard is. The goal is for the indentation to convey the structure of the program to the
reader and make it easy to understand that structure without having to parse all the details.

Similarly, aligning the parts of a block assignment or IF test can make it easier for the reader
to recognize what is happening - clear structure and clear associations.

When necessary to clarify complex structures, the use of parentheses is far preferable to
depending on the reader understanding rules of precedence.

21

One of the most important structuring elements of an ABL program, both in terms of
formatting for understanding and in terms of controlling functionality are the various block
types. They are important for scoping of buffers and transactions, iteration, error handling,
and defining units of work. As such, they also help define the logical structure of the
program which aids understanding. If you see an ABL program that is little more than a
long, linear sequence of code, you know the programmer did not think about decomposing
the problem into functional units.

One common, but unfortunately not universal practice is to organize all definitions of
variables, buffers, temp-tables, etc. at the top of the program, preferably in labeled sections
by type. If one has used blocks extensively in the program and properly defined local
variables for the blocks for those things used within the block, i.e., values largely flow in and
out via parameters, then the number of definitions at the top of a program should be limited
… not the 5 pages one sees all too often.

Those definitions should be followed by the program’s main body, clearly demarked, and
preferably short so that one can easily see the overall flow. Below that, clearly marked,
should be the internal procedures and functions which implement the detailed logic.

22

Two principles of readability are:
• Organizing the code so that one can find things and
• Keeping the amount of code that one has to consider at one time down to a size where

one can see most or all of it – the “fits on a page” rule.

23

Meaningful names for variables, buffers, temp-tables, tables, fields, etc. is
one of the simplest and yet most effective tools we have for making code
readable and easily understandable. The slight effort of typing a few more
characters will pay great dividends when someone has to read the code and
understand what it is doing … even the person who wrote the code in the
first place. Cryptic names need comments or documentation to tell us what
they mean; good names convey meaning without additional documentation.
In particular, logical variables should tell you what true and false mean, e.g.,
IsValid conveys intent in a way that Flag does not. Even Valid is less clear.

You can tell that I hate abbreviations … abbreviating table and field names
not only hurts readability, but it is a great way to make future trouble for
yourself. Abbreviating key words is just lazy and turns easily read ABL into
something cryptic.

As suggested earlier, variables should be defined as local as the scope of
their use. Even if you use a variable with the same meaning in three
different blocks, if there is no connection between the use, define it local to
each block so that you make it clear that the scope of its use is that block.

24

This next point is more controversial than I think it should be. I advocate using a form of
what is called Hungarian notation for variable naming in which a prefix provides both type
and scope information. Thus chTotal is the Total in character form and deTotal is the
amount in decimal form. Similarly, lchTotal shows that the variable is scoped local to the
internal procedure. There seem to be a lot of people who disagree with this idea as well as
a fair number that will use only the type prefix, but I’m not sure why there is as much
resistance as there is. See http://www.oehive.org/Hungarian for more discussion.

I believe that name references should clearly identify the object to which they refer, thus,
one shouldn’t use the same name for a buffer or temp-table as the database table because it
isn’t clear to the reader which you are referring to, even if it is clear to the compiler.

Later, I am going to comment more about includes, but if you have to use them, make sure
that the reference makes it clear what is happening in the code that the person can’t see
without looking at a separate piece of code.

There is a horrible practice of commenting out code which is no longer used, but leaving it in
place. Apparently, this was done to make the change set minimal since the only thing
changing were the two lines with the open and close comment. This is terribly confusing
and is very annoying when searching. Make your code clean.

25

26

Now lets look at some standards related primarily to performance … good
and bad.

The primary target of performance related standards is reducing the risk that
code which performed well in development against limited data sets and with
a limited number of users will perform poorly in production with large data
sets and user counts.

27

But, one also needs to be sensible about how much one cares about
performance. There are frequent inquiries on on-line forums asking which
of two or more constructs is faster. Even when there is a predictable
difference, unless one is performing the operation in a loop being iterated a
million times, who cares if there is a few milliseconds difference?

In most cases, the judge of performance is the user. There is an old
principle in user interface design that the user will tolerate delay in relation to
the perceived value of what is happening. Thus, a delay in character echo
quickly becomes intolerable since the only value is confirming what one has
just typed, but a few seconds delay when one has posted an order is easily
tolerated because meaningful work is being done and there is a natural
break in the workflow.

Moreover, one needs to keep things in perspective. If an operation requires
retrieving information from the disk, for example, the time required to do the
retrieval is so long compared to the computational steps around it, that using
an extra fraction of a millisecond in the associated computation isn’t
meaningful in the larger picture.

In most cases, clarity, stability, and ease of modification are more important
than these minor performance differences.

28

There are various ways in which some shops recommend the regular use of
RELEASE on the theory that it is doing something good. In point of fact, it
rarely has any effect because the transaction and buffer scope is larger than
where the RELEASE is used. Moreover, if one is properly using blocks to
control transaction and buffer scope, there is almost no reason to ever use it.

In the old days, it was considered good practice to specify USE-INDEX to
make sure that the compiler picked the index the developer knew was best.
But, times change. In particular, there are places where the compiler will use
multiple indexes to resolve a query … but not if you specify USE-INDEX.
So, best practice now is to leave it out because almost all of the time the
compiler will make the right decision. Of course, it doesn’t hurt to check up
on the compiler with COMPILE LISTING.

29

In the old days it was common to do updates directly against database
buffers, thereby locking those buffers throughout all the user interaction. We
have long since realized that leaving all those locks increases contention
and thus impacts performance and the friendliness of the application. Now,
one should be doing updates into local variables and temp-tables and, when
all the information is ready to be persisted, then open a very short
transaction to do all updates. If the data originated in the database, this
means reading the data with no lock, then checking before persisting the
modified data to make sure someone else hasn’t changed the data in the
meantime … which, with reasonable design, is highly unlikely.

It is unfortunate that the default for variables is not no-undo, but once upon a
time I guess someone at Progress thought it was good idea for variables to
have undo processing. But, it is surprising how much overhead one can add
to an application by having it keep track of before and after values for every
variable. The first time I experienced this, almost 25 years ago now, I was
amazed at how much difference we were able to make in performance by
moving to no-undo.

And, as indicated in the reference to USE-INDEX, trust but verify to make
sure that the compiler is picking the index it should.

30

31

On to some standards for stability.

There are two aspects to application stability.

One aspect is that one wants the application to do what it was intended to do
… no strange quirks, no needing special tricks, no surprises. To achieve that
our primary tools are having clear code and good structure so that when we
read the code we can understand clearly what it is going to do. We still need
the user to be clear about what the program should do, of course, but having
that we should be able to produce clear, unambiguous code that implements
the design requirements and we should be able to easily modify that
behavior as requirements change.

The other aspect is that we want the application to respond gracefully when
something unanticipated happens such as bad data or incorrect inputs. I say
“unanticipated”, but in fact we can anticipate some of these types of errors
and I will talk more about that in a moment. To handle these situations, we
need to think ahead about what might happen and provide good error
handling for when the unexpected happens.

32

For standards related to clarity and structure we have:
Make locking explicit. There is never a reason to let the compiler decide
which locking to use.

Avoid SHARE-LOCK altogether. There are only a few special circumstances
where there is a reason for a share-lock and even those are questionable.
No-lock unless you are going to change something and exclusive-lock for the
shortest possible interval.

In queries, don’t use OF to make joins and depend on the compiler to pick
the right fields. State the join explicitly so that a reader will know the exact
relationship between the tables.

I recommend against the use of LIKE in defining temp-tables and variables.
It is tempting, both to save typing and to ensure that any changes to the
database will get reflected in the code, but it creates a database dependency
that might not otherwise exist. In V6 style programming where user
interaction, business logic, and database updates are all mushed together in
the same code, this issue might not seem significant, but when one is
dividing these areas of responsibility into layers, one wants only the code
that actually touches the database to have the database dependency.

33

When using dynamic objects of any kind, make sure to delete them when
they are no longer in use. The usual rule is “if you create it; you delete it.”
There are cases of “one way” objects where this is not practical, but there
should always be a way to know when one is done and to clean up. Failure
to do so is likely to lead to unpleasant surprises.

Incidentally, I also apply this policy to objects in OO code. While there is
garbage collection for OO, I think it is better for the programmer to assert
that one is done and do the cleanup. Among other things, this makes it clear
to a later reader when one is done.

While the compiler does a very good job at automatic scoping of
transactions, it is far better to use the TRANSACTION keyword to explicitly
state where you want the transaction scope. If nothing else, this will detect
scoping errors when you specify a transaction within an existing transaction.
Many errors discovered in production can be traced to errors in transaction
scope.

Similarly, make buffer scopes explicit by using the FOR <filename> construct
and defining local buffers in internal procedures. Another large class of
production errors comes from buffer scope being wider than expected or
simply not thinking about buffer scope.

34

As I mentioned before, there are two different types of things which can
happen other that those things that are supposed to happen – those we can
anticipate and those we can’t. When I say we can’t anticipate them, I mostly
mean that, whether or not we can anticipate the possibility, we can’t
associated it with a particular place in the code. Thus, if we go to look up a
customer record based on a code stored in an order, we can anticipate that
the customer record may not be found. Whereas, while we can anticipate
that a database might become corrupt, we can’t associate that possibility
with any particular part of the application.

There is more of a sliding scale here than an absolute distinction. For
example, when we run a program, we could anticipate that the program
would not be found. But, this should be highly unlikely and there is typically
nothing about one run statement or another which makes it more or less
likely in that instance. So, I am inclined to regard missing programs as being
of the second type unless it is a situation where one is actually generating
the program to run or something similar.

35

One can handle both types of “error” with the ABL exception mechanism, but
there is a point of view which suggests this is not best practice. The issue is
that the ABL exception handling structure, in common with most languages,
leaps one out of the flow of control. While it is certainly determinable where
one goes … and, in fact, necessary to get out of the flow of control in some
circumstances … this is not something that is easy to read. Therefore, the
recommendation is that anticipated “errors” be handled by regular code and
the exception handling structures be reserved for unanticipated errors,
notably those for which there is no simple recovery possible.

36

Some error handling standards:
• Consistency – both types of error handling should be routine, regular parts

of any coding, not something one adds when something bad happens.
• Use ABL structured error handling – there is no reason to use the old error

mechanisms.
• Develop high level routines for capturing errors not caught at a lower

level. Think in terms of how far you need to fall back. The ultimate of
these should be a routine at the top level which catches any error thrown
by a lower level and not handled before then.

37

These two are about creating a common strategy that you can then easily
apply everywhere.

If you create a consistent error signature, then you can pass error objects up
the call stack and handle them in a uniform way.

Similarly, create a strategy for consistently logging any error which you might
want to know about. That includes all of the unanticipated errors and might
include some of the anticipated ones, particularly security violations.

38

39

Now, let’s talk a little about standards that promote modifiability.

As I have said, the largest part of the cost of software over its lifetime is
modification. Many of the standards I have talked about today also
contribute to modifiability and thus contribute to cost reduction.

40

There are four elements which contribute to ease of modification in
conventional ABL code:

• Easily finding the code that needs modification;
• Easily understanding what that code does and how it works;
• Having small, self-contained units of code so that there is only a small

amount of code that needs to change for any one change in requirements;
and

• Having clear and simple interactions between the units of code, again so
that the scope of change is limited.

Some of you may recognize these as some of the primary motivations
behind Object-Orientation.

41

On to specific standards …

Don’t use shared variables. Period. There is no case in which they are justified. They
make it very hard to tell where values are modified and used. Use explicit parameters to
pass values. And, I should add, by containing a function to a single code unit, there is less
need to pass values other than inputs and results.

I am likely to get some push back on my next standard. In the old days, include files were
the mark of good practice because they provided a way to put common code in a single
place and reuse it wherever needed. Of course, there were people who abused the concept,
like putting 100 variable definitions in one include and then referencing it in all programs for
a function. But, we now have much better techniques for encapsulation including persistent
and super procedures and classes. If you ever find yourself thinking of using an include, ask
yourself why that same code needs to be in more than one place? Why can’t you
encapsulate it so that it only appears in one place. A classic example is using an include for
a temp-table definition. Why isn’t all of the code that processes the temp-table encapsulated
in one code unit with inputs and outputs for those that need to use this functionality?

One big problem with includes is that one can’t see the code in the include when looking at
the place it is used.

One probably acceptable use of includes is language extensions, i.e., where one really
wishes that ABL did something that it does not so one encapsulates that functionality in an
include and uses it in-line as if it were part of the language.

42

When you need to compose a multi-part string, e.g., for output, always use
SUBSTITUTE and fill in the computed parts rather than simply
concatenating the pieces of the string. This is much easier to modify and to
translate.

Avoid hard coded constants (magic numbers) since, if you ever need to
change them, you will need to change them manually everywhere they are
used. Much better is to obtain any such value from a persistent source.

Duplicate or nearly duplicate code is a maintenance nightmare. It is very
easy for the copies to get out of sync and have slightly or dramatically
different behavior. Instead, bundle that code in a reusable component which
can be referenced wherever needed.

Whether or not you are going to work toward a fully layered, OERA-type,
architecture, consider encapsulating any table access code in a reusable
component. Then, when something changes, there is only one place that
needs to change instead of having to search through the entire code base
for references to the table.

43

At the beginning of this section I referred to “conventional ABL coding
techniques”. Two other techniques which greatly enhance modifiability are:

Object-oriented programming – the primary reason for OO is modifiability.
OO code is more easily modified both because of:
• The strong encapsulation means changes are typically confined to a

single code unit and
• The more natural relationship between the code units and the elements of

the problem space means that changes to one thing in the problem space
tend to point to only one object.

Model-Based Development – The ultimate in documentation combined with
the minimum in manual coding. This is, of course, a whole different
approach which you can read more about on my website.

44

45

So, to summarize …

46

47

48

Here are some links for more information.

49

Thank you.

50

And now for questions.

