
The 4GL in OpenEdge 11.x
(for small values of x)
Gus Björklund. Wizard. Progress.

© 2012 Progress Software Corporation. All rights reserved. 2

Blame

  The following people have contributed parts of this talk
•  Evan Bleicher

•  Robin Brown

•  Fernando Souza

•  Gus Bjorklund

•  David Lund

•  Mary Szekely

© 2012 Progress Software Corporation. All rights reserved. 4

Categories

  OO4GL

  JSON API

  XML and JSON Improvements

  LIKE

  Authentication CallBacks

  Extend Capabilities

  VST for Temp Tables

  Performance enahncements

  11.2 4GL stuff

  11.3 4GL stuff

OO4GL

© 2012 Progress Software Corporation. All rights reserved. 6

Interface Inheritance

SuperClass1 c

SubClass1 c

Interface1 i

Interface2 i

  OO4GL Class type (pre-11.0 functionality)
–  Inherit from another class type
–  Implement multiple interface types

© 2012 Progress Software Corporation. All rights reserved. 7

Interface Inheritance

  OO4GL Interface type - NEW!
•  Inherit from multiple interface types

•  Inherit from .NET interface type

  Syntax

 INTERFACE InterfaceName
 [INHERITS SuperName1 [, SuperName2] ...] :

© 2012 Progress Software Corporation. All rights reserved. 8

Interface Inheritance

 Camry c

 ICar i

IVehicle i

ITruck i

 Mack c

© 2012 Progress Software Corporation. All rights reserved. 9

Interface Inheritance

  Program to the interfaces via polymorphism

  TYPE-OF function
•  Returns TRUE for Interface in hierarchy

PUBLIC METHOD LOGICAL handleVehicle(INPUT refVehicle
 AS CLASS IVehicle):

 IF TYPE-OF(refVehicle, "ICar") EQ TRUE

 THEN THIS-OBJECT:handleCar(refVehicle).

 ELSE IF TYPE-OF(refVehicle, "ITruck") EQ TRUE

 THEN THIS-OBJECT:handleTruck(refVehicle).

 ELSE THIS-OBJECT:handleGeneric(refVehicle).

© 2012 Progress Software Corporation. All rights reserved. 10

Dynamic Properties

  Dynamically (pre-11.0 functionality)
•  Instantiate a class

•  Invoke a method

  Dynamically get or set OO4GL property - NEW!

  DYNAMIC-PROPERTY function

  Progress.Lang.Class
•  GetPropertyValue

•  SetPropertyValue

© 2012 Progress Software Corporation. All rights reserved. 11

Dynamic Properties

 DEFINE INPUT PARAMETER myDynClassName AS CHARACTER.
DEFINE INPUT PARAMETER myDynPropName AS CHARACTER.
DEFINE OUTPUT PARAMETER mychar AS CHARACTER.
DEFINE VARIABLE myClass AS Progress.Lang.Class.
DEFINE VARIABLE myObj AS Progress.Lang.Object.

myClass =
 Progress.Lang.Class:GetClass(myDynClassName).

myObj = myClass:New().

mychar = DYNAMIC-PROPERTY(myObj, myDynPropName).

/* OR */

mychar = myClass:GetPropertyValue(myObj,
 myDynPropName).

JSON API

© 2012 Progress Software Corporation. All rights reserved. 13

JSON API – NEW!

  Built-in OO4GL classes for creating and parsing JSON

  JSON: JavaScript Object Notation
•  Lightweight data exchange format (without all that gross XML trash !)

•  http://json.org

  Use Cases
•  JavaScript Libraries supporting AJAX also support JSON

•  Which means that...
–  OE can easily become the back end of a Rich Internet Application (RIA)

o  AppServer

o  WebSpeed

© 2012 Progress Software Corporation. All rights reserved. 14

JSON Data Types

  Four simple data types
•  string – “jump rope”
•  number – 17, 54.35, 0.9582e-42
•  boolean – true, false
•  null – null

  Non-standard data types commonly used
•  date/time – “2011-09-21T11:00:00-04:00”
•  binary – Base64 encoded string

  Complex data types
•  Object
•  Array

© 2012 Progress Software Corporation. All rights reserved. 15

JSON Object

  Progress.Json.ObjectModel.JsonObject
•  Collection of name/value pairs
•  No order
•  Access by property name
•  Object surrounded by curly braces { }

  Can INHERIT from

{ “name-1” : value-1, “name-2” : value-2, “name-3” : value-3}

© 2012 Progress Software Corporation. All rights reserved. 16

JSON Object Example

myObject = NEW JsonObject().

myObject:Add("name", "Dorothy Gale").

myObject:Add("age", 38).

myObject:Add("region", "Kansas, USA").

myObject:Write(myLongchar, TRUE).

{
 "name" : "Dorothy Gale",
 "age" : 38,

 "region" : "Kansas, USA"

}

myLongchar:

vChar = myObject:GetCharacter(“name”).

vInt = myObject:GetInteger(“age”).

© 2012 Progress Software Corporation. All rights reserved. 17

JSON Array

  Progress.Json.ObjectModel.JsonArray
•  Ordered list of unnamed values
•  Strict order
•  Access by array index
•  Surrounded by square brackets []

  Can INHERIT from

 [value-1, value-2, value-3, value-4]

© 2012 Progress Software Corporation. All rights reserved. 18

JSON Array Example

myArray = NEW JsonArray().

myArray:Add(1).

myArray:Add(FALSE).

myArray.Add(“jump rope”).

myArray:AddNull().

myArray:Write(myLongchar, TRUE).

 [1, false, “jump rope”, null]

myLongchar:

myArray:Set(2, 6.0).

vDec = myArray:GetDecimal(2). /* vDec = 6.0 */

vLog = myArray:GetLogical(4). /* vLog = ? */

© 2012 Progress Software Corporation. All rights reserved. 19

Complex JSON Values

  Combination of simple values, objects and arrays

{
 "salesRep" : { "name" : "Dorothy Gale",

 "age" : 38,

 "region" : "Kansas, USA"

 },

 "tractorSales" : { "2009Quarterly" : [13, 27, 18, 9],

 "2008Quarterly" : [11, 17, 32, 5],

 "2007Quarterly" : [9, 25, 16, 10]

 }
}

© 2012 Progress Software Corporation. All rights reserved. 20

JSON API ProDataSet / Temp-Table Support

  JsonObject:Read ()
•  Dataset
•  Temp-Table
•  Temp-Table Buffer

  JsonArray:Read ()
•  Temp-Table

  READ-JSON () Enhancement
•  New source types

–  JsonObject
–  JsonArray

XML and JSON

© 2012 Progress Software Corporation. All rights reserved. 22

4GL XML and JSON Improvements

  Recognize more XML/JSON formats as DATASETs
•  Benefit

–  Easier integration with 3rd party products

•  PARENT-ID-RELATION
–  Child record has field with RECID of parent

o  PARENT-ID-FIELD

•  Availability:
–  READ-XML/SCHEMA ()

–  READ-JSON ()

–  bproxsdto4gl utility

–  bprowsdldoc utility

•  WRITE-XML () / WRITE-JSON () do the right thing

© 2012 Progress Software Corporation. All rights reserved. 23

XML Example – PARENT-ID-RELATION

<CustomerOrders>
 <Customer>
 <CustNum>1</CustNum>
 <Name>Lift Tours</Name>
 <Order>
 <OrdNum>100</OrdNum>
 <OrdTot>234.89</OrdTot>
 </Order>
 </Customer>
 <Customer>
 <CustNum>3</CustNum>
 <Name>Hoops</Name>
 <Order>
 <OrdNum>200</OrdNum>
 <OrdTot>899.99</OrdTot>
 </Order>
 </Customer>
</CustomerOrders>

DEFINE TEMP-TABLE Customer
 FIELD CustNum AS INTEGER
 FIELD Name AS CHARACTER.

DEFINE TEMP-TABLE Order
 FIELD OrdNum AS INTEGER
 FIELD OrdTot AS DECIMAL
 FIELD Customer_Id AS RECID
 XML-NODE-TYPE “Hidden”.

DEFINE DATASET
 CustomerOrders
 FOR Customer, Order
 PARENT-ID-RELATION rel1
 FOR Customer, Order
 PARENT-ID-FIELD

 Customer_Id.

© 2012 Progress Software Corporation. All rights reserved. 24

4GL XML and JSON Improvements

  XML-NODE-TYPE “Hidden” / SERIALIZE-HIDDEN on DATASET
•  Root node maps to temp-table

<person>
 <name>Ken</name>
 <children>
 <child>Adam</child>
 <child>Elana</child>
 </children>
<person>

DEFINE DATASET personDset XML-NODE-TYPE “HIDDEN”
 FOR person, children, child
...

© 2012 Progress Software Corporation. All rights reserved. 25

4GL XML and JSON Improvements

  WRITE-JSON method
•  New omit-outer-object argument

{“tt”: [

 {“f1”: 11, “f2”: 12},

 {“f1”: 21, “f2”: 22},

 {“f1”: 31, “f2”: 32}

]}

[

 {“f1”: 11, “f2”: 12},

 {“f1”: 21, “f2”: 22},

 {“f1”: 31, “f2”: 32}

]

omit-outer-object = FALSE omit-outer-object = TRUE

© 2012 Progress Software Corporation. All rights reserved. 26

4GL XML and JSON Improvements

  Buffer-object:SERIALIZE-ROW () – NEW!
•  Serialize ONLY current row

•  Target-format “XML” and “JSON”

SERIALIZE-ROW

(target-format, target-type,

 { file | stream | stream-handle | memptr | longchar }

 [, formatted [, encoding [, omit-initial-values

 [, omit-outer-object]]]])

© 2012 Progress Software Corporation. All rights reserved. 27

Upgrade Xerces XML Parser & ICU Libraries

  Upgrade Xerces processor to the latest version
•  Upgrade to Xerces 3.1.1

  Upgrade ICU (International Components for Unicode)
•  Upgrade to ICU 4.8

© 2012 Progress Software Corporation. All rights reserved. 28

Xerces XML Parser in OpenEdge 11.1

  In general, 4GL application programmers will not be impacted by
the upgrade to the XML parser
•  Although not common, some users may see some differences

Areas where differences can be seen:
  Xerces 3.1.1 more closely adheres to the XML specification

•  In 4GL some areas may no longer pass as valid XML

  Some known issues are fixed by this upgrade
•  Customers that have encountered theses issues will benefit from

the resolution

  Some error messages have changed

Do you LIKE it?

© 2012 Progress Software Corporation. All rights reserved. 30

LIKE Phrase for Method and Function Parameters

  LIKE phrase Supported when defining:

•  Variables

•  Procedure parameters

•  Method parameters (new in OpenEdge 11.1)

•  Function parameters (new in OpenEdge 11.1)

© 2012 Progress Software Corporation. All rights reserved. 31

LIKE for user-defined function and method
parameters

CLASS simple:

 DEFINE VARIABLE myvar AS DECIMAL DECIMALS 3 FORMAT ">9.9999".

 METHOD PUBLIC VOID test (INPUT inch LIKE Customer.Name,

 INPUT inint LIKE Customer.Cust-Num,

 INPUT indec LIKE myvar):

 DISPLAY inch inint indec.

 END.

END.

Name Cust-Num myvar

-------------------- -------- -------

Lift Line 345 2.3490

© 2012 Progress Software Corporation. All rights reserved. 32

Example of Using LIKE Phrase in a Function

/* Function prototype */
FUNCTION tstFunc RETURNS LOGICAL
 (INPUT pName LIKE Customer.Name) FORWARD.

/* Function implementation */
FUNCTION tstFunc RETURNS LOGICAL
 (INPUT pName LIKE Customer.Name):
 DISPLAY pName.
END.

User authentication callbacks

(e.g. user login validation)

© 2012 Progress Software Corporation. All rights reserved. 34

4GL User-defined Authentication Using Callbacks

  OpenEdge 11.1 extends existing configurable user
authentication to include customized 4GL user authentication

  This feature is visible to OpenEdge developers, as well as to
those that distribute and administer 4GL based applications

© 2012 Progress Software Corporation. All rights reserved. 35

So what has changed?

  The two inbuilt plug-ins provided earlier allowed for
user authentication against the database’s _user table and
against local operating system accounts.

  Now we have an 4GL authentication plug-in mechanism that you
can use to invoke your own code to do user authentication in
whatever way you like.

  You use the new mechanism as follows:
•  create a client-principal object

–  and set values for various fields in it.

•  When you invoke either SET-DB-CLIENT() or SECURITY-
POLICY:SET-CLIENT() then an entry-point in your previously
registered 4GL callback procedure will be called.

•  Your code then examines the presented user identity, decides
whether or not it is valid, and returns either an accept or reject
return code.

•  Also CONNECT and SETUSERID()

© 2012 Progress Software Corporation. All rights reserved. 36

So what has changed? Part 2

  But wait . . . that’s not all! You can also use the callback
mechanism with the inbuilt authentication systems to extend
those. For example, you can set additional values in the client-
principal object or record all user logins somewhere suitable.

  To use this feature, all you have to do is set the callback
procedure name in the _sec-authentication-system._PAM-
callback-procedure* for those authentication domains in which
you want a procedure to be called.

  You can find more information about this feature in Chapter 2 of
the OpenEdge 11.1 manual entitled “
OpenEdge Development: Programming Interfaces“.

© 2012 Progress Software Corporation. All rights reserved. 37

Edit Database Authentication Systems Page
 in the Database Administration Console

© 2012 Progress Software Corporation. All rights reserved. 38

Accessing Authentication Systems
 using Data Administration

© 2012 Progress Software Corporation. All rights reserved. 39

Overview of Callbacks

Three components of 4GL external procedure:
1.  Main block

•  Run by OpenEdge
•  Executed (once) and completes before the callbacks execute
•  The main block cannot have parameters

2.  AuthenticateUser procedure
•  Called during OpenEdge-performed user authentication
•  If a non-success error is returned authentication is denied and

processing stops

3.  AfterSetIdentity procedure
•  Called during user authentication and SSO
•  Errors are not returned
•  Does not have any impact on the success or failure of authentication

© 2012 Progress Software Corporation. All rights reserved. 40

When the Callback is Called

Callback AuthenticateUser
  Called during OpenEdge performed user authentication process

•  For built-in systems: this is after the built-in system's authentication
has completed and before the client-principal is sealed

•  For user-defined: at start of the user authentication process and
before the client-principal is sealed

Callback AfterSetIdentity
  Called once each time OpenEdge completes setting a user

identity (for SSO and OpenEdge-performed user authentication)
•  For each 4GL session and each OpenEdge database connection

© 2012 Progress Software Corporation. All rights reserved. 41

AuthenticateUser and AfterSetIdentity Signatures

PROCEDURE AuthenticateUser:
DEFINE INPUT PARAMETER hCP AS HANDLE.
DEFINE INPUT PARAMETER cSystemOptions

 AS CHARACTER EXTENT.
DEFINE OUTPUT PARAMETER iPAMStatus

 AS INTEGER INITIAL ?.
DEFINE OUTPUT PARAMETER cErrorMsg AS CHARACTER.
END.

PROCEDURE AfterSetIdentity:
 DEFINE INPUT PARAMETER hCP AS HANDLE.
 DEFINE INPUT PARAMETER cSystemOptions

 AS CHARACTER EXTENT.
END.

© 2012 Progress Software Corporation. All rights reserved. 42

Working with the Client-Principal in Callbacks

  There are restrictions to operations that can be done in callback
procedures

  For user-defined authentication the client-principal
Primary-Passphrase is read-only

  Callback executing for a built-in system cannot read the
Primary-Passphrase

  For a client-principal object you cannot:
•  Delete the object.
•  Call methods:

–  AUTHENTICATION-FAILED(), EXPORT-PRINCIPAL(),
IMPORT-PRINCIPAL(), INITIALIZE(), LOGOUT(), SEAL()

•  Change attributes of:
–  DOMAIN-NAME, DOMAIN-TYPE, PRIMARY-PASSPHRASE,

QUALIFIED-USER-ID, SESSION-ID, USER-ID

© 2012 Progress Software Corporation. All rights reserved. 43

Progess.Security.PAMStatus Class

  Used by 4GL programmers to obtain
security status codes that are returned by
an 4GL authentication callback

  Callback procedure is called during the
execution of an OpenEdge authentication
or SSO operation

  Status codes are static class properties

  Sub-class of Progress.Lang.Object class

  Contains only a private constructor

  All properties have a data type of integer,
and are static read-only publicly
accessible values

  AuthenticationAccess

  AuthenticationFailed

  Custom

  InvalidConfiguration

  MaxTries

  MissingCredentials

  PermissionDenied

  Success

  UnknownUser

Properties

See: OpenEdge Development: OpenEdge Development 4GL Reference

© 2012 Progress Software Corporation. All rights reserved. 44

The encryption is not robust

Encoded 4GL Passwords

The purpose of encoded passwords is to:

•  Not store clear-text password values in OS files
 (scripts, parameter files, and configuration files)

•  Or pass them across a network connection

© 2012 Progress Software Corporation. All rights reserved. 45

Using Encoded Passwords

  AVM session’s -P startup parameter
•  Command line connection to a database

  In a parameter file (.pf)
•  Set the -P startup parameter for a database in the .pf file

  4GL Language
•  -P on the database CONNECT statement

•  SETUSERID function

Authenticating the user identity of a client-principal

  Client-Principal:PRIMARY-PASSPHRASE attribute

•  Client-Principal:Initialize() method

•  Client-Principal:Seal() method

•  Client-Principal:Validate-Seal() method

© 2012 Progress Software Corporation. All rights reserved. 46

Creating an Encoded Password

  Two ways to create an encoded password

•  Using AUDIT-POLICY:ENCRYPT-AUDIT-MAC-KEY method

•  From the command line – calling genpassword utility
Encoded passwords DO NOT prevent an intruder from using them to spoof a user
account if they gain access to them. Encoded values must be part of a layered
security scheme that includes the OS file system and/or 4GL application code.

encPwd = "oech1::" +
 AUDIT-POLICY:ENCRYPT-AUDIT-MAC-KEY(clearText)

proenv> genpassword –password "clear_text"
 xxxxxxxxx
proenv> echo "oech1::xxxxxxxxx"
…

Miscellaneous enhancements to
various existing features

© 2012 Progress Software Corporation. All rights reserved. 49

GUI for .NET

  .NET objects that are not related to UI are supported
•  Also supported in 10.2B02

  Non-user-interface executables support .NET objects
•  prowin32 –b (batch GUI client)

•  _proapsv (AppServer agent)

•  _progres (char client, WebSpeed agent)

  Updateable grids support LOBs
•  ProBindingSource Assign()

•  4GL

–  CURRENT-CHANGED, SAVE-ROW-CHANGES

–  BUFFER-COMPARE, Equality

© 2012 Progress Software Corporation. All rights reserved. 50

Input Blocking Statements

  Input blocking statements (pre-11.0 functionality)
•  UPDATE, SET, PROMPT-FOR, CHOOSE, INSERT, WAIT-FOR,

PROCESS EVENTS and READKEY

•  Restricted use, notably:
–  User-defined function

–  Non-void method

–  Or if user-defined function, non-void method are on call stack

© 2012 Progress Software Corporation. All rights reserved. 51

Input Blocking Statements

  Input blocking statements (pre-11.0 functionality)
•  UPDATE, SET, PROMPT-FOR, CHOOSE, INSERT, WAIT-FOR,

PROCESS EVENTS and READKEY

•  Restricted use, notably:
–  User-defined function

–  Non-void method

–  Or if user-defined function, non-void method are on call stack

  Restriction removed!

© 2012 Progress Software Corporation. All rights reserved. 52

Suppress Warning Messages

  Suppress list of warning messages - NEW!
•  -swl startup option

•  SESSION:SUPPRESS-WARNING-LIST

  Suppress all warning message
•  -sw startup option - NEW!
•  SESSION:SUPPRESS-WARNINGS

© 2012 Progress Software Corporation. All rights reserved. 53

Startup Options

  –inp
•  Maximum increased from 32,000 to 2,147,483,647

•  Also increased in 10.2B03

  -lkwtmo
•  Minimum decreased from 60 seconds to 10 seconds

•  small values may cause premature rollbacks

© 2012 Progress Software Corporation. All rights reserved. 54

R-code Version Change for V11

  MUST recompile in version 11.0

  32/64-bit compatibility restored (several times)

  Frame segment
•  32 Kb to 4 Mb limit increase

  R-code header signature segment
•  64Kb size limit lifted

•  Open Client (ProxyGen)

  Procedure library
•  Can now be > 4 Gb in size (but not with 32-bit releases)

© 2012 Progress Software Corporation. All rights reserved. 55

Install

  WebClient
•  Uninstall a previous version

  License
•  Remove a license from a system

  Windows 64 bit packaging
•  add to included Win32 client

–  .NET

–  XML

VST's for temporary tables

© 2012 Progress Software Corporation. All rights reserved. 57

Diagnostics - Temp-Tables

  Common questions:

•  How many temp-tables are in scope in the
session?

•  Which program created each temp-table?

•  Most accessed temp-tables?

•  Growing DBI file. Why?

© 2012 Progress Software Corporation. All rights reserved. 58

VSTs for Temp-Tables

  Temp-tables stored in DBI file (eventually)

  DBI = single-volume single-user DB

  Global data for DBI access

  Table/index statistics per temp-table is available (_TableStat,
_IndexStat)

TableStat-id: 1 read: 100 update: 2

create: 1 delete: 0 O/S Reads: 3

-ttbasetable, -ttbaseindex, -tttablerangesize,

and -ttindexrangesize

© 2012 Progress Software Corporation. All rights reserved. 59

VSTs for Temp-Tables

  Built-in OO4GL Class

 Progress.Database.TempTableInfo

  Provide info on (static or dynamic):
•  Number of temp-tables in scope
•  List of temp-tables
•  Temp-table name
•  Name of procedure or class that instantiated it
•  Access to temp-table’s handle

© 2012 Progress Software Corporation. All rights reserved. 60

VSTs for Temp-Tables

•  List of temp-tables in scope (including static temp-tables)

USING Progress.Database.*.

<…>

REPEAT i =1 TO TempTableInfo:TempTableCount:

 TempTableInfo:GetTableInfoByPosition (i,

 OUTPUT hTable,

 OUTPUT cProcName).

 DISPLAY hTable:NAME LABEL “Table Name”

 cProcName LABEL “Procedure Name”

 hTable:DYNAMIC LABEL “Dynamic”.

END.

© 2012 Progress Software Corporation. All rights reserved. 61

VSTs for Temp-Tables

  Built-in OO4GL Class

 Provides access to the VSTs for temp-tables

USING Progress.Database.*.

DEFINE VARIABLE hVST AS HANDLE.

hVST = TempTableInfo:GetVSTHandle(VSTTableId:TableStatId).

© 2012 Progress Software Corporation. All rights reserved. 62

VSTs for Temp-Tables

  Table/index statistics are lost when temp-table is deleted.
  Archive table and/or index statistics (from _TableStat and

_IndexStat)

  Ability to log table / index statistics (new log entry type: TTStats)

© 2012 Progress Software Corporation. All rights reserved. 63

Temp-table Logging

  New log entry type (Temp-Tables)

  Entries logged:
•  Creation

•  Deletion

•  Explicit EMPTY

•  Bind

•  Unbind

  Basic statistics (number and size of record)

Created TEMP-TABLE ttCust (ID:1 Indexes:1) test.p @ 3

Deleted TEMP-TABLE ttCust (ID:1) test.p @ -1

Performance
optimisations

© 2012 Progress Software Corporation. All rights reserved. 65

Delayed Instantiation

  Delay instantiation:
•  Temp-table

•  Associated Indexes

•  ProDataSet

  Improves procedure / class instantiation

  No coding

  Sample performance data (YMMV)
•  Class with 10 temp-tables – instantiation improved more than 50%

© 2012 Progress Software Corporation. All rights reserved. 66

Table Scan

  Table Scan – used when accessing ALL records via FOR EACH

  Table must be in Type II storage area

  Does not use index to access
•  Access records sequentially

•  Data maybe in a different order than using an index

FOR EACH mytable TABLE-SCAN:

 totalCost = totalCost + mytable.cost

END.

© 2012 Progress Software Corporation. All rights reserved. 67

Other 4GL internal improvements

  No coding changes needed

  Improvements to class instantiation

  Improvements to method invocation

  Various improvements to 4GL runtime internals

  Fast table drop (type II area)

v 11.2 4GL stuff

© 2012 Progress Software Corporation. All rights reserved. 69

Default scrolling startup option

  A 4GL query being resolved over a network
•  Is faster when the server can pack multiple result records into same

network message (“prefetching”)

•  Happens when the query is guaranteed to ask the server for
records in a forward motion (e.g., when SCROLLING is specified)

–  Note: Of course, the lock mode must be NO-LOCK

  If the query comes from a static DEFINE QUERY statement,
where there is no SCROLLING keyword
•  It defaults to NOT keeping a client-side results list

•  It then uses the server’s index for prev/reposition type statements

•  Since forward motion cannot be guaranteed, the server prefetching
is suppressed

  When DEFINE QUERY statements default to SCROLLING
•  A result list is always present

•  The possibility of network prefetching is guaranteed

© 2012 Progress Software Corporation. All rights reserved. 70

PROVERSION

Pre-11.2 Displayed value
PROVERSION 11.1BETA

11.2 and higher Displayed value
PROVERSION 11.2ALPHA
PROVERSION() 11.2ALPHA
PROVERSION(0) 11.2ALPHA

PROVERSION(1) 11.2.0.0.1171ALPHA

© 2012 Progress Software Corporation. All rights reserved. 71

Enhanced structured error handling

  ON ERROR UNDO, THROW directive causes any error in the block to be
thrown out of the block. If there is an associated CATCH block, it will
execute.
DO TRANSACTION ON ERROR UNDO, THROW:

 . . .

END.

. . .

CATCH error-variable AS [CLASS] error-class:

 . . .

END [CATCH].

  The default error directive on “routines” (procedures, functions, methods
and ON triggers) can be modified within a file using
•  ROUTINE-LEVEL ON ERROR UNDO, THROW.

  This can now also be done at block-level via the new statement:
  BLOCK-LEVEL ON ERROR UNDO, THROW.

•  Changes the default for all blocks in a file that have a default error directive,
including routine blocks, to have the UNDO, THROW error directive instead

© 2012 Progress Software Corporation. All rights reserved. 72

New keywords: SINGLE-RUN, SINGLETON

  Two new keywords in the ABL are added to the RUN statement
•  SINGLE-RUN
•  SINGLETON

  Benefits
•  Reduce trips between client and AppServer for increased

performance

•  Eliminates an AppServer agent from getting bound (or dedicated) to
a particular client

  Users can take advantage of this feature with stateless and
state-free AppServers but not state-reset or state-aware mode.

  Alternative to PERSISTENT

© 2012 Progress Software Corporation. All rights reserved. 73

SINGLETON is key for Mobile*

  For Mobile, a [mobile] resource is the data and operations
provided by one singleton class or procedure that is exposed on
the client as a single OpenEdge JavaScript Data Object (JSDO).
•  This JSDO is roughly analogous to a ProDataSet plus any number

of additional unrelated operations, as are made available in the
singleton class or procedure.

Mobile Application

Mobile resources*
Java

Open

client

AppServer

SINGLETON

© 2012 Progress Software Corporation. All rights reserved. 74

Sub-second PAUSE

  Previously, the AVM rounded the fractional value specified in the
“PAUSE n” phrase to the nearest integer
•  Example: For “PAUSE 2.5”, the AVM would round the time-out interval

value to 3 seconds (or 3000 milliseconds)
  PAUSE now allows the AVM to process a fractional value of n

•  Example: For “PAUSE 2.5”, the AVM will now set the time-out interval
value to exactly 2.5 seconds (or 2500 milliseconds)

•  Value is rounded to the nearest whole millisecond
–  For example 0.0015 will become 0.002, but Pause 0.0114 will become 0.001

  Other statements impacted are:
•  WAIT-FORPAUSE n
•  READKEY ... PAUSE n
•  CHOOSE.. PAUSE n

  Customers requested this capability to improve how they write
batch processing tasks in the ABL

Note: Do no expect a high degree of accuracy especially for values
less than 0.1 second

Coming soon to a computer near you:

v 11.3 4GL stuff

(maybe)

© 2012 Progress Software Corporation. All rights reserved. 76

11.3 stuff

  soap 1.2 support
  Unicode filenames for Windows
  dynamic access to ooabl inbuilt objects
  shorter class1():bar instead of (new class1()):bar

[cuz Julian whinged so well]
  PROCESS-ARCHITECTURE function
  DISPLAY-TYPE
  Windows 64 bit GUI client

Not enough ?

Do you need more ?

© 2012 Progress Software Corporation. All rights reserved. 78

Need more?

  Any OpenEdge customer may submit an enhancement request
by sending email to:
openedge-enhancements@progress.com
and including the following:

  A description of the desired enhancement, specifying
what should be changed, deleted, or added.

  Tell us the PROBLEM you want to have solved,
NOT a supposed solution to some unstated problem.

  Tell us in what circumstances the problem arises and what effect
it has on your code/application/system.

  Tell us what workarounds, if any, can be used as interim
solutions. Also tell us why these workarounds are insufficient.

  Do not request existing features.
  Note: Please write your enhancement requests in English.

OpenEdge development group cannot read other languages.

© 2012 Progress Software Corporation. All rights reserved. 79

Questions

email: gus@progress.com

