
Before-image log,
checkpoints, crashes
Gus Björklund. Progress.
PUG Challenge Americas, 9-12 June 2013

© 2012 Progress Software Corporation. All rights reserved. 2

abstract

In this talk we examine the "before-image file", what it's for,
how it works, and how you can configure it properly. You
might get answers to questions that have been troubling
people for over 25 * 10-2 centuries:
Why doesn't the before-image file have before-images ?
Why aren't the data on disk ever current ?
What are checkpoints ?
Why do we have them ?
When your system crashes (and they all do eventually) how
can the RDBMS recreate all the data that were lost in the
crash and restore your database to a consistent state?

PROGRESS
S O F T W A R E

Engine Crew

Builders of The Best RDBMS

on the Third Planet From The Sun

The OpenEdge RDBMS is brought to you by

© 2012 Progress Software Corporation. All rights reserved. 4

Block’s DBKEY Type Chain Backup Ctr

Next DBKEY in Chain Block Version Number

Free Space
Free
Dirs. Rec 0 Offset Rec 1 Offset

Rec 2 Offset Rec n Offset

Num
Dirs.

Contiguous Free Space

Record 0

Record 2

Record 1

a typical data block – for records

an update

© 2012 Progress Software Corporation. All rights reserved. 6

data block - before

gus

gus

DISK (data extent)

MEMORY (buffer pool)

“Gus”

record

© 2012 Progress Software Corporation. All rights reserved. 7

data block - after

Carol

gus

DISK (data extent)

MEMORY (Buffer Pool)

Carol

“Carol”

updated record

© 2012 Progress Software Corporation. All rights reserved. 8

but….we changed memory only – not disk

  What if someone unplugs server to plug in vacuum cleaner?

  What if we want to undo (rollback) ?

  What if we make several more changes and only one block of a
fragmented record chain is written to disk to make room in the
buffer pool ?

  What if an asteroid wipes out all the data centers?

© 2012 Progress Software Corporation. All rights reserved. 9

but….we changed memory only – no disk write

  What if someone unplugs server to plug in vacuum cleaner?
•  the change will be lost

  What if we want to undo (rollback) ?
•  we don’t know the old value or how to undo

  What if we make several more changes and only one block of a
fragmented record chain is written to disk to make room in the
buffer pool ?
•  the database will be corrupted

  What if an asteroid wipes out all the data centers?
•  the database will disappear completely

these are all bad things (tm)

transaction logging to the rescue!

© 2012 Progress Software Corporation. All rights reserved. 12

Two transaction logs

Original
Database

Transactions
make changes

Changed
Database

Redo-Log
(After-Image Journals)

Undo-Redo Log
(Before-Image Log) BI

AI

db db’

© 2012 Progress Software Corporation. All rights reserved. 13

T2: begin

T1: begin
T1: action 1
T1: action 2

T1: action 3
T3: begin

T1: action 4
T3: action 1
T3: action 2
T2: action 1

T1: end
T2: action 2

T3: end
T2: action 3
T2: action 4

actions of transaction 1

transaction log records (aka “notes”)

actions of transaction 2

actions of transaction 3

Time

notes form a complete
history of everything

© 2012 Progress Software Corporation. All rights reserved. 14

log records (notes)

  generated for every change to database.
  each describes exactly one change to one database

block.
•  almost - there are log records that describe changes to

purely memory-resident data structures like the transaction
table

  apply only to specific version number of block
  some operations require more than one change

•  index splits, multi-block records

  written in same order changes are executed.
  notes from concurrent transactions are mixed

together.

© 2012 Progress Software Corporation. All rights reserved. 15

Undo-Redo (BI) Log Records

  each log record (or “note”) contains:
•  area number
•  database block number (its dbkey)
•  database block version number
•  note type - identifies operation to do

•  any information needed to undo the operation

–  in case we have to roll back

•  any information needed to redo the operation
–  in case we lose what is in memory

an update, with notes

© 2012 Progress Software Corporation. All rights reserved. 17

Block’s DBKEY Type Chain Backup Ctr

Next DBKEY in Chain Block Version Number

Free Space
Free
Dirs. Rec 0 Offset Rec 1 Offset

Rec 2 Offset Rec n Offset

Num
Dirs.

Contiguous Free Space

Record 0

Record 2

Record 1

a typical data block – for us to update

© 2012 Progress Software Corporation. All rights reserved. 18

Block’s DBKEY Type Chain Backup Ctr

Next DBKEY in Chain Block Version Number

Free Space
Free
Dirs. Rec 0 Offset Rec 1 Offset

Rec 2 Offset Rec n Offset

Num
Dirs.

Contiguous Free Space

Record 0

Record 2

Record 1

a typical data block – for us to update

© 2012 Progress Software Corporation. All rights reserved. 19

updating a block - revisited

Version 1
of Block 3

gus

© 2012 Progress Software Corporation. All rights reserved. 20

DO

Log record, block 3,
version 2

updating a block - revisited

Version 1
of Block 3

gus

© 2012 Progress Software Corporation. All rights reserved. 21

DO

Log record, block 3,
version 2

updating a block - revisited

Version 1
of Block 3

gus
Version 2
of Block 3

Carol

new data values
new version

© 2012 Progress Software Corporation. All rights reserved. 22

UNDO

Log record, block 3,
version 2

updating a block - undoing

Version 3
of Block 3

gus
Version 2
of Block 3

Carol

Log record, block 3,
version 3

original data values
new version

putting things back the way they were before you touched them

© 2012 Progress Software Corporation. All rights reserved. 23

houston, we have a problem!

  notice that we did the change just in memory
  we are logging the changes, and we can undo if

necessary, but
•  how about writing changes to disk ?
•  when ?
•  what if server unplugged ?

The checkpoint process

© 2012 Progress Software Corporation. All rights reserved. 26

complete database state – in 3 part harmony

transaction
log

(bi extents)

updated
memory

(buffer pool)

old data
on disk

(data extents)

© 2012 Progress Software Corporation. All rights reserved. 27

Database Checkpoints

  We have memory resident database state
(updates are done in memory)

  Must update disk resident data once in a
while

  Definition:
A checkpoint is a process for making what is
on disk consistent with the changed or
updated database parts that are present only
in memory.

It is a process, not an event.

© 2012 Progress Software Corporation. All rights reserved. 28

Benefits of Checkpointing (1)

  Smaller undo-redo (BI) transaction logs
•  Space can be re-used when the recovery

information is no longer needed

  Example:
•  1,000,000 transactions
•  350 bytes logged per transaction

© 2012 Progress Software Corporation. All rights reserved. 29

Benefits of Checkpointing (1)

  Smaller undo-redo (BI) transaction logs
•  space can be re-used when the recovery

information is no longer needed

  Example:
•  1,000,000 transactions
•  350 bytes logged per transaction
•  so:

–  about 350 megabytes of log data
–  can execute thousand times more transactions a day
– How much space will that take?
– Most transactions are larger

© 2012 Progress Software Corporation. All rights reserved. 30

Benefits of Checkpointing (1)

  Smaller undo-redo (BI) transaction logs
•  space can be re-used when the recovery

information is no longer needed

  Example:
•  1,000,000 transactions
•  350 bytes logged per transaction
•  so:

–  about 350 megabytes of log data
–  could execute a thousand times more transactions a day
– How much space will that take?  350 gigabytes
– Most transactions are larger

© 2012 Progress Software Corporation. All rights reserved. 31

Benefits of Checkpointing (2)

  Shorter Recovery time
•  fewer changes must be repeated when a crash

occurs

  Example:
•  1,000,000 transactions
•  3.2 disk io’s per transaction
•  assume disks do about 100 io’s per second
•  Arrival rate of seconds is fixed at 86,400 per day
•  So:

© 2012 Progress Software Corporation. All rights reserved. 32

Benefits of Checkpointing (2)

  Shorter Recovery time
•  few changes must be repeated when a crash

occurs

  Example:
•  1,000,000 transactions
•  3.2 disk i/o’s per transaction
•  modern disks do 100 io’s per second
•  Arrival rate of seconds is fixed at 86,400 per day
•  So:

–  320,000 seconds (3.7 days) to recover
– What if you had to recover a thousand times more?

© 2012 Progress Software Corporation. All rights reserved. 33

Drawbacks of Checkpointing

  Not free !

•  Requires (some) extra processing
•  Requires (some) extra io
•  Takes (some) time
•  Can freeze all database updates for a (short) time

well worth the costs !

© 2012 Progress Software Corporation. All rights reserved. 34

Checkpoint Process

  There are 3 phases to a checkpoint

© 2012 Progress Software Corporation. All rights reserved. 35

Checkpoint Process

  There are 3 phases to a checkpoint
•  Beginning
•  Middle
•  and End

© 2012 Progress Software Corporation. All rights reserved. 36

Checkpoint Phase 1 (Begin)

  Unwritten BI and AI buffers forced to disk
  All dirty blocks placed on checkpoint queue
  Next BI cluster opened

•  (may require formatting if new)

Cluster 1

B E Checkpoint Timeline

© 2012 Progress Software Corporation. All rights reserved. 37

Checkpoint Phase 1 (Begin)

  Unwritten BI and AI buffers forced to disk
  All dirty blocks placed on checkpoint queue
  Next BI cluster opened

Cluster 2

B E Checkpoint Timeline

cpq

Cluster 1

© 2012 Progress Software Corporation. All rights reserved. 38

Checkpoint Phase 2 (Middle)

  Asynchronous Page Writers take blocks off the
Checkpoint Queue and write them to disk.

  APW’s pace themselves

Clus ter 2

B E Checkpoint Timeline

cpq
✔ ✔ ✔ ✔ ✔

Cluster 1

© 2012 Progress Software Corporation. All rights reserved. 39

Checkpoint Phase 3 (End)

  As cluster approaches full, all blocks from
checkpoint queue have been written to disk

  Checkpoint queue now empty

Cluster 2

B E Checkpoint Timeline

cpq
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Cluster 1

© 2012 Progress Software Corporation. All rights reserved. 40

Checkpoint Phase 3 (alternate ending)

  Cluster might fill before queue emptied
  Now we have to flush remaining blocks
  Delay ! AND: fdatasync() calls take more

time than normal – more delay

Cluster 2

B E Checkpoint Timeline

cpq
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Cluster 1

Crash recovery

© 2012 Progress Software Corporation. All rights reserved. 42

complete database state – in 3 part harmony

transaction
log

(bi extents)

updated
memory

(buffer pool)

old data
on disk

(data extents)

© 2012 Progress Software Corporation. All rights reserved. 43

disaster strikes

transaction
log

(bi extents)

updated

memory
(buffer pool)

old data
on disk

(data extents)
OLD !

LOST !

GOOD !

© 2012 Progress Software Corporation. All rights reserved. 44

reconstructive surgery

transaction
log

(bi extents)

updated

memory
(buffer pool)

old data
on disk

(data extents)

© 2012 Progress Software Corporation. All rights reserved. 45

log ends at point of crash

redo phase - forward scan

before-image log records (notes)

redo starts:
one or more clusters before

end of log

crash recovery processing

© 2012 Progress Software Corporation. All rights reserved. 46

REDO

Log record, block 3,
version 2

redo a change

Version 1
of Block 3

gus
Version 2
of Block 3

Carol

new data values
new version

© 2012 Progress Software Corporation. All rights reserved. 47

REDO

Log record, block 3,
version 2

not redoing a change

Version 2
of Block 3

Carol

nothing to do
we already have
version 2 of the block

note is skipped

© 2012 Progress Software Corporation. All rights reserved. 48

complete database state - 3 parts

transaction
log

(bi extents)

updated

memory
(buffer pool)

old data
on disk

(data extents)

© 2012 Progress Software Corporation. All rights reserved. 49

undo ends:
start of oldest

active transaction

log ends at point of crash

redo phase - forward scan

undo phase - backward scan

before-image log records (notes)

redo starts:
one or more clusters before

end of log

crash recovery processing

now we are good.

everything is back the way it was before

you touched it

© 2012 Progress Software Corporation. All rights reserved. 52

That’s all we have time for
today, except

© 2012 Progress Software Corporation. All rights reserved. 53

Answers

email:

 gus@progress.com

