Consultingwerk

software architecture and development

Consultingwerk

software architecture and development

Agenda

= |ntroduction

= Domain-driven Design

= OERA and CCS

= |Implementing modules

= |Implementing domain events
= Implementing value objects
= Implementing Entities

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Consultingwerk

» Progress'Pariner
PREMIER SERVICE

= Independent IT consulting organization e

= Focusing on OpenEdge and related technology

= Located in Cologne, Germany, subsidiaries in UK and Romania
= Customers in Europe, North America, Australia and South Africa
= Vendor of developer tools and consulting services

= Specialized in GUI for .NET, Angular, OO, Software Architecture,
Application Integration
= Experts in OpenEdge Application Modernization

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

SmartComponent Library

= Developer Framework aimed to increase Developer productivity and
flexibility

= Reduce or avoid repeating tasks
= Tools (code generation and round-trip dev.)

= |ntegration with various Progress tools (OpenEdge, Telerik, Kinvery,
BPM, Corticon, DataDirect ...)

= Architecture Framework and Application Framework

= Proud on our quality; frequent releases and almost no regression
Issues

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

= Business Entity Designer <C\Work\SmartComponents4MNET\11NABL\Consultingwerk\SmartComponentsDemo\OERA\Sport... —

O

Temp Table Data-Relation o
0 @ = B A N @ S & > 7 0 werk
= E = == & = (i
*0 g =& N+ @ 3@ 7 > @ B
Pointer | Relation L.-. Relation | Generate Business Expand Collapse Batch Include Service Generate Generate | Default DataDirect nd development
* Fields apl | Entity Tester E:? T all all Generator Files Interface Viewer Window fields OpenAccess
o | Design Relation | Build Test Database Tables | Batch Ge.. | REST Adapter | Ul Components | SmartF... | Data Integr... |
Design N 7 % || Toolbox 12 x |[f|Database Fields. 1 x
o o o A | Custom sports2000.Custo... | -«
(eOrder %) eltem % sports2000 * | |[¥] Address
[3H Benefits « ||| (¥ Address2
- Fields cOrderline 2) ~| Fields %B””ﬂ % Balance
Bin City
[_ Ordernum r ltemnum @ Country] Comments
[_ CustMum =| Fields r ltemMame [ﬁc .] Contact
ustomer onta
|'_ OrderDate |'_ Ordernum |'_ Price [ﬁ Department [Country
rﬂShipDate rﬂLinenum rﬂDnhand [ﬁ Employee 3 M CreditLimit
rﬂF'romiseDate rﬂltemnum rﬂﬁdlocated Lﬁ Family [Custhlum
[_ Carrier r Price r Relrder [ﬁ Feedback [F] Discount
[_ Instructions rﬂﬂt',r r OnOrder [ﬁ Inventory Trans [EmailAddress
|'_ PO } |'_ Discount =0 rﬂCatF‘age [ﬂ Invoice [§] Fax
rﬂTerms rﬂExtendedF'rioe rﬂCatDescription [ﬂ ltem [Name
rﬂSaIesF{ep eOrderd rﬂDrderLineStatus rﬂCategorﬂ [ﬁ IEJOZEIDefHUIt i Ehon‘TCod
FgjBiTolD s JX Smarthttachments [§|Categon2 %DrderL_ % SaOIStEF{ -
)) rderLine esRep
rdireCusi rﬂShlpToID VX SmartComments rﬂSpech (& FOLine] State
[_ OrderStatus VX SmartCopiedFrom rﬂ‘."a‘eight [ﬁ PurchaseOrder [+ ||l Terms
rﬂ".'u'arehouseNum VX SmartRecordkey rﬂMinqty ;ﬁlh
[P P [[N =
< > SmartDB |T
Entity Properties oo m Field Properties o ¥ | |@Overview oo
Business Entity Descripiion Temp-Table Defaults Generate Field Descrnipton XML Calculated Field Expression e0rder
Business Entity Mame: OrderBusinessEntity * | Name: Ordernum " egudstorl_r?rer
elrderLine
Business Entity Purpose: Business Entity for Order Data Type: Exctent: 0 Case Sensitive eltem
Business Entity Package: | Consultingwerk. SmartComponents Demo. O ERA. Sports 2000 Initial: (Intial Unlenown eSalesrep
Dataset Controller Name: OrderDatasetController Label: Order Num
Dataset Controller Package: | Consultingwerk SmartComponents Demo OERA Sports 2000 Format: ZIFFFFEITY
Diataset Path: Consultingwerk\SmartCompenents Demal0ERASports 2000 w ¥ || Source Field: Order Ordernum "
Entity Properties EE;, Table Properties C(D Data-Relation j,é Index Properties £ >

© 20

...ork\SmartComponents4NET114MBL Mike Fechner Consultingwerk Internal Development / Trunk 11.4

W% §—J—@ .

Consultingwerk

software architecture and development

Framework Backend Architecture

= Strong focus on modern application architecture

= Openkdge Reference Architecture compliant

= Complies with the Common Component Specification (CCS)

= Business Entities, Data Access Objects are a key components

= Business Tasks, including support for scheduled and asynchronous
processing

= ORM Elements und Domain Driven Design
= Common Infrastructure Components, Services

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

User-Interface Flexibility

= OpenkEdge GUI for .NET

= Angular Web Applications (Telerik Kendo Ul and JSDO)
= NativeScript

= Open standard interfaces (eg. RESTful, .NET, Java)

= Support for static user interfaces, repository based user interfaces
and a combination of both

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

= |ntroduction

= Domain-driven Design

= OERA and CCS

mp
mp
mp
mp

ementing modules
ementing domain events
ementing value objects
ementing Entities

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

D] _:ED_-!;;S_E”E?;

DIASEAGAS

Sunware

X3 o

Foreword by Martin Fowler

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 9

Consultingwerk

software architecture and development

Domain-driven Design

= Term coined by Eric Evans (working as a consultant on Domain-driven
design) in his 2003 book

= Tackling complexity in the heart of software

= |ntroducing a software design methodology that allows domain-experts
(business analysts) and developers to work together

= Design of applications that require complex domain knowledge
= Software design around the core domain of an application

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 10

Consultingwerk

software architecture and development

Application design challenges

= Indirect communication between domain experts and developers
= Each focusing on its own terms
= Potentially separated by software designers and architects

Domain Expert G ——- e ——) Developer

Designer

= Domain expert may not care about database design or object
Inheritance

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 11

Consultingwerk

software architecture and development

Domain-driven Design

= A domain specific project needs to leverage multiple realms of
expertise

= Domain specific expertise (key users and business analysts)

= Design (software architecture) and Developer expertise (implementation)
= The Challenge

= Need to enable communication between the two groups

= Project organization can insulate the transmission of knowledge and
retard the ideal evolution of a project

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 12

Consultingwerk

software architecture and development

The Goal of Domain-driven design

= The Solution

= enable and simplify the communication process and establish a
methodology for making those communications more robust and efficient

= primarily accomplished by developing a ubiquitous language and single
model.

= Set design focus on application domain, not on implementation details

= e.g. don’t waste time talking about database tables and inheritance
concepts

= Process supported by agile methodologies

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 13

Consultingwerk

software architecture and development

Ubiquitous language

= “The vocabulary of that ubiquitous language includes names of
classes and prominent operations. The language includes terms to
discuss rules that have been made explicit in the model. It is
supplemented with terms from high-level organizing principles imposed
on the model. Finally, this language is enriched with the names of
patterns the team commonly applies to the domain model”

Eric Evans

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 14

Consultingwerk

software architecture and development

Developers model

= Domain-driven design principles overlapping with model-driven design
principles
= Developers are responsible for the model — “If developers don’t realize

that changing code changes the model, then their refactoring will
weaken the model rather than strengthen it.”, Eric Evans

= “Witha MODEL-DRIVEN DESIGN, a portion of the code is an
expression of the model; changing the code changes the model.
Programmers are modelers, whether anyone likes it or not. So it is
better to set up the project so that the programmers do good modeling

work.”, Eric Evans

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 15

Consultingwerk

software architecture and development

Elements of Domain model: Entities

= Entities are NOT the same as business entities in OERA/CCS
= Primary Objects of the domain model, e.g. Customer, Person

= Defined by an identity (e.g. a primary unique key, reference in DB),
identity defined by reference, not by properties (two customers with the
same name and address may still be two different customers)

= Changing properties of entity instance will not create a new entity

= May have methods implemented (ShipOrder, RenameCustomer) to
respond to domain events

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 16

Consultingwerk

software architecture and development

Elements of Domain model: Value objects

= Objects of the model that typically have no concept of identity by
reference

= Defined solely by it's property values, equality by value

= Typically implemented as immutable value objects to allow
reuse/sharing in multiple entities

= Sales amount: amount and unit of measure (10 pounds)
= Currency amount: amount and currency unit (100,- €)

= Address
= May have methods, e.g. for changing unit of measure

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 17

Consultingwerk

software architecture and development

Elements of Domain model: Aggregates

= Aggregates are combinations of Entities and value objects
= Order, Order Lines and Customer

= From the outside represented as a single entity
= Supporting transactions on a set of Entities

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 18

Consultingwerk

software architecture and development

Elements of Domain model: Services

= Functionality which implements relevant functionality of the domain
model and conceptionally belongs to a number of objects / entities will
be implemented as stand-alone services

= Services are typically state-less, reusable multiple times

= Methods reflect provided functionality

= Entities and value objects are passed in as parameters

= e.g. Price Calculation, Reservation of production capacities

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 19

Consultingwerk

software architecture and development

Elements of Domain model: Domain events

= Events that domain experts care about
= Event represented by an object (event argument)

= Something happens in the domain which may cause multiple actions
= Placing an order
= Stock quantity changed
= Renaming a customer

= Method of decoupling sub-systems, also with the goal to improve
scalability

= When crossing system boundary, might require MQ

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 20

Consultingwerk

software architecture and development

Elements of Domain model: Modules

= Modules separate the domain model into functional (not technical)
parts

= Strong inner cohesion
= |Loose coupling between modules
= Order entry module and customer maintenance module

= Modules support separation of developer team, reduce dependencies
across the whole application

= Modules support easier analysis of impact of change

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 21

Consultingwerk

software architecture and development

Agenda

= |ntroduction

= Domain-driven Design
* Implementing modules
= |Implementing domain events

= Implementing value objects
= Implementing Entities

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

OERA OpenEdge Reference Architecture

= Architecture blue print for service-oriented OpenEdge applications
= |nitially released with OpenEdge 10.0 (15+ years)
= Primary goals at the time

= AppServer enabling OpenEdge applications

= Building non-monolithic OpenEdge applications

= Supporting client flexibility

= Providing guidance for use of the ProDataset

= Providing guidance for use of OOABL (later, around OE10.1+)

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 23

Consultingwerk

software architecture and development

OERA today

Fast forward to 2015 ...

Modernization of OpenEdge applications more relevant than ever;
especially since Telerik acquisition and demands for Ul flexibility

OEAA — OpenEdge Application Architecture, redefining the OERA

OERA back on focus, foundation of the CCS (common component
specification) project as a vehicle for community and Progress driven
architecture-spec efforts

More detailed specs, rather than just programming samples
Specs that an application or framework could be certified against
CCS starting to influence “in-the-box” features

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

24

Consultingwerk

software architecture and development

Business Entities

= Business Logic Component in the Business Service Layer

= Manages a set of database tables
= Customer
= Order/OrderLine/ltem (read-only)

= CRUD actions (create, read, update, delete)
= Custom actions, verbs of the entity (PutCustomerOnCreditHold)

= Primary backend component for the JSDO
= Kendo Ul, Kendo Ul Builder
= NativeScript

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 25

The OpenEdge Application Architecture (OEAA)

RESTful,

Can be Presentation (Ul) _ .
Client Dat Enterprise Services (API
ABL GUI : m-“ \ P (AP1)

Service Interfaces Common Infrastructure

Data Service : Startup Context Data
g || Wamaer
Session T
Business Components Manage: || Authorizaion
chroniz :
-ation Managet Aut henfica fion
Connection Message
Data Access R Manage: Manager
ncnroniz
s Froery | oo
Manage! Manager

Translation
Mana ger

-j Data Source Catalog
I Manage:
Analytics Mana ger

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

SOAP,

26

Consultingwerk

software architecture and development

CCS and DDD

= CCS does not define an implementation pattern for Domain-driven
design per se
= CCS provides key building blocks for DDD implementation
= Services and Service manager
= Business Entities for Data Access and validation

= Further infrastructure components which are required for almost every
implementation — but irrelevant for the domain model. As they are not
relevant to the domain experts

= Context
= Authentication, Authorization

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 27

Consultingwerk

software architecture and development

Business Entities vs. Entities

= Business Entities are not the same as Entities
= Business Entities are stateless service objects (CCS)

= Business Entities implement data retrieval logic (e.g. calculated fields,
query optimization) and logic for storing records (e.g. validation)

= Domain-driven design relies on Data Access as well, however it's not
the main focus, as it's not relevant for communication with domain
experts

= Business Entities may be used for Data Access of Entities
= in DDD repositories are used to retrieve and store Entities

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 28

Consultingwerk

software architecture and development

Business Entities vs. Entities

= Business entities may be starting point for transforming ERD model
iInto Domain model

= Single Database table as multiple temp-tables
= Multiple Database tables as single temp-table
= Reversing parent/child relations

= |n DB Order may be child of Customer (customer’s order)
= |n Business Entity Customer may be child or Order (order’s customer)

= Business Entities may read required data to assemble value objects in
Entity

= e.g. Quantity amount and unit of measure into additional temp-table fields

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 29

Consultingwerk

software architecture and development

Practicability of module cohesion and loose coupling

= Business Entities may read data from multiple database tables

Order

|— Customer

N\

OrderLine

—

ltem

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

30

Consultingwerk

software architecture and development

Practicability of module cohesion and loose coupling

= Those database tables may conceptually fit into different modules

Order Entry Module Customer
Maintenance Module Maintenance Module

Order

|— Customer

N\

OrderLine

Item

—

ltem

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

31

Consultingwerk

software architecture and development

Practicability of module cohesion and loose coupling

= Data Access through joined queries as DATA-SOURCE for
ProDatasets

= Acceptable for read-only access to data from other modules

= |t's unlikely to implement micro-services for
each module. In ABL only a subset of eOrder:

database tables accessible FOR EACH Order, FIRST
Customer OF Order

AN

eOrderLine:
FOR EACH ltem, FIRST
ltemm OF OrderLine

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Practicability of module cohesion and loose coupling

= Loose coupling between modules would suggest retrieving data from
different modules through service calls, e.g. Fetch Order and OrderLine

first
= Retrieve customers and items from services by set of required Id’'s
= Either implemented as part of Business Entities or Repositories (DDD)

= Experience has shown however, that performance is better by an order
of magnitude to resolve this as part of data access queries, crossing
module boundaries

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 33

Consultingwerk

software architecture and development

CCS Services and the Service Container

= Domain services are part of domain model

= Domain services are state-less classes implementing domain functions
= Good fit with CCS Services, and Service Manager

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 34

Consultingwerk

software architecture and development

Service Manager

= Service Manager provides access to Services (that are not Managers)
= Factory for business services

= Calls their initialize() method

= Controls their life time

= Services typically launched at first request

= Services may be stopped (at the end of a request, after 1 hour, ...)

© 20CBCéndakipgiverk Software Services Ltd. All rights reserved. 35

Consultingwerk

software architecture and development

Ccs.Common.IServiceManager

using CCS.Common.*.

interface CCS.Common.IServiceManager inherits IManager:
method public IService getService(input poServiceClass as Progress.lLang.Class).
method public IService getService(input poServiceClass as Progress.lLang.Class,

input pcInstanceName as character).

method public void stopService(input poServiceClass as Progress.lLang.Class,
input pcInstanceName as character).

end interface.

© 20CBCéndakipgiverk Software Services Ltd. All rights reserved. 36

Consultingwerk

software architecture and development

Obtaining reference to services

DEFINE VARIABLE oService AS IOrderTotalCalculatedFieldService NO-UNDO .

oService = CAST (Ccs.Common.Application:ServiceManager:getService
(GET-CLASS (IOrderTotalCalculatedFieldService)),
IOrderTotalCalculatedFieldService) .

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 37

Consultingwerk

software architecture and development

Agenda

= |ntroduction

= Domain-driven Design

= OERA and CCS

= Implementing domain events
= Implementing value objects
= Implementing Entities

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

The OO Spaghetti Monster

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 39

Consultingwerk

software architecture and development

Start ordering your objects in packages / modules

Sales Rep

Employee

Inventory

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 40

Consultingwerk

software architecture and development

Divide and conquer — Modules as sub-systems

CRM-Module Order Processing-Module Factory/\WWarehouse-Module HR-Module

Module-Facade 4J—I— Module-Facade | mee—————jp: Module-Facade Module-Facade

Employee

t

Sales Rep

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 41

Consultingwerk

software architecture and development

Facades

‘ ‘ The facade pattern (also spelled fagade)is
a software-design pattern commonly used

with object-oriented programming. Analogous to

a facade in architecture, a facade is an object that

serves as a front-facing interface masking more

complex underlying or structural code.

A facade can improve the readability and usability
of a software library by masking interaction with
more complex components behind a single API

https://en.wikipedia.org/wiki/Facade pattern

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 42

https://en.wikipedia.org/wiki/Facade_pattern

Consultingwerk

software architecture and development

Implementing modules

= Modules should define interaction patterns from the outside to the
iInside and within the module

= Qutside should communicate through facade only

= |nside the module objects should be allowed to call directly into each
other

= Domain-driven design accepts different implementation standards
across modules, multiple agile teams agreeing on their own standards

= Modules can support modernization of application

= Legacy functionality can be hidden behind facades
* No need to modernize the whole application at once

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 43

Consultingwerk

software architecture and development

Module facades as service

= Module facades should be implemented as services

= They represent a module to the outside

= Module facades are typically loaded when the application starts
= Module facades can subscribe to domain events (later)

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 44

Consultingwerk

software architecture and development

Open/Close Principle

= Design as open for enhancement — while closed for modifications

= Design to a contract (Interface) on the sub-system level, not just a
single class

= Modules manage complexity and impact of change

= A change in functionality in one module does not require changes to
other modules

= Simplifies testing. Allows mocking of a whole sub-system

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 45

Consultingwerk

software architecture and development

Open/Close Principle

= Business Requirement: Confirming an order needs to commit
inventory/stock allocation

= |f Order Business Entity would directly call into the Inventory/Stock

Business Entity this would create a direct dependency between the two
Business Entities

= A change in the implementation of the Inventory/Stock Business Entity
might affect the Order Business Entity

= |f the Order Business Entity however, would publish a message using a
Message Publisher infrastructure, the Inventory/Stock Domain may —
or may not at it's own responsibility perform required action

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 46

Consultingwerk

software architecture and development

Agenda

= |ntroduction
= Domain-driven Design
= OERA and CCS

* |Implementing modules
= Implementing value objects
= Implementing Entities

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Implementing domain events

= Domain events are used to signal that something has happened (in the
whole domain) that may be relevant for functionality within one or
multiple modules

= Event itself more relevant than where it has happened
= Event may be raised due to action within an module

= Event may be raised due to action from outside

= Events primarily represented by message / payload

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 48

Consultingwerk

software architecture and development

PUBLISH/SUBSCRIBE vs. Message Service

We prefer to implement domain events through a Message Service
(MessagePublisher)

Listeners subscribe to message types (class, interface, OO type-
compatibility)

Publishers send message object (value object, PABLO) via Publish
method of MessagePublisher service

Single point of subscription for module fagade

Messages typically not based on Entities or Value objects as this might
cause undesired dependencies

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 49

INTERFACE Consultingwerk.Framework.IMessagePublisher:

Purpose: Publishes a Message to all subscriber that are subscribed to messag
of that type

Notes: Subscription is for the actual message type and child classes

@param poMessage The Message to publish

—— * [
METHOD PUBLIC VOID Publish (poMessage AS Progress.Lang.0Object).
[
Purpose: Subscribes an Message handler call back to the given Message type
Notes: Subscription 1is for the actual message type and child classes
@param poCallback The reference to the callback -instance
@param poType The Message type to subscribe to
—— * [

METHOD PUBLIC VOID Subscribe (poCallback AS IMessageSubscriber,
poType AS Progress.Lang.Class).

Purpose: Unsubscribes an Message handler call back to the given Message type
Notes:

@param poCallback The reference to the callback -instance

@param poType The Message type to unsubscribe froﬂ

METHOD PUBLIC VOID Unsubscribe (poCallback AS IMessageSubscriber,

© 2019 Col poType AS Progress.Lang.Class) . 50

Consultingwerk

software architecture and development

PUBLISH/SUBSCRIBE vs. Message Service

= At system boundary messages may be sent to other systems
= Via MQ
= Via AppServer call from Service Adapter (representing remote services)

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 51

Consultingwerk

software architecture and development

Demo

= Using the MessagePublisher

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 52

Consultingwerk

software architecture and development

Agenda

= [ntroduction

= Domain-driven Design
= OERA and CCS

* |Implementing modules

= Implementing domain events
* Implementing value objects

= Implementing Entities

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Implementing value object

= Value objects are typically PABLO’s (plain ABL objects), similar to
POJO'’s (plain old Java object) or POCO'’s (plain old CLR object)

= Objects that are implemented to mainly store property values
= Equality based on values
= Consider overriding the Equals() method

= May contain methods, typically for basic calculations

= Change unit of measure, change currency
= Multiply, Add, ...

= Methods are not supposed to change properties of value object, rather
return new object instance

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 54

Consultingwerk

software architecture and development

CLASS Consultingwerk.SmartComponentsDemo.DDD.Price:

DEFINE PUBLIC PROPERTY Amount AS DECIMAL NO-UNDO
GET.
PRIVATE SET.

DEFINE PUBLIC PROPERTY CurrencySymbol AS CHARACTER NO-UNDO
GET.
PRIVATE SET.

CONSTRUCTOR PUBLIC Price (pdeAmount AS DECIMAL,
pcCurrencySymbol AS CHARACTER):

ASSIGN THIS-OBJECT:Amount = pdeAmount
THIS-OBJECT:CurrencySymbol = pcCurrencySymbol .

END CONSTRUCTOR.

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 55

Consultingwerk

software architecture and development

METHOD PUBLIC Price CurrencyConversion (pcNewCurrencySymbol AS CHARACTER):
DEFINE VARIABLE oRateService AS ICurrencyRateService NO-UNDO .
oRateService = {Consultingwerk/get-service.i ICurrencyRateService} .

RETURN NEW Price (THIS-OBJECT:Amount =
oRateService:GetConversionRate (THIS-OBJECT:CurrencySymbol,
pcNewCurrencySymbol),
pcNewCurrencySymbol) .
END METHOD.

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 56

Consultingwerk

software architecture and development

= |F oPrice1:Equals (oPrice2) THEN ...

METHOD PUBLIC OVERRIDE LOGICAL Equals (oObject AS Progress.Lang.Object):
DEFINE VARIABLE oPrice AS Price NO-UNDO .

IF NOT VALID-OBJECT (oObject) THEN
RETURN FALSE .

IF NOT TYPE-OF (oObject, Price) THEN
RETURN FALSE .

oPrice = CAST (oObject, Price) .

Implement your
own equality
rules, eventually

changing currency

RETURN THIS-0BJECT :Amount = oPrice:Amount
AND THIS-OBJECT:CurrencySymbol = oPrice:CurrencySymbol.

sc END METHOD.

©2m90mm'

Consultingwerk

software architecture and development

= MESSAGE STRING (oPrice)
= MESSAGE oPrice:ToString()
= MESSAGE oPrice

METHOD PUBLIC OVERRIDE CHARACTER ToString():

RETURN SUBSTITUTE ("&1 &2":U,
THIS-O0BJECT:Amount,
THIS-0BJECT:CurrencySymbol).

END METHOD.

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 58

Consultingwerk

software architecture and development

Why immutable?

= Because the value 42 cannot be changed as well
= A value object in combination with the properties represents a single
value
= Value objects may be reused
= May improve performance

= When reusing value objects, a change to a property would affect all
references to the single value object

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 59

Consultingwerk

software architecture and development

Why immutable?

DEFINE VARIABLE oOrderLinel AS OrderlLine NO-UNDO .
DEFINE VARIABLE oOrderLine2 AS OrderlLine NO-UNDO .

oOrderLinel = NEW OrderlLine () .

// - & @
oOrderLinel:Price = NEW Price (100, "USD":U) .

oOrderLine2 = NEW OrderLine () .
// " ¥ ¥

oOrderLine2:Price = oOrderLinel:Price .

// this would change OrderLine2:Price:Amount as well
oOrderLinel:Price:Amount = 42 .

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 60

Consultingwerk

software architecture and development

Implementing Equals() via ABL Reflection

METHOD PUBLIC OVERRIDE LOGICAL Equals (poObject AS Progress.Lang.0Object):
DEFINE VARIABLE oProperties AS Progress.Reflect.Property EXTENT NO-UNDO .
DEFINE VARIABLE 1 AS INTEGER NO-UNDO .

IF NOT VALID-OBJECT (poObject) THEN
RETURN FALSE .

IF poObject = THIS-OBJECT THEN
RETURN TRUE .

IF NOT poObject:GetClass():IsA (THIS-OBJECT:GetClass()) THEN
RETURN FALSE .

oProperties = THIS-OBJECT:GetClass ():GetProperties (Progress.Reflect.Flags:Public OR Progress.Reflect.Flags:Instance

propertylLoop:
DO i = 1 TO EXTENT (oProperties):

IF NOT oProperties([i]:CanRead THEN NEXT propertyLoop .
IF oProperties[i]:DeclaringClass = GET-CLASS (Progress.Lang.Object) THEN NEXT propertylLoop .

IF oProperties[i]:Get (THIS-OBJECT) <> oProperties[i]:GET (poObject) THEN RETURN FALSE .
END.

RETURN TRUE.

€ END METHOD. 61

Consultingwerk

software architecture and development

Agenda

= |ntroduction

= Domain-driven Design

= OERA and CCS

= |Implementing modules

= |Implementing domain events
= Implementing value objects

= Implementing Entities

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Implementing Entities

= Entities represent the core implementation blocks of the Domain model

= Entities typically represent data from the database
= Yes — domain experts might not care
= But they do care that today’s order is still available tomorrow

= Equality is defined based on primary unique key values or similar

= Depending on requirements for abstraction, Entities can be built on top
of a Business Entity ProDataset schema

= Entities might implement further domain logic
= Use repositories to retrieve and save Entities to the database

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 63

Consultingwerk

software architecture and development

Entity based on ProDataset Temp-Table

oCustomer:

£, Available: logical - TableModel

&, Balance : decimal - CustomerTableModel_Generated

B, Batching: logical - TableModel

&, BufferError: logical - TableModel

£, BufferErrorString : character - TableModel

B, BufferHandle : handle - TableModel

&, BufferfModelGcMode : BufferModelGeModeEnum - TableModel
B, BufferName : character - TableModel

5, BufferRejected : logical - TableModel

B, Comments : character - CustomerTableModel_Generated

B, Contact : character - CustomerTableModel_Generated

B, CreditLimit : decimal - CustomerTableModel_Generated

B, CustMum : integer - CustomerTableModel_Generated

&, DatasetModelMode : DatasetModellodeEnum - TableModel
&, DatasetModelPerformer : DatasetModelPerformer - TableModel
B, Discount : integer - CustomerTableModel_Generated

&, EmailAddress : character - CustomerTableModel_Generated

B, Fax : character - CustomerTableModel_Generated

&, FillChildTables : character - TableModel

&, Filter : CustomerTableModelFilter - CustomerTableModel_Generated

eCustomer
Customer

—| Figlds

|_I—|Cu5tNurn
|_I—|E3‘.‘:untr~_.r
g heme

Database fields
,hidden” from Entity

as they are represented
by Value Object instead

Value Object
Column, not present gy
in database

&, InvoiceAddress : Consultingwerk.SmartComponentsDemo.DDD.Custorner.Address - CustomerTableModel_Generated

&, ModelType : TahIEM[kl'ﬁ.'pEEnum - TableModel

B, Name : character - CustomerTableModel_Generated

B, Mext-Sibling : Progress.Lang.Object - Progress.Lang. Object
&, Phone: character - CustomerTableModel_Generated

Address
|_I —|ﬁ+ddre552

i

|_I —| State
—|F'osta|Code

|_I —| Contact

|_I —| Phone

|_I —| SalesRep
|_I—|CreditLimit

|_I —| Balance

|_I —|Terrns

|_I —| Discount

|_I —| Comments

g

|_I —| Emailiddress

VX Invoicelddress ()

= Indexes
?Comments ()
?Cou ntryPost
“CustNum (PUS)
? Name
?Sales Rep

¥

Consultingwerk

software architecture and development

Demo

= Review Customer Entity Design based on ProDataset
= Review Address value object mapping
= Review Address

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 65

Consultingwerk

software architecture and development

Questions

= Email: info@consultingwerk.com
= www.consultingwerk.com 4

f

= https://www.youtube.com/consultingwerk \

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 66

	Domain-driven Design for ABL
	Agenda
	Consultingwerk
	SmartComponent Library
	Foliennummer 5
	Framework Backend Architecture
	User-Interface Flexibility
	Agenda
	Foliennummer 9
	Domain-driven Design
	Application design challenges
	Domain-driven Design
	The Goal of Domain-driven design
	Ubiquitous language
	Developers model
	Elements of Domain model: Entities
	Elements of Domain model: Value objects
	Elements of Domain model: Aggregates
	Elements of Domain model: Services
	Elements of Domain model: Domain events
	Elements of Domain model: Modules
	Agenda
	OERA OpenEdge Reference Architecture
	OERA today
	Business Entities
	The OpenEdge Application Architecture (OEAA)
	CCS and DDD
	Business Entities vs. Entities
	Business Entities vs. Entities
	Practicability of module cohesion and loose coupling
	Practicability of module cohesion and loose coupling
	Practicability of module cohesion and loose coupling
	Practicability of module cohesion and loose coupling
	CCS Services and the Service Container
	Service Manager
	Ccs.Common.IServiceManager
	Obtaining reference to services
	Agenda
	The OO Spaghetti Monster
	Start ordering your objects in packages / modules
	Divide and conquer – Modules as sub-systems
	Facades
	Implementing modules
	Module facades as service
	Open/Close Principle
	Open/Close Principle
	Agenda
	Implementing domain events
	PUBLISH/SUBSCRIBE vs. Message Service
	Foliennummer 50
	PUBLISH/SUBSCRIBE vs. Message Service
	Demo
	Agenda
	Implementing value object
	Foliennummer 55
	Foliennummer 56
	Foliennummer 57
	Foliennummer 58
	Why immutable?
	Why immutable?
	Implementing Equals() via ABL Reflection
	Agenda
	Implementing Entities
	Entity based on ProDataset Temp-Table
	Demo
	Questions

