

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk
 Independent IT consulting organization
 Focusing on OpenEdge and related technology
 Located in Cologne, Germany, subsidiaries in UK and Romania
 Customers in Europe, North America, Australia and South Africa
 Vendor of developer tools and consulting services
 Specialized in GUI for .NET, Angular, OO, Software Architecture,

Application Integration
 Experts in OpenEdge Application Modernization

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

SmartComponent Library
 Developer Framework aimed to increase Developer productivity and

flexibility
 Reduce or avoid repeating tasks
 Tools (code generation and round-trip dev.)
 Integration with various Progress tools (OpenEdge, Telerik, Kinvery,

BPM, Corticon, DataDirect …)
 Architecture Framework and Application Framework
 Proud on our quality; frequent releases and almost no regression

issues

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Framework Backend Architecture
 Strong focus on modern application architecture
 OpenEdge Reference Architecture compliant
 Complies with the Common Component Specification (CCS)
 Business Entities, Data Access Objects are a key components
 Business Tasks, including support for scheduled and asynchronous

processing
 ORM Elements und Domain Driven Design
 Common Infrastructure Components, Services

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

User-Interface Flexibility

 OpenEdge GUI for .NET
 Angular Web Applications (Telerik Kendo UI and JSDO)
 NativeScript
 Open standard interfaces (eg. RESTful, .NET, Java)
 Support for static user interfaces, repository based user interfaces

and a combination of both

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 9

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Domain-driven Design
 Term coined by Eric Evans (working as a consultant on Domain-driven

design) in his 2003 book
 Tackling complexity in the heart of software
 Introducing a software design methodology that allows domain-experts

(business analysts) and developers to work together
 Design of applications that require complex domain knowledge
 Software design around the core domain of an application

10

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Application design challenges
 Indirect communication between domain experts and developers
 Each focusing on its own terms
 Potentially separated by software designers and architects

 Domain expert may not care about database design or object
inheritance

11

Domain Expert DeveloperSoftware
Designer

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Domain-driven Design
 A domain specific project needs to leverage multiple realms of

expertise
 Domain specific expertise (key users and business analysts)
 Design (software architecture) and Developer expertise (implementation)

 The Challenge
 Need to enable communication between the two groups
 Project organization can insulate the transmission of knowledge and

retard the ideal evolution of a project

12

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

The Goal of Domain-driven design
 The Solution
 enable and simplify the communication process and establish a

methodology for making those communications more robust and efficient
 primarily accomplished by developing a ubiquitous language and single

model.
 Set design focus on application domain, not on implementation details
 e.g. don’t waste time talking about database tables and inheritance

concepts
 Process supported by agile methodologies

13

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Ubiquitous language
 “The vocabulary of that ubiquitous language includes names of

classes and prominent operations. The language includes terms to
discuss rules that have been made explicit in the model. It is
supplemented with terms from high-level organizing principles imposed
on the model. Finally, this language is enriched with the names of
patterns the team commonly applies to the domain model”

Eric Evans

14

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Developers model
 Domain-driven design principles overlapping with model-driven design

principles
 Developers are responsible for the model – “If developers don’t realize

that changing code changes the model, then their refactoring will
weaken the model rather than strengthen it.”, Eric Evans

 “With a MODEL-DRIVEN DESIGN, a portion of the code is an
expression of the model; changing the code changes the model.
Programmers are modelers, whether anyone likes it or not. So it is
better to set up the project so that the programmers do good modeling
work.”, Eric Evans

15

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Elements of Domain model: Entities

 Entities are NOT the same as business entities in OERA/CCS
 Primary Objects of the domain model, e.g. Customer, Person
 Defined by an identity (e.g. a primary unique key, reference in DB),

identity defined by reference, not by properties (two customers with the
same name and address may still be two different customers)

 Changing properties of entity instance will not create a new entity
 May have methods implemented (ShipOrder, RenameCustomer) to

respond to domain events

16

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Elements of Domain model: Value objects

 Objects of the model that typically have no concept of identity by
reference

 Defined solely by it’s property values, equality by value
 Typically implemented as immutable value objects to allow

reuse/sharing in multiple entities
 Sales amount: amount and unit of measure (10 pounds)
 Currency amount: amount and currency unit (100,- €)
 Address
 May have methods, e.g. for changing unit of measure

17

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Elements of Domain model: Aggregates

 Aggregates are combinations of Entities and value objects
 Order, Order Lines and Customer

 From the outside represented as a single entity
 Supporting transactions on a set of Entities

18

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Elements of Domain model: Services

 Functionality which implements relevant functionality of the domain
model and conceptionally belongs to a number of objects / entities will
be implemented as stand-alone services

 Services are typically state-less, reusable multiple times
 Methods reflect provided functionality
 Entities and value objects are passed in as parameters
 e.g. Price Calculation, Reservation of production capacities

19

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Elements of Domain model: Domain events

 Events that domain experts care about
 Event represented by an object (event argument)
 Something happens in the domain which may cause multiple actions
 Placing an order
 Stock quantity changed
 Renaming a customer

 Method of decoupling sub-systems, also with the goal to improve
scalability

 When crossing system boundary, might require MQ

20

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Elements of Domain model: Modules

 Modules separate the domain model into functional (not technical)
parts

 Strong inner cohesion
 Loose coupling between modules
 Order entry module and customer maintenance module
 Modules support separation of developer team, reduce dependencies

across the whole application
 Modules support easier analysis of impact of change

21

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

OERA OpenEdge Reference Architecture
 Architecture blue print for service-oriented OpenEdge applications​
 Initially released with OpenEdge 10.0 (15+ years)​
 Primary goals at the time​
 AppServer enabling OpenEdge applications​
 Building non-monolithic OpenEdge applications​
 Supporting client flexibility​
 Providing guidance for use of the ProDataset
 Providing guidance for use of OOABL (later, around OE10.1+)

23

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

OERA today
 Fast forward to 2015 …​
 Modernization of OpenEdge applications more relevant than ever;

especially since Telerik acquisition and demands for UI flexibility​
 OEAA – OpenEdge Application Architecture, redefining the OERA​
 OERA back on focus, foundation of the CCS (common component

specification) project as a vehicle for community and Progress driven
architecture-spec efforts​

 More detailed specs, rather than just programming samples​
 Specs that an application or framework could be certified against​
 CCS starting to influence “in-the-box” features

24

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Business Entities
 Business Logic Component in the Business Service Layer​
 Manages a set of database tables​
 Customer​
 Order/OrderLine/Item (read-only)​

 CRUD actions (create, read, update, delete)​
 Custom actions, verbs of the entity (PutCustomerOnCreditHold)​
 Primary backend component for the JSDO​
 Kendo UI, Kendo UI Builder​
 NativeScript

25

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

The OpenEdge Application Architecture (OEAA)

26

RESTful,
SOAP,

…

Can be
ABL GUI

That is
the

JSDO

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

CCS and DDD
 CCS does not define an implementation pattern for Domain-driven

design per se
 CCS provides key building blocks for DDD implementation
 Services and Service manager
 Business Entities for Data Access and validation
 Further infrastructure components which are required for almost every

implementation – but irrelevant for the domain model. As they are not
relevant to the domain experts
 Context
 Authentication, Authorization

27

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Business Entities vs. Entities
 Business Entities are not the same as Entities
 Business Entities are stateless service objects (CCS)
 Business Entities implement data retrieval logic (e.g. calculated fields,

query optimization) and logic for storing records (e.g. validation)
 Domain-driven design relies on Data Access as well, however it’s not

the main focus, as it’s not relevant for communication with domain
experts

 Business Entities may be used for Data Access of Entities
 in DDD repositories are used to retrieve and store Entities

28

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Business Entities vs. Entities
 Business entities may be starting point for transforming ERD model

into Domain model
 Single Database table as multiple temp-tables
 Multiple Database tables as single temp-table
 Reversing parent/child relations
 In DB Order may be child of Customer (customer’s order)
 In Business Entity Customer may be child or Order (order’s customer)

 Business Entities may read required data to assemble value objects in
Entity
 e.g. Quantity amount and unit of measure into additional temp-table fields

29

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Practicability of module cohesion and loose coupling
 Business Entities may read data from multiple database tables

30

Order

OrderLine

Customer

Item

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Practicability of module cohesion and loose coupling
 Those database tables may conceptually fit into different modules

31

Order

OrderLine

Customer

Item

Order Entry Module Customer
Maintenance Module

Item
Maintenance Module

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Practicability of module cohesion and loose coupling
 Data Access through joined queries as DATA-SOURCE for

ProDatasets
 Acceptable for read-only access to data from other modules
 It’s unlikely to implement micro-services for

each module. In ABL only a subset of
database tables accessible

32

eOrder:
FOR EACH Order, FIRST

Customer OF Order

eOrderLine:
FOR EACH Item, FIRST

Item OF OrderLine

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Practicability of module cohesion and loose coupling
 Loose coupling between modules would suggest retrieving data from

different modules through service calls, e.g. Fetch Order and OrderLine
first
 Retrieve customers and items from services by set of required Id’s
 Either implemented as part of Business Entities or Repositories (DDD)

 Experience has shown however, that performance is better by an order
of magnitude to resolve this as part of data access queries, crossing
module boundaries

33

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

CCS Services and the Service Container
 Domain services are part of domain model
 Domain services are state-less classes implementing domain functions
 Good fit with CCS Services, and Service Manager

34

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Service Manager
 Service Manager provides access to Services (that are not Managers)
 Factory for business services
 Calls their initialize() method
 Controls their life time
 Services typically launched at first request
 Services may be stopped (at the end of a request, after 1 hour, …)

CCS - A deep dive 35

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Ccs.Common.IServiceManager

CCS - A deep dive 36

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Obtaining reference to services

37

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

The OO Spaghetti Monster

OOABL / Business Entity Best Practices

39

Customer

Sales Rep

Order / Order
Line

Item

Invoice

Employee

Inventory

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Start ordering your objects in packages / modules

OOABL / Business Entity Best Practices

40

Customer

Sales Rep

Order / Order
Line

Item

Invoice

Employee

Inventory

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Divide and conquer – Modules as sub-systems

OOABL / Business Entity Best Practices

41

Customer

Sales Rep

Order / Order
Line Item

Invoice

Employee

Inventory

CRM-Module Order Processing-Module Factory/Warehouse-Module HR-Module

Module-Facade Module-Facade Module-Facade Module-Facade

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Facades

42

The facade pattern (also spelled façade) is
a software-design pattern commonly used
with object-oriented programming. Analogous to
a facade in architecture, a facade is an object that
serves as a front-facing interface masking more
complex underlying or structural code.
A facade can improve the readability and usability
of a software library by masking interaction with
more complex components behind a single API

https://en.wikipedia.org/wiki/Facade_pattern

https://en.wikipedia.org/wiki/Facade_pattern

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Implementing modules
 Modules should define interaction patterns from the outside to the

inside and within the module
 Outside should communicate through façade only
 Inside the module objects should be allowed to call directly into each

other
 Domain-driven design accepts different implementation standards

across modules, multiple agile teams agreeing on their own standards
 Modules can support modernization of application
 Legacy functionality can be hidden behind facades
 No need to modernize the whole application at once

43

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Module facades as service
 Module facades should be implemented as services
 They represent a module to the outside
 Module facades are typically loaded when the application starts
 Module facades can subscribe to domain events (later)

44

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Open/Close Principle
 Design as open for enhancement – while closed for modifications
 Design to a contract (Interface) on the sub-system level, not just a

single class
 Modules manage complexity and impact of change
 A change in functionality in one module does not require changes to

other modules
 Simplifies testing. Allows mocking of a whole sub-system

45

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Open/Close Principle
 Business Requirement: Confirming an order needs to commit

inventory/stock allocation
 If Order Business Entity would directly call into the Inventory/Stock

Business Entity this would create a direct dependency between the two
Business Entities
 A change in the implementation of the Inventory/Stock Business Entity

might affect the Order Business Entity
 If the Order Business Entity however, would publish a message using a

Message Publisher infrastructure, the Inventory/Stock Domain may –
or may not at it’s own responsibility perform required action

46

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Implementing domain events
 Domain events are used to signal that something has happened (in the

whole domain) that may be relevant for functionality within one or
multiple modules

 Event itself more relevant than where it has happened
 Event may be raised due to action within an module
 Event may be raised due to action from outside
 Events primarily represented by message / payload

48

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

PUBLISH/SUBSCRIBE vs. Message Service
 We prefer to implement domain events through a Message Service

(MessagePublisher)
 Listeners subscribe to message types (class, interface, OO type-

compatibility)
 Publishers send message object (value object, PABLO) via Publish

method of MessagePublisher service
 Single point of subscription for module façade
 Messages typically not based on Entities or Value objects as this might

cause undesired dependencies

49

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 50

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

PUBLISH/SUBSCRIBE vs. Message Service
 At system boundary messages may be sent to other systems
 Via MQ
 Via AppServer call from Service Adapter (representing remote services)

51

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Demo
 Using the MessagePublisher

52

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Implementing value object
 Value objects are typically PABLO’s (plain ABL objects), similar to

POJO’s (plain old Java object) or POCO’s (plain old CLR object)
 Objects that are implemented to mainly store property values
 Equality based on values
 Consider overriding the Equals() method
 May contain methods, typically for basic calculations
 Change unit of measure, change currency
 Multiply, Add, …
 Methods are not supposed to change properties of value object, rather

return new object instance
54

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 55

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved. 56

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

 IF oPrice1:Equals (oPrice2) THEN …

57

Implement your
own equality

rules, eventually
changing currency

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

 MESSAGE STRING (oPrice)
 MESSAGE oPrice:ToString()
 MESSAGE oPrice

58

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Why immutable?
 Because the value 42 cannot be changed as well
 A value object in combination with the properties represents a single

value
 Value objects may be reused
 May improve performance

 When reusing value objects, a change to a property would affect all
references to the single value object

59

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Why immutable?

60

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Implementing Equals() via ABL Reflection

61

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Agenda
 Introduction
 Domain-driven Design
 OERA and CCS
 Implementing modules
 Implementing domain events
 Implementing value objects
 Implementing Entities

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Implementing Entities
 Entities represent the core implementation blocks of the Domain model
 Entities typically represent data from the database
 Yes – domain experts might not care
 But they do care that today’s order is still available tomorrow

 Equality is defined based on primary unique key values or similar
 Depending on requirements for abstraction, Entities can be built on top

of a Business Entity ProDataset schema
 Entities might implement further domain logic
 Use repositories to retrieve and save Entities to the database

63

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Entity based on ProDataset Temp-Table

64

Value Object
Column, not present
in database

Database fields
„hidden“ from Entity
as they are represented
by Value Object instead

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Demo
 Review Customer Entity Design based on ProDataset
 Review Address value object mapping
 Review Address

65

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

Questions
 Email: info@consultingwerk.com
 www.consultingwerk.com
 https://www.youtube.com/consultingwerk

66

	Domain-driven Design for ABL
	Agenda
	Consultingwerk
	SmartComponent Library
	Foliennummer 5
	Framework Backend Architecture
	User-Interface Flexibility
	Agenda
	Foliennummer 9
	Domain-driven Design
	Application design challenges
	Domain-driven Design
	The Goal of Domain-driven design
	Ubiquitous language
	Developers model
	Elements of Domain model: Entities
	Elements of Domain model: Value objects
	Elements of Domain model: Aggregates
	Elements of Domain model: Services
	Elements of Domain model: Domain events
	Elements of Domain model: Modules
	Agenda
	OERA OpenEdge Reference Architecture
	OERA today
	Business Entities
	The OpenEdge Application Architecture (OEAA)
	CCS and DDD
	Business Entities vs. Entities
	Business Entities vs. Entities
	Practicability of module cohesion and loose coupling
	Practicability of module cohesion and loose coupling
	Practicability of module cohesion and loose coupling
	Practicability of module cohesion and loose coupling
	CCS Services and the Service Container
	Service Manager
	Ccs.Common.IServiceManager
	Obtaining reference to services
	Agenda
	The OO Spaghetti Monster
	Start ordering your objects in packages / modules
	Divide and conquer – Modules as sub-systems
	Facades
	Implementing modules
	Module facades as service
	Open/Close Principle
	Open/Close Principle
	Agenda
	Implementing domain events
	PUBLISH/SUBSCRIBE vs. Message Service
	Foliennummer 50
	PUBLISH/SUBSCRIBE vs. Message Service
	Demo
	Agenda
	Implementing value object
	Foliennummer 55
	Foliennummer 56
	Foliennummer 57
	Foliennummer 58
	Why immutable?
	Why immutable?
	Implementing Equals() via ABL Reflection
	Agenda
	Implementing Entities
	Entity based on ProDataset Temp-Table
	Demo
	Questions

