
Profiling and Monitoring

Your Application in PAS

for OpenEdge
Beyond The Code Series

Peter Judge

pjudge@progress.com

mailto:pjudge@progress.com

© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Available Monitoring Tools

Customer Case Studies

Establishing Patterns

Gathering Metrics via OEManager

Putting Results to Use

Available Monitoring
Tools

4© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

JMX and OEManager WebApp REST API’s

▪ Available in 11.7.4 and later

▪ Will be our primary focus today

▪ Same JSON output, just different means of access

• JMX: Command line, queries the Tomcat instance’s JAVA process

• REST: RESTful requests, queries oemanager webapp of instance

▪ Some queries work at an agent level, others at a session level

• Some data can be reported at either level (eg. all sessions for an agent)

▪ Can be automated for regular polling of metrics

• Via bat/sh script (JMX) or OEHttpClient classes (REST)

• Both options can be run any time, but may report false-positives (more later)

5© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

HealthScanner for PASOE

New in OpenEdge 12

• Snapshot of server health

• Uses RESTful API’s

• Non-intrusive (no code changes)

• Not meant for code diagnostics

• Useful for cloud applications

Server-Side Profiling

• Uses a JMX query to trigger data

collection for X requests

• Sends data to a special WebApp

on separate PAS for OE instance

• Comes with pre-defined

“oediagdb” schema for data

persistence

Customer Case Studies

7© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Overview

▪ Review 3 recent, successful engagements

▪ Names are withheld to protect the innocent

▪ Meant to examine honest mistakes

▪ Walkthrough of our processes

▪ Examine mitigation strategies

▪ Proves our troubleshooting techniques work!

8© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Customer A

✓Migrating from classic WebSpeed to PAS for OE
• Migration not 100% successful due to crashing agents

• Suspected a memory leak, but could not identify

• Occurred in WebSpeed, but happened quicker under PASOE

• Presented as random disconnections/timeouts for clients

✓Used ABLObjects and Session metrics to diagnose issue
• Found a persistent procedure handle in every request

• No cleanup of the procedure handle was performed

✓Solution: Add a FINALLY block to each affected procedure
• Removes the handle no longer needed by the code

• Memory flatlined after adjustments (>90MB to just 20MB)

Migration Errors Solved

9© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Memory Usage Over 5 Days (Original Code)

Both memory and objects continued a steady climb.

10© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Memory Usage Over 4 Days (After Code Fix)

Objects maintained at 11, memory reached a steady state.

11© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

✓Migrated from Classic AppServer to PAS for OE
• Reported a potential memory leak in their PAS for OE application

• Used the ABLObjects report to identify a growing count of artifacts

• *Specifically used API’s from 11.7.3 (some URL’s changed in 11.7.4)

✓Found numerous items for correction
• Passing of temp-tables without by-reference

• Didn’t clean up object instances after use

• Didn’t release record buffers after creation

✓All but 1 elusive item remained…
• Tracked to a table handle which was no longer needed

• Fixing just that remaining item was a huge difference!

Customer B

Memory Issues Solved

12© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Before/After Comparison of ABLObjects

Session1 Session2 Session3 Session1 Session2 Session3

*Remaining objects were identified as integral to operation.

13© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Customer C

✓Migrated from Classic AppServer to PAS for OE

✓Used distributed / load-balanced AWS environment

✓Isolated an inconsistency in client response times

✓Adjusted numerous items for improved performance

• Certain EC2 classes have better networking capabilities

• Increased –Mm to maximum value: noticeable improvement

• Found that Availability Zone (AZ) latency between DB and

PAS for OE server instances impacted performance

✓Select API requests still had an unfound inconsistency

Performance Issues Solved

14© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Customer C: When the Problem isn’t the Code

▪ Used “Requests” metric to compare ABL execution time

• Discovered ABL execution time was consistent

• Tomcat access logs were similarly consistent

• Available PAS for OE connections were under-utilized

▪ Customer was using some ASP.Net code as middleware

• Found overhead in IIS logs when handling requests!

▪ .Net Framework has a default “threads per processor core” value

• Causing a bottleneck for request processing at the web server

• Changing to the maximum value improved requests dramatically

• Throughput from IIS properly saturated the PAS for OE connections

Establishing Patterns

16© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Repeat, Repeat, Repeat

✓You need a scripted test for consistency (JMeter, SoapUI, etc.)

✓Stress/use the system in a realistic way to reproduce a problem

✓Process as a baseline for measuring change

✓Isolate and control the variables involved

✓Change, measure, evaluate, repeat

17© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Customer Processes

▪ Worked with customers to craft a path through their application

• Basic, Expert, and Admin scenarios

▪ Ran tests for extended periods to gather metrics

• Some tests ran for a week to get necessary data

▪ Processed the metrics to visualize results

▪ Identified potential code for further review

▪ Modified, compiled, and deployed changes

▪ Re-ran tests using previous test pattern(s)

▪ You can do all this, too!

Gathering Metrics via
OEManager REST API

19© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Useful Metrics with a Purpose

▪ Agents: Report of all agents for an ABL Application name

▪ Sessions: Provides information about each Agent session

• Shows the session #, memory, current state, start time, and end time

▪ ABLObjects: objects, buffers, procedures, & handles in memory

• Similar to https://knowledgebase.progress.com/articles/Article/P124514

▪ Requests: Track internal ABL requests vs. Tomcat access log

• Reveals inconsistencies between overall request vs. code execution time

• Shows end-to-end request chain from web to ABL runtime (OE12+)

https://knowledgebase.progress.com/articles/Article/P124514

20© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Why a Preference for REST API?

▪ No command-line or administrator access necessary

• JMX only available when PASOE is started via “tcman”

▪ Must first create a query file on disk with the correct parameter values

• {"O":"PASOE:type=OEManager, name=AgentManager","M":["getAgents", "SportsPASOE"]}

• Compare to GET /oemanager/applications/SportsPASOE/agents

▪ No need for OS-COMMAND() calls + reading of output files

• Output already returned as JSON format for parsing

• oejmx.bat -R -Q jmxqueries/agents.qry → JSON File

▪ Can be run at request boundaries within an application

• Translation: allows you to gather metrics after any FINALLY blocks

• For ABLObjects, avoids false-positives due to legitimate items in-flight

21© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Additional REST API Benefits

▪ Easily accessed programmatically via ABL code (OEHttpClient)

• During session startup/shutdown or activate/deactivate event pairs

▪ Typically present in a development PAS for OE instance

• Included with “-f ” option to “pasman create”

• For Production: tcman deploy $DLC/servers/pasoe/extras/oemanager.war

▪ 11.7.4+ offers an OpenAPI (Swagger) interface for easy integration

• Evaluate code during your PAS for OE migration, before moving to OE12

• Can run at any time (minding the caveat about request boundaries)

• Disabled by default for security, but we’ll walk through the process

22© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

OpenAPI (Swagger) Interface

23© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Enabling OpenAPI (Swagger)

▪ Navigate to CATALINA_BASE/webapps/oemanager/WEB-INF/

▪ Open oemgrSecurity-container.xml in a text editor

▪ Edit the following section as described in the comments:
<!-- Access to SwaggerUI. Disabled by default, user has to uncomment the below line to enable it -->

<intercept-url pattern="/doc/**" method="GET" access="hasAnyRole('ROLE_PSCAdmin','ROLE_PSCOper','ROLE_PSCUser')"/>

▪ Save and restart your PASOE instance (since we altered security)

▪ Visit http[s]://<hostname>:<port>/oemanager/ (note trailing slash)

• Default username/password is tomcat/tomcat

• The “container” security inherits from Tomcat itself

24© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Using the OpenAPI (Swagger) Interface

▪ Click on an item to expand it, then click the “Try it out” button

▪ Fill in the parameter fields available, click ”Execute”

• Note: the default ABL Application name is the PASOE instance name

▪ View the “Responses” area for output (next slide)

25© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Obtaining Agent Information

▪ Most API’s require an AgentID available from the following URL:

• GET /oemanager/application/<abl_app_name>/agents

▪ Response should contain “agents” array with “agentId” values

26© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Obtaining Session Information

▪ Session information requires an ABL App Name and AgentID

• GET /oemanager/applications/<abl_app_name>/agents/<agent_id>/sessions

▪ Results include a “SessionMemory” property, in bytes

27© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Obtaining the ABLObjects Report

▪ Must first enable tracking before running code, obtaining report:
• PUT {“enable”:”true”} to /oemanager/applications/<abl_app_name/agents/<agent_id>/ABLObjects/status

• GET /oemanager/applications/<abl_app_name/agents/<agent_id>/ABLObjects

▪ Regardless of URL, the JSON content should be consistent

• JSON Path: result.ABLOutput.ABLObjects[{obj1} , … , {objN}]

• Each child object contains an “AgentSessionId” (number) and “Objects” array
{

"result": {

"ABLOutput": {

"ABLObjects": [{

"AgentSessionId": <session_id>,

"Objects": […]

} …

28© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Obtaining Request Information

▪ Must run the endpoint API first to enable, then again to report

• GET /oemanager/applications/<abl_app_name>/agents/<agent_id>/requests

▪ Returns the last 1000 requests to an ABL Application name

• Currently limit imposed for performance which may or may not be changed

▪ Result contains “AgentRequest” array of JSON objects containing:

• Request Procedure Name (could also be Class Method)

• Session ID

• Start Time and End Time

• Sequential Request Number

• For OE12: Client ID matching the enhanced Tomcat access log output

Putting Results to Use

30© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Regarding the ABL Objects

▪ Review output and investigate any often-repeated items

• Items not properly removed should noticeably compound over time

▪ Add FINALLY blocks to help with clean up

• Remember: These also run in the event of an error!

▪ Improve your code by assisting the Garbage Collection process

• If you define it, delete it

• If you create it, release it

• If you open it, close it

• Pass by-reference when/if possible

• “Try it until it doesn’t work”

31© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Regarding Session Memory

▪ Determine if session memory keeps rising or reaches a plateau

▪ Identify an average high-water mark for your sessions

• This is very application-specific and will not be a one-size value

▪ OOM Check: grep -i 'killed process' /var/log/messages

▪ Size your application appropriately for OS resources

• Calculate the Agent memory (Avg. Session Bytes x Connections)

• Calculate total ABL Application memory (Agent memory x Max Agents)

• Get total PASOE Instance memory from sum of all ABL Applications

• Calculate total expected memory from sum of all PASOE Instances

• Add expected OS and operational memory, plus growth overhead

32© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Regarding Request Information

▪ Much easier to parse in OE12 thanks to enhanced logging

• Tomcat access log already contains timestamp with milliseconds

• Tomcat access log already contains a unique “OE Request ID”

• Request metric contains a ClientID (same as OE Request ID)

• Provides a 1:1 match between the web server and ABL runtime

▪ Compare to Tomcat access

• May need to add a %D token to the log pattern (elapsed time in ms)

▪ Obtain elapsed ABL execution from End Time – Start Time (ms)

▪ Compare elapsed times for unexpected overhead

• Overhead (ms) = Tomcat elapsed time - ABL elapsed time

33© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Lessons Learned

▪ Small Leaks + Time = Big Problems

▪ Memory consumption matters for PASOE stability

▪ Beware: OOM Killer (Linux) and Swap Disk (Windows)

▪ Understand trends to predict future growth

▪ Prevent overcommitting of system resources

▪ Isolate application layers and their true behavior

▪ Tests best done in non-production environments

34© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

What’s Next?

▪ What about automating metrics collection?

▪ See the automation guide here:

• “Automation with Spark Diagnostics” at https://bit.ly/2IxrScN

▪ Once collection is automated, just let it go!

• Run on a schedule (explicit start/end dates and times)

• Report at defined interval (eg. every hour or every 2 days)

▪ Parse results easily by reading output files on disk

• Create visualization (charts/graphs) from data points

• Review content for suspicious data

https://bit.ly/2IxrScN

35© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Questions?

pjudge@progress.com

mailto:pjudge@progress.com

