
Implementing a Custom

REST API with ABL

WebHandler

Chris Riddell

Principal Architect, Portfolio+ Inc

Monday 7 October 2019

David Atkins

Principal Solutions Architect, Progress

2

Agenda

• Architecture evolution

• Why Progress AppServer for OpenEdge?

• OpenEdge REST API best practices

• Portfolio+’s Implementation Experiences…

• Wrap up Q & A

3
© 2017 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2017 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Remember this?

Business Application [ABL]

Presentation (UI) Enterprise Services (API)

Develop &
Test (ALM)

Domain Services

Business Components

Data Access

Data Sources

Workflow Rules Entities

Common Infrastructure

Service Interfaces

Social

Deploy &
Manage

4

Reference Architecture for Cloud Deployment

5

Application Architecture

6

Secure: Spring security framework included

Scalability: Uses far less system resources

Simplified: Multi-session multi-mode Agent

Improved administration: Many tool options

Flexibility: REST Service Interface

Deployment flexibility: Supports containerization

Future: Go forward AppServer for OpenEdge

Why PAS for OpenEdge?

7

REST Use Cases

Modern Web Interfaces Mobile Apps Emerging Technologies

Application Integration Modularization through
Microservices

Self-Service BI
and Analytics

8

OpenEdge REST Service Interface Options
A REST Service Interface:

• Converts REST Request to ABL data

• Routes that ABL data to appropriate ABL business logic

• Converts ABL data to REST Response, & sets HTTP Status Code

Recommended PAS for OpenEdge REST Service Interface options:

• ‘No/low-code’ approach for prescriptive REST API
• Data Object Services auto-map standard URL schema to Business Entities classes
• Enables use of JavaScript Data Object library – ‘client-side ProDataSet’ with tooling integration

• ABL-coded approach for custom REST API
• Web Handler – maximum flexibility and transparency in REST-ABL mapping

• JSON-configured approach for custom REST API
• DataObjectHandler – flexible no-code REST-ABL mapping

9

DIY WebHandler Interaction

UI

read_talk.p
create_talk.p

TalksWebHandler.cls

SI

BL

GET <webapp>/web/talks

handler1=OpenEdge.Web.DataObject.TalksWebHandler: /talks/ (from openedge.properties)

HTTP to ABL

(triggers URL-WebHandler lookup in openedge.properties)

10

11

12

13http://pugchallenge.org/downloads2017/284_web_handlers_deep_dive.pdf

http://pugchallenge.org/downloads2017/284_web_handlers_deep_dive.pdf

14

Chris Riddell

S o f t w a r e A r c h i t e c t

C h r i s . R i d d e l l @ p o r t f o l i o p l u s . c o m

Developer and software architect with 10+
years of experience in OpenEdge.
Principal architect for +Open Banking

15

• Banking and financial services software
products

• Publicly held company – Volaris Group under
Constellation Software

• Head Quarters in Canada – Stouffville, ON
• Office in Dublin
• Ireland operations since 2007
• 6 of the 7 largest financial institutions in

Canada

Portfolio+ Inc.

16

Implementing Custom REST API with ABL WebHandler

1. Background

2. Architecture

3. Development

4. Documentation

5. CI/CD

6. Project Conclusions and Future

Agenda

17

Background

18

Where we Started

• Portfolio Plus is a monolithic, fat client application
• Built using dated ABL GUI components with tight database integration

• Feature rich, Digital Core Banking as a Platform Solution

• Mission critical application for clients
• 30 years of complex business functions

B a c k g r o u n d

19

Primary Goals

• Create Open Banking capability
• Build an industry standard, RESTful API

• Enable UI/UX modernization to meet customer expectations

• Agile Development techniques
• Enable automated testing and deployment (CI/CD)

• Speed to market

• Thin client model to improve performance
• One HTTP request to retrieve data

• Compare with many DB requests in the fat client model

• Improved network usage

B a c k g r o u n d

20

Future Strategy

• Rapidly create new applications

• Empower clients

• Take advantage of new technologies (chatbots, etc.)

• Build an API first development culture
• Create a larger collection of reusable components

• Components that are very specific and easy to test

B a c k g r o u n d

21

Architecture

22

High Level Architecture

• Multi layered API

• B2B API provides access to core data and functions

• Application APIs provide subsets and authorization

and never touch the database

• Add new APIs at the top level without necessarily

making any additions to the B2B layer

A r c h i t e c t u r e

23

Security

• OAuth2.0
• Available out of the box with PASOE and spring security

• Client Credentials flow for access to B2B API

• Resource Owner Password flow for access to application APIs

• Authentication performed through a separate web application
• Typically deployed in the same PASOE instance as the API

• Could be deployed separately, or centralized, in the future

• Each application API performs specific authorization

A r c h i t e c t u r e

24

Security – OAuth2 Tokens in API Requests

A r c h i t e c t u r e

Consumer API B2B API

Authentication
Web App

API Web App

Request an Oauth2 Token
authorization: Basic MTIzNDU2Nzg5OnBhc3N3b3JkValidate and return OAuth2 Token
{ "access_token": <JSON Web Token>, "token_type": "bearer”, “expires_in”: 600 }

Make API Request including bearer token
GET http[s]://{host}/web/obp/Retail/Accounts/{AccountNumber}
--header authorization: Bearer <JSON Web Token>

Validate token and return API Response
{ “AccountNumber”: 1234, “Balance”: 1000, … }

Authentication
Web App

API Web App

25

Development

26

ABL WebHandler - Why

• Greater control over URL design with minimal configuration
• Allowed us to use custom path parameters

• Ex. /Retail/Accounts

/Retail/Accounts/{AccountNumber}

• Entire HTTP request pre-parsed
• Request components available to the WebHandler as an IWebRequest object

• Also considered DataObjectHandler
• Required more configuration

• Better suited to existing, re-usable modules (maybe migrating from Classic
AppServer)

D e v e l o p m e n t

27

ABL WebHandler – What’s in it?

• Base web handler inherited by API specific web handlers
• Perform common logging, database connections, etc.

• Can re-use complex, business process procedures

• Defined OOABL patterns for any non-reusable features
• Created concise, unit testable classes and methods

Challenge

• Legacy logic often includes shared variables and temp-tables
• Not compatible with our OOABL approach

• Wrapper procedures define those constructs and run legacy procedures

D e v e l o p m e n t

28

ABL WebHandler - ProDataSets

• Data access architecture built around ProDataSets

• Perform business validations on temp-tables

• Database transactions are short and rarely fail

• All database queries are dynamic

Challenge

• Mindset – need to think about data access differently
• Dynamic queries were new for many developers

• Retrieving all data up front and committing it at the end (Stateless)

D e v e l o p m e n t

29

ABL WebHandler – Configuration in Development

• Must configure each relative URL and its WebHandler
• Listed in openedge.properties configuration file

• Ordering is important
• PASOE will run the first handler that matches the relative URL

Challenge

• Initially managed web handler configuration manually
• Developer updates to openedge.properties, delta file

• Ordering of web handlers is important - becomes unmanageable

D e v e l o p m e n t

30

ABL WebHandler: Configuration Example

[instance.webapp.WEB]

adapterEnabled=1

defaultHandler=com.sit.obp.web.OBPDefaultWebHandler

handler1=web.ClientWebHandler:/Clients/{ClientNumber}

handler2=web.ClientWebHandler:/Clients

handler3=web.RetailHandler:/Retail/Accounts/{AccountNumber}

handler4=web.RetailHandler:/Retail/Accounts

handler5=web.TransactionHandler:/Retail/Accounts/{AccountNumber}/Txn

D e v e l o p m e n t

31

ABL WebHandler: Configuration Example

Request sent to:

http://hostname:port/app/web/Retail/Accounts/123456/Txn

D e v e l o p m e n t

32

ABL WebHandler: Configuration Example

Request sent to:

http://hostname:port/app/web/Retail/Accounts/123456/Txn

app – web application name

web – PASOE transport

Retail/Accounts/123456/Txn – relative URL

D e v e l o p m e n t

33

ABL WebHandler: Configuration Example

Request sent to:

http://hostname:port/app/web/Retail/Accounts/123456/Txn

Chosen WebHandler:

web.RetailHandler

D e v e l o p m e n t

34

ABL WebHandler: Configuration Example

Request sent to:

http://hostname:port/app/web/Retail/Accounts/123456/Txn

Chosen WebHandler:

web.RetailHandler

Why:

handler3=web.RetailHandler:/Retail/Accounts/{AccountNumber}

handler5=web.TransactionHandler:/Retail/Accounts/{AccountNumber}/Txn
D e v e l o p m e n t

35

ABL WebHandler: Configuration Example

[instance.webapp.WEB]

adapterEnabled=1

defaultHandler=com.sit.obp.web.OBPDefaultWebHandler

handler1=web.ClientWebHandler:/Clients/{ClientNumber}

handler2=web.ClientWebHandler:/Clients

handler3=web.TransactionHandler:/Retail/Accounts/{AccountNumber}/Txn

handler4=web.RetailHandler:/Retail/Accounts/{AccountNumber}

handler5=web.RetailHandler:/Retail/Accounts

D e v e l o p m e n t

36

ABL WebHandler – Configuration Solution

• Manage PASOE configuration through Progress Developer Studio

• Build .war file using Progress’ Ant task
• https://documentation.progress.com/output/ua/OpenEdge_latest/index.html#

page/pdsoe/packaging-an-abl-web-app-project.html

• Easily add ABL Services
• Naming convention to guarantee sorting

• Automated build orders the services, alphabetically by service name
<system>-<sequence>-<service name>

Ex. Client-0000-ClientService

Retail-0000-TransactionService

Retail-0001-AccountService

D e v e l o p m e n t

https://documentation.progress.com/output/ua/OpenEdge_latest/index.html#page/pdsoe/packaging-an-abl-web-app-project.html

37

Documentation

38

API Documentation

•OpenAPI 3.0 specification
• https://swagger.io/docs/specification/about/

•Swagger Editor for internal development and testing

• Industry standard specification

•Allowed 3rd party collaboration
• Partnership with Servoy - +Banking and +Mobile applications

• Progress chatbot for loan applications

Challenge

• Created documentation during development (too late!)

D o c u m e n t a t i o n

https://swagger.io/docs/specification/about/

39

Swagger Example

D o c u m e n t a t i o n

40

ReDoc Example

D o c u m e n t a t i o n

41

Continuous Integration & Delivery

42

Tools Overview

• Source control/indexing:

• Artifact repository:

• Linting and code coverage:

• Build configuration:

• Automated builds:

• Ticketing/bug tracking :

• Code reviews:

• Documentation:

Apache Subversion, Atlassian Fisheye

Apache Archiva

SonarQube (with Riverside ABL rules)

Apache Maven

Jenkins

Atlassian JIRA

Atlassian Crucible

Atlassian Confluence

https://subversion.apache.org/
http://atlassian.com/software/fisheye
http://archiva.apache.org/
https://www.sonarqube.org/
http://riverside-software.fr/
https://maven.apache.org/
https://jenkins.io/
https://www.atlassian.com/software/jira
http://www.atlassian.com/software/crucible
http://www.atlassian.com/software/confluence

43

What We Do

• Automate compiles (on Jenkins) every commit (SVN)
• Uses Maven dependency management

• Push deployable software to an artifact repository (Archiva)
• Track released versions (which can be included as Maven dependencies)

• Jenkins pipelines capable of provisioning VMs
• Deploy legacy and web, API applications as well as databases

• In house scripts tested regularly and reusable for client deployments

• TIP: With pasman/tcman use pasoestart instead of stop and start

C I / C D

https://documentation.progress.com/output/ua/OpenEdge_latest/index.html#page/pasoe-admin/pasoestart.html

44

Project Conclusions & Future

45

Where We Are Now

• ~300 API endpoints created
• Running ~1000 unit tests

• +Banking and +Mobile applications
• Fully utilizing the REST API

• Some UI components of the legacy application now call the REST API

C o n c l u s i o n

46

Future

• Expand our application API layer
• Expand the API’s authorization capabilities

• Implement API documentation up front to enable Test Driven Development

• Adopt OEAG for authentication and SSO

• Improve continuous deployment with Docker
• PASOE applications in all environments

• Database containers for short lived, internal environments

• Expanding our market to clients to build their own UI
• Startups… not just financial institutions

• Providing a banking engine, not just a GUI application

C o n c l u s i o n

472 0 1 9 © P o r t f o l i o + I n c .

Thank You!

You might also like to attend

376: “REST API Documentation using Swagger”
Martyn Kemp, Consultingwerk – 13:00 Monday

215: “Doing More With the Spring Framework in Progress Application Server for OpenEdge”
Chad Thomson, Progress Software, Inc. – 09:45 Tuesday

224: “OpenApi (Swagger) to ABL”
Martyn Kemp, Consultingwerk – 09:45Tuesday

340: “Patterns for Migrating Fat Client GUI Applications to N-Tier, Web Applications”
Mike Fechner, Consultingwerk – 11:00 Tuesday

David Atkins

datkins@progress.com

Chris Riddell

Chris.Riddell@portfolioplus.com

