
Index Utilities Tips and
Tricks
Paul Koufalis – White Star Software

James Palmer – Consultingwerk

Paul Koufalis
 Progress DBA and UNIX admin since 1994

 Expert OpenEdge technical consulting

 Wide range of experience

 Small 10 person offices to 3500+ concurrent users

 AIX, HPUX, Linux, Windows…if Progress runs on it,
I’ve worked on it

 Father to these two monkeys

 pk@wss.com

Übersicht

© 2019 Consultingwerk Software Services Ltd. All rights reserved.

James Palmer
▪ Senior Consultant / Database Administrator
▪ Working in the OpenEdge world since 2003
▪ Varied experience across a variety of

industries and applications as a developer
and more recently as a DBA

▪ Chairman of the UK & Ireland PUG,
Director for EMEA PUG Challenge Ltd. and
speaker on a variety of topics both at PUG
Challenge events, and smaller conferences
in the UK and USA

3

Agenda

4

▪ Introduction
▪ Online idxactivate
▪ Idxbuild
▪ Fix it!

Assumptions / Prerequisites

5

▪ OpenEdge 11.7 or 12
▪ 90% will work in 10.2B08

▪ Type II Storage Areas
▪ Tables, indexes, lobs in distinct separate areas

What is an index?

6

▪ Public Service Announcement for anyone too shy to ask
▪ Simplest form: A tree of all the rows in a table

Start at the root and follow a path of branches
until you get to a leaf (i.e. a row in the DB)

Indexes are used for

7

▪ Quick access to a row or set of rows
▪ To retrieve rows in a specific order
▪ To enforce uniqueness of columns
▪ To locate rows that contain a word or a phrase

Records have a rowid

8

▪ Unique 64-bit identifier for a row in a table
▪ PartitionId, Blocknumber in area, Row in Block

▪ Encoding of the “physical” address
▪ Used to locate a record quickly

▪ Constant for life of record
▪ Until you delete it or change partition key

▪ The “leaf” contains the ROWID

Index Structure – Simple B-Tree

12

Indexes Need TLC

13

 Reading an index does no harm

 Writing to an index may lead to:
 Empty space in blocks: most common issue
 Increased Levels: The path from root to branch

(…to branch to branch…) to leaf gets longer and
longer
 Deleted Row Placeholders

 Can’t delete unique leaf until tx commits
 Corruption

 I know I know. Impossible.

What maintenance utilities are there?

14

▪ idxactivate
▪ idxanalys
▪ idxbuild
▪ idxcheck
▪ idxcompact
▪ idxdeactivate
▪ idxfix
▪ idxmove

idxactivate

15

▪ Uses an existing active index to activate another
▪ Online or offline
▪ No need to deactivate AI and Replication !!

▪ More later

idxanalys

16

INDEX BLOCK SUMMARY FOR AREA “Package Index" : 10

Table Index Fields Levels Blocks Size % Util Factor
PUB.PACKAGE
I-ACCES 15 6 4 75208 171.3M 58.7 1.8
I-SERIES 16 3 4 200752 505.5M 64.9 1.7
I-PKG 14 1 3 45383 173.1M 98.3 1.0
I-RECEIVED 19 3 3 34716 80.0M 59.4 1.8
I-DELIVERED 20 4 3 17440 36.3M 53.7 1.9
I-WAREHOUSE 21 5 4 54106 112.6M 53.7 1.9
I-WHS-ZIP 22 4 3 11129 21.2M 49.1 2.0
I-ZAP 23 3 3 9309 18.8M 52.0 2.0

Totals: 521342 1.3G 63.5 1.7

idxbuild

17

▪ Deletes indexes and rebuilds them from scratch
▪ Many reasons to do this

▪ “New” options and performance improvements since
10.2B08
▪ People still don’t know about them

▪ More later

idxcheck

18

▪ Checks indexes for corruption
▪ Helps diagnose problems
▪ Online or offline
▪ Errors and warnings to screen and logfile

idxcompact

19

▪ Compacts indexes
▪ Used when space utilization (idxanalys) is low
▪ Reduces blocks in B-Tree, maybe even B-Tree levels

▪ Less blocks and levels => faster queries
▪ Online or offline
▪ Clears deleted index placeholders
▪ Can be run in parallel for different partitions of the same

index
▪ Users can work as normal
▪ No record or table locks
▪ No other administration tools on the index though

idxfix

21

▪ Checks for index corruption
▪ Checks for missing or incorrect index for a record
▪ Repairs corrupted indexes
▪ Online or Offline
▪ Will enable verified indexes when run offline
▪ Has several sub options

idxfix

22

1. Scan records for missing index entries with index block
validation.

2. Scan indexes for invalid index entries.
3. Both 1 and 2 above.
4. Cross-reference check of multiple indexes for a table.
5. Build indexes from existing indexes.
6. Delete one record and its index entries.
8. Scan records for missing index entries.

▪ SPOT THE INTENTIONAL “MISTAKE”
▪ 7 Used to be quit, until option 8 came along

idxmove

23

▪ Move an index from one data area to another
▪ Online or offline
▪ Table is locked with a share lock while this happens
▪ Run at a quiet time in the system to avoid problems for

users

dbrpr

24

Undocumented and unsupported

Could cause serious damage - caution

 Progress recommend contacting Tech Support before
using the tool

 There are some reporting options that are safe so
long as you
 Turn off AI
 Truncate BI

Option 2 to test one or more indexes

Agenda

25

▪ Introduction
▪ Online idxactivate
▪ Idxbuild
▪ Fix it!

[Online] Index Activate

26

▪ “Officially” you can activate an index online and use it
▪ “Unofficially”, it’s a little more complicated …

▪ Who already uses this functionality?

[Online] Index Activate

27

▪ Uses an existing active index to activate another
▪ Primary index by default

▪ Preferable to use a unique index otherwise will lead to extra
locking

▪ Can specify transaction size (num records)
▪ Can be used on specific tenants or partitions if relevant

Benefits

28

▪ Can run multiple online idxactivate concurrently
▪ Do not need to shut down the database
▪ Do not need to deactivate after imaging
▪ Do not need to baseline OE Replication

▪ For customers with large databases and distant DR sites, the
OE Repl benefit is HUGE

Inconveniences

29

▪ Sloooooooowwwwwwwww
▪ Lots of AI/BI activity
▪ Users need to reload their schema cache

▪ See –usernotifytime
▪ No CUD activity during idxactivate
▪ Things get wonky if there is no active primary index
▪ Some lightly documented GOTCHAs

▪ That’s why you’re here, right?

Basic Requirements

30

▪ OpenEdge 10.2B08, 11.2.1, 11.3.0 or 12.x
▪ Before that (10.1A+) there were significant bugs

▪ An active primary index
▪ Again – there are scenarios where this is not officially

required
▪ An inactive, non-primary index to activate

Step 1 – Create DF

31

▪ Create a DF with the new index
▪ Must be INACTIVE

ADD INDEX "City" ON "Customer"
AREA "Customer Index Area"
INACTIVE
INDEX-FIELD "City" ASCENDING ABBREVIATED

Step 2 – Load the DF

32

▪ Option 1: Data Dictionary
▪ Optionally select “Add new objects on-line” if other users

connected

Step 2 – Alternate Option

33

▪ run prodict/load_df.p

/* CSV params are "DF file,force commit,OSC"
* For Online Schema Change (OSC), entry must be
* "" or "NEW OBJECTS"

*/
run prodict/load_df.p (dfFile + ",NO,NEW OBJECTS").

[Optional] Step 3 – Pre-build the index keys

34

▪ Use proutil idxfix – option 3 to pre-build the index keys

CAREFUL: Index is not yet active!

35

Step 4 – Activate the index

36

_proutil dbName –C idxactivate customer.city

▪ Optional Params:
▪ recs n: number of records to process per tx. Defaut 100.
▪ refresh t: frequency to update display of clients blocking

activate
▪ Have earlier schema (see –usernotifytime)
▪ Default 60. Max 300.

GOTCHA #1: User schema time stamp

37

User Schema Time Stamp

38

▪ As of 11.7, use –usernotifytime DB startup parameter
▪ How often client polls for notification of schema change
▪ Default 0 (no polling) max 86,400 (24h)

▪ Try again with –usernotifytime 30

User Schema Time Stamp

39

▪ A few seconds after the initial “y” response, the index was
activated

Pause here, then
automatic activation

Still Not Perfect

40

▪ If you script this, need to detect “Do you wish to continue
waiting…” and respond “y”
▪ But watch out that you don’t loop indefinitely

▪ In 11.7.3, I have seen –usernotifytime not be effective
▪ I.e. the “Do you wish to continue waiting…” looped much

longer than the –usernotifytime
▪ Must be a bug

GOTCHA #2: Detecting inactive indexes

41

▪ Do not use _index._active:
▪ “Add new objects online” DF load sets this to yes

▪ Use _storageobject._object-state

for each _storageobject no-lock where _object-type = 2
and _object-state = 1:

find _index where _idx-num = _object-number no-lock no-error.
if avail _index then find _file of _index no-lock no-error.

/* do stuff */

end.

GOTCHA #3: Primary indexes

42

▪ Cannot idxactivate a primary index
▪ Two options for primary indexes:

1. Load the DF without the “INACTIVE” property
▪ Index will be built immediately

2. Use proutil db –C idxbuild
▪ Requires disable AI and replication

GOTCHA #4: AI/BI Activity

43

▪ Be prepared for a potential increase in AI and BI activity

▪ Disk space utilization
▪ OE Replication vs. PICA buffers
▪ System load

GOTCHA #5: New r-code

44

▪ Index is available for compile BEFORE idxactivate
▪ By design

▪ Running source code may cause the still inactive index to be
selected
▪ Idem for building r-code

▪ Option: use –noinactiveindex client startup parameter
▪ Compiler ignores inactive indexes

▪ When do you deploy new r-code?
▪ After idxactivate completes

Online Index Activate Results

My original idea was to use the same DB for Lab #1
and lab #2 (index rebuild)

One table, 18.5M records

 Idxfix phase took 5+ hours to add keys

Db.lg grew to 3.2 GB (one line per record!)

Agenda

47

▪ Introduction
▪ Online idxactivate
▪ Idxbuild
▪ Fix it!

Index Rebuild

48

▪ Offline only
▪ Destructive: it wipes and deactivates indexes before

rebuilding them

 Block level operation not row level operation
▪ => cannot use AI => deactivate AI and OE Replication
▪ This is a big deal for large databases

Index Rebuild: three phases

49

1. Scan data areas
▪ Hugely disk I/O bound with CPU for sort
▪ Build keys and insert into temp buffers
▪ Sort full buffers

2. Sort and merge
▪ Hopefully all in memory: all CPU, no disk

3. Create index b-tree on disk
▪ Read sorted list and insert keys into new index
▪ Hugely disk I/O bound

FAST Index Rebuild

50

▪ Make each phase faster!

▪ 10.2B08+. If you’re running anything older you have bigger
problems

▪ MAXIMIZE use of system resources (CPU, mem, disk)
▪ MINIMIZE execution time

▪ There are no global optimal settings – depends on the
available hardware

▪ These slides should give you a good idea

FAST Index Rebuild

51

▪ Example:

_proutil DB –C idxbuild all

-B 512 -TB 64 -TM 32 –TMB 512 -TF 80 -SG 64
-thread 1 -threadnum <# CPU>
-mergethreads 4 -datascanthreads 8
-z –rusage

FAST Index Rebuild

52

-B 512 -TB 64 -TM 32 –TMB 64

▪ Contrary to popular belief, bigger –B does not help idxbuild
▪ TB: sort block size. Use max value 64K
▪ TMB: Merge block size. Bigger is not necessarily better
▪ TM: # buffers to merge on each merge pass. Use max value

32

FAST Index Rebuild

53

-thread 1 -threadnum <#>

▪ On by default for Enterprise DB license

▪ Defaults to #CPU
▪ Will be doing some benchmarking next week
▪ Test if better to use high –threadnum and low –

mergethreads or the opposite

FAST Index Rebuild

54

-datascanthreads <#>

▪ Important: Number of threads for disk I/O bound scan
phase

▪ Increase until it doesn’t get any faster
▪ Try 1 to 2 X #CPU

1. Extract index keys from record
2. Insert key into sort block (-TB 64K)
3. Sort/merge full sort block into merge block (-TMB 512K)
4. Write merge block (hopefully to –TF memory)

FAST Index Rebuild

55

-SG 64

▪ Each index is assigned to a sort group
▪ See next slide on mergethreads

▪ Always use 64

FAST Index Rebuild

56

-mergethreads <#>

▪ Scan process has sorted and merged sort blocks in TMB chunks
▪ Merge blocks are further merged –TM chunks at a time

▪ Repeat until all the blocks are sorted into one long list

▪ -threadnum is # of threads to merge each sort group
▪ -mergethreads is the number of threads spawned by each

–threadnum thread to merge TMB blocks

▪ Suggest total threads = threadnum X mergethreads < 2 X #CPU

FAST Index Rebuild

57

-TF 80

▪ This is the key parameter: the more memory you make
available to idxbuild, the less disk IO

▪ Ideally ZERO disk IO

▪ Pre-10.2B08, use ramdisk for sort files to simulate -TF

FAST Index Rebuild

58

-z –rusage

▪ These parameters write detailed statistics info in the output
▪ IMPORTANT: look for zero writes to disk during sort/merge
▪ The only write to disk should be the actual creation of the b-

tree

Gotcha #1: idxbuild all

▪ Indexes deactivated at start and re-activated at end
▪ What happens if idxbuild fails in last area?

▪ All indexes remain inactive
▪ START OVER (NOOOOOOOOO !!!!!!!!)

▪ Solution: run idxbuild by area

Gotcha #2: wasted time

▪ Idxbuild will scan existing index areas
▪ Waste of time

▪ Solution: Manually truncate index areas before idxbuild

▪ CAREFUL: make sure there are no tables accidentally created
in the index areas

Gotcha #3: Mixed tables and indexes in area

▪ Scan phase opens data files in read-only, allowing multiple
threads

▪ If indexes to be built exist in the area, cannot open RO
▪ Cannot scan multi-threaded

Index Rebuild Example Results

Windows VM

 4 CPU

 16 GB RAM

 “Normal” gp2 disks

Windows VM
Baseline pre-10.2B04:

 90 sec scan + 110 sec merge/sort/build
 Significant temp file writes slow everything down

Add multi-threading (-threadnum 8)
 90 sec scan + 63 sec merge/sort/build

Add 8 datascanthreads (default –TB 8 –TM 8 –TMB 8)
 35 sec scan + 64 sec merge/sort/build

Add –TB 64 –TM 32 –TMB 512 –B 512 –SG 64
 40 sec scan + 52 sec merge/sort/build

 Instead try –TB 8 –TM 32 –TMB 8
 35 sec scan + 57 sec merge/sort/build

Index Rebuild Example Results

 Linux VM

 8 CPU

 16 GB RAM

 Fast disk with 4000 dedicated IOPS

Linux VM

 Scan time with 4 or 8 datascanthreads: 20 sec

Merge/sort/build time varied from 32-35 sec

With small –TB and –TMB: scan dropped to 14 sec
and m/s/b to ~34 sec

General Comments

 Loading and index rebuilding into empty extent can
be costly
 Constantly growing the extent files

 Keep your DB structures from your test runs
 They are already pre-grown to the correct size

 2nd load and idxbuild into pre-built structure will be
faster

Agenda

68

▪ Introduction
▪ Online idxactivate
▪ Idxbuild
▪ Fix it!

Fix It!

69

What to do when things break?
 Last resort: backups and after image

 We all have that enabled, right?

 But plenty you can do first
We’re going to give you the chance to do this

yourself

Fix It!

70

 First you need to determine a problem – tooling

 Users
 often the first to notice a problem

 Protop dashboard
 Logfile errors monitored
 Paid service

 Idxanalys / dbanalys
 dbanalys contains idxanalys along with data analysis
 Careful - some corruption will cause database to stop - self

preservation

Fix It!

71

 Tooling cont...
 Logfiles

 database
 appserver
 client logs

 Idxcheck
 Online or offline
 Specify as narrow a field as possible
 Area/Table/Specific index
 Validation options customisable, but defaults usually suffice

Fix It!

72

 Then you need to know how to fix it

 Knowledgebase
 Search by error number

 Good idea to backup before you try anything
 Probkup if you can
 OS Backup otherwise
 If your attempts make things worse you have something to return

to

Fix It!

73

Which tool, when?

 idxcheck
When you want to check if index corruption is present
 Reports problems, no option to fix

 idxfix
When you want to fix a corrupt index
 Scan for records not in indexes and fix
 Scan for indexes with missing records and fix
 Delete records by recid (bypassing index)

Fix It!

74

 idxbuild
 To rebuild an index entirely based on the existing records
 Powerful, but at the cost of downtime
 And AI/Replication must be off

 idxcompact
 To improve the space utilization of an index

Fix It! - Specific Scenarios

75

 Let’s talk specifics

 Error 1422
 system error: index <index name> in <table name > for recid

<recid> could not be deleted. (1422)

 This usually means you’re trying to write/delete a
record whose index entry is missing/corrupt
 Sometimes a codepage issue

 If you need the data, find it using the recid and
dump data then…

 idxfix option 6 to delete the record
 Reload as necessary

Fix It! - Specific Scenarios

76

 Index storage area growing very fast
 Most likely the index area has a low RPB and large

block size
 So every block only contains very few, even one

record
 Run dbanalys and check for non index data in the

area
 Someone has put a table or a LOB into the index

storage area
 Move it using table move for a table
 Move it using dump & load / buffer-copy for a LOB

Detect and correct
issues before they affect
your critical business processes

THE BEST OPENEDGE PERFORMANCE, MONITORING, AND ALERTING TOOL IN THE GALAXY! | WSS.COM/PROTOP

Questions?

	Index Utilities Tips and Tricks
	Paul Koufalis
	James Palmer
	Agenda
	Assumptions / Prerequisites
	What is an index?
	Indexes are used for
	Records have a rowid
	Index Structure – Simple B-Tree
	Indexes Need TLC
	What maintenance utilities are there?
	idxactivate
	idxanalys
	idxbuild
	idxcheck
	idxcompact
	idxfix
	idxfix
	idxmove
	dbrpr
	Agenda
	[Online] Index Activate
	[Online] Index Activate
	Benefits
	Inconveniences
	Basic Requirements
	Step 1 – Create DF
	Step 2 – Load the DF
	Step 2 – Alternate Option
	[Optional] Step 3 – Pre-build the index keys
	CAREFUL: Index is not yet active!
	Step 4 – Activate the index
	GOTCHA #1: User schema time stamp
	User Schema Time Stamp
	User Schema Time Stamp
	Still Not Perfect
	GOTCHA #2: Detecting inactive indexes
	GOTCHA #3: Primary indexes
	GOTCHA #4: AI/BI Activity
	GOTCHA #5: New r-code
	Online Index Activate Results
	Agenda
	Index Rebuild
	Index Rebuild: three phases
	FAST Index Rebuild
	FAST Index Rebuild
	FAST Index Rebuild
	FAST Index Rebuild
	FAST Index Rebuild
	FAST Index Rebuild
	FAST Index Rebuild
	FAST Index Rebuild
	FAST Index Rebuild
	Gotcha #1: idxbuild all
	Gotcha #2: wasted time
	Gotcha #3: Mixed tables and indexes in area
	Index Rebuild Example Results
	Windows VM
	Index Rebuild Example Results
	Linux VM
	General Comments
	Agenda
	Fix It!
	Fix It!
	Fix It!
	Fix It!
	Fix It!
	Fix It!
	Fix It! - Specific Scenarios
	Fix It! - Specific Scenarios
	Slide Number 79
	Questions?

