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Agenda
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▪ Introduction
▪ Online idxactivate
▪ Idxbuild
▪ Fix it!



Assumptions / Prerequisites
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▪ OpenEdge 11.7 or 12
▪ 90% will work in 10.2B08

▪ Type II Storage Areas
▪ Tables, indexes, lobs in distinct separate areas



What is an index?
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▪ Public Service Announcement for anyone too shy to ask
▪ Simplest form: A tree of all the rows in a table

Start at the root and follow a path of branches
until you get to a leaf (i.e. a row in the DB)



Indexes are used for
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▪ Quick access to a row or set of rows
▪ To retrieve rows in a specific order
▪ To enforce uniqueness of columns
▪ To locate rows that contain a word or a phrase



Records have a rowid
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▪ Unique 64-bit identifier for a row in a table
▪ PartitionId, Blocknumber in area, Row in Block

▪ Encoding of the “physical” address
▪ Used to locate a record quickly

▪ Constant for life of record
▪ Until you delete it or change partition key

▪ The “leaf” contains the ROWID



Index Structure – Simple B-Tree
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Indexes Need TLC
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 Reading an index does no harm

 Writing to an index may lead to: 
 Empty space in blocks: most common issue
 Increased Levels: The path from root to branch 

(…to branch to branch…) to leaf gets longer and 
longer
 Deleted Row Placeholders

 Can’t delete unique leaf until tx commits
 Corruption

 I know I know. Impossible. 



What maintenance utilities are there?
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▪ idxactivate
▪ idxanalys
▪ idxbuild
▪ idxcheck
▪ idxcompact
▪ idxdeactivate
▪ idxfix
▪ idxmove



idxactivate
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▪ Uses an existing active index to activate another
▪ Online or offline
▪ No need to deactivate AI and Replication !!

▪ More later



idxanalys

16

INDEX BLOCK SUMMARY FOR AREA “Package Index" : 10 
-------------------------------------------------------------------------------
Table                      Index  Fields Levels  Blocks    Size   % Util Factor
PUB.PACKAGE
I-ACCES                     15       6      4   75208  171.3M    58.7     1.8
I-SERIES                    16       3      4  200752  505.5M    64.9     1.7
I-PKG                       14       1      3   45383  173.1M    98.3     1.0  
I-RECEIVED                  19       3      3   34716   80.0M    59.4     1.8
I-DELIVERED                 20       4      3   17440   36.3M    53.7     1.9
I-WAREHOUSE                 21       5      4   54106  112.6M    53.7     1.9
I-WHS-ZIP                   22       4      3   11129   21.2M    49.1     2.0
I-ZAP                       23       3      3    9309   18.8M    52.0     2.0

-----------------------------------------------------------
Totals:                                          521342    1.3G    63.5     1.7



idxbuild
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▪ Deletes indexes and rebuilds them from scratch
▪ Many reasons to do this 

▪ “New” options and performance improvements since 
10.2B08
▪ People still don’t know about them

▪ More later



idxcheck
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▪ Checks indexes for corruption
▪ Helps diagnose problems
▪ Online or offline
▪ Errors and warnings to screen and logfile



idxcompact
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▪ Compacts indexes
▪ Used when space utilization (idxanalys) is low
▪ Reduces blocks in B-Tree, maybe even B-Tree levels 

▪ Less blocks and levels => faster queries
▪ Online or offline
▪ Clears deleted index placeholders
▪ Can be run in parallel for different partitions of the same 

index
▪ Users can work as normal
▪ No record or table locks
▪ No other administration tools on the index though



idxfix
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▪ Checks for index corruption
▪ Checks for missing or incorrect index for a record
▪ Repairs corrupted indexes
▪ Online or Offline
▪ Will enable verified indexes when run offline
▪ Has several sub options



idxfix
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1. Scan records for missing index entries with index block 
validation.

2. Scan indexes for invalid index entries.
3. Both 1 and 2 above.
4. Cross-reference check of multiple indexes for a table.
5. Build indexes from existing indexes.
6. Delete one record and its index entries.
8. Scan records for missing index entries.

▪ SPOT THE INTENTIONAL “MISTAKE”
▪ 7 Used to be quit, until option 8 came along



idxmove
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▪ Move an index from one data area to another
▪ Online or offline
▪ Table is locked with a share lock while this happens
▪ Run at a quiet time in the system to avoid problems for 

users



dbrpr
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Undocumented and unsupported

Could cause serious damage - caution

 Progress recommend contacting Tech Support before 
using the tool

 There are some reporting options that are safe so 
long as you
 Turn off AI
 Truncate BI

Option 2 to test one or more indexes



Agenda
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▪ Introduction
▪ Online idxactivate
▪ Idxbuild
▪ Fix it!



[Online] Index Activate
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▪ “Officially” you can activate an index online and use it
▪ “Unofficially”, it’s a little more complicated …

▪ Who already uses this functionality?



[Online] Index Activate
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▪ Uses an existing active index to activate another
▪ Primary index by default

▪ Preferable to use a unique index otherwise will lead to extra 
locking

▪ Can specify transaction size (num records)
▪ Can be used on specific tenants or partitions if relevant



Benefits
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▪ Can run multiple online idxactivate concurrently
▪ Do not need to shut down the database
▪ Do not need to deactivate after imaging
▪ Do not need to baseline OE Replication

▪ For customers with large databases and distant DR sites, the 
OE Repl benefit is HUGE



Inconveniences
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▪ Sloooooooowwwwwwwww
▪ Lots of AI/BI activity
▪ Users need to reload their schema cache 

▪ See –usernotifytime
▪ No CUD activity during idxactivate
▪ Things get wonky if there is no active primary index
▪ Some lightly documented GOTCHAs

▪ That’s why you’re here, right?



Basic Requirements
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▪ OpenEdge 10.2B08, 11.2.1, 11.3.0 or 12.x
▪ Before that (10.1A+) there were significant bugs

▪ An active primary index 
▪ Again – there are scenarios where this is not officially 

required
▪ An inactive, non-primary index to activate



Step 1 – Create DF
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▪ Create a DF with the new index
▪ Must be INACTIVE

ADD INDEX "City" ON "Customer"
AREA "Customer Index Area"
INACTIVE
INDEX-FIELD "City" ASCENDING ABBREVIATED



Step 2 – Load the DF
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▪ Option 1: Data Dictionary
▪ Optionally select “Add new objects on-line” if other users 

connected



Step 2 – Alternate Option
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▪ run prodict/load_df.p

/* CSV params are "DF file,force commit,OSC"
* For Online Schema Change (OSC), entry must be 
* "" or "NEW OBJECTS"

*/
run prodict/load_df.p (dfFile + ",NO,NEW OBJECTS").



[Optional] Step 3 – Pre-build the index keys
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▪ Use proutil idxfix – option 3 to pre-build the index keys 



CAREFUL: Index is not yet active!
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Step 4 – Activate the index
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_proutil dbName –C idxactivate customer.city

▪ Optional Params:
▪ recs n: number of records to process per tx. Defaut 100. 
▪ refresh t: frequency to update display of clients blocking 

activate
▪ Have earlier schema (see –usernotifytime)
▪ Default 60. Max 300.



GOTCHA #1: User schema time stamp
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User Schema Time Stamp
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▪ As of 11.7, use –usernotifytime DB startup parameter
▪ How often client polls for notification of schema change
▪ Default 0 (no polling) max 86,400 (24h)

▪ Try again with –usernotifytime 30



User Schema Time Stamp
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▪ A few seconds after the initial “y” response, the index was 
activated

Pause here, then 
automatic activation



Still Not Perfect
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▪ If you script this, need to detect “Do you wish to continue 
waiting…” and respond “y”
▪ But watch out that you don’t loop indefinitely

▪ In 11.7.3, I have seen –usernotifytime not be effective
▪ I.e. the “Do you wish to continue waiting…” looped much 

longer than the –usernotifytime
▪ Must be a bug



GOTCHA #2: Detecting inactive indexes
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▪ Do not use _index._active: 
▪ “Add new objects online” DF load sets this to yes

▪ Use _storageobject._object-state

for each _storageobject no-lock where _object-type = 2 
and _object-state = 1:

find _index where _idx-num = _object-number no-lock no-error.
if avail _index then find _file of _index no-lock no-error.

/* do stuff */

end.



GOTCHA #3: Primary indexes
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▪ Cannot idxactivate a primary index
▪ Two options for primary indexes:

1. Load the DF without the “INACTIVE” property
▪ Index will be built immediately

2. Use proutil db –C idxbuild
▪ Requires disable AI and replication



GOTCHA #4: AI/BI Activity
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▪ Be prepared for a potential increase in AI and BI activity

▪ Disk space utilization
▪ OE Replication vs. PICA buffers
▪ System load



GOTCHA #5: New r-code
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▪ Index is available for compile BEFORE idxactivate
▪ By design

▪ Running source code may cause the still inactive index to be 
selected
▪ Idem for building r-code

▪ Option: use –noinactiveindex client startup parameter
▪ Compiler ignores inactive indexes

▪ When do you deploy new r-code?
▪ After idxactivate completes



Online Index Activate Results

My original idea was to use the same DB for Lab #1 
and lab #2 (index rebuild)

One table, 18.5M records

 Idxfix phase took 5+ hours to add keys

Db.lg grew to 3.2 GB (one line per record!)



Agenda
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▪ Introduction
▪ Online idxactivate
▪ Idxbuild
▪ Fix it!



Index Rebuild
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▪ Offline only
▪ Destructive: it wipes and deactivates indexes before 

rebuilding them

 Block level operation not row level operation
▪ => cannot use AI => deactivate AI and OE Replication
▪ This is a big deal for large databases



Index Rebuild: three phases
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1. Scan data areas
▪ Hugely disk I/O bound with CPU for sort
▪ Build keys and insert into temp buffers
▪ Sort full buffers

2. Sort and merge
▪ Hopefully all in memory: all CPU, no disk

3. Create index b-tree on disk
▪ Read sorted list and insert keys into new index
▪ Hugely disk I/O bound



FAST Index Rebuild
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▪ Make each phase faster!

▪ 10.2B08+. If you’re running anything older you have bigger 
problems

▪ MAXIMIZE use of system resources (CPU, mem, disk) 
▪ MINIMIZE execution time

▪ There are no global optimal settings – depends on the 
available hardware

▪ These slides should give you a good idea



FAST Index Rebuild
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▪ Example:

_proutil DB –C idxbuild all

-B 512 -TB 64 -TM 32 –TMB 512 -TF 80 -SG 64
-thread 1 -threadnum <# CPU> 
-mergethreads 4 -datascanthreads 8
-z –rusage



FAST Index Rebuild
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-B 512 -TB 64 -TM 32 –TMB 64

▪ Contrary to popular belief, bigger –B does not help idxbuild
▪ TB: sort block size. Use max value 64K
▪ TMB: Merge block size. Bigger is not necessarily better
▪ TM: # buffers to merge on each merge pass. Use max value 

32



FAST Index Rebuild
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-thread 1 -threadnum <#>

▪ On by default for Enterprise DB license

▪ Defaults to #CPU
▪ Will be doing some benchmarking next week 
▪ Test if better to use high –threadnum and low –

mergethreads or the opposite



FAST Index Rebuild
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-datascanthreads <#>

▪ Important: Number of threads for disk I/O bound scan 
phase

▪ Increase until it doesn’t get any faster
▪ Try 1 to 2 X #CPU

1. Extract index keys from record
2. Insert key into sort block (-TB 64K)
3. Sort/merge full sort block into merge block (-TMB 512K)
4. Write merge block (hopefully to –TF memory)



FAST Index Rebuild
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-SG 64

▪ Each index is assigned to a sort group
▪ See next slide on mergethreads

▪ Always use 64



FAST Index Rebuild
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-mergethreads <#>

▪ Scan process has sorted and merged sort blocks in TMB chunks
▪ Merge blocks are further merged –TM chunks at a time

▪ Repeat until all the blocks are sorted into one long list

▪ -threadnum is # of threads to merge each sort group
▪ -mergethreads is the number of threads spawned by each 

–threadnum thread to merge TMB blocks

▪ Suggest total threads = threadnum X mergethreads < 2 X #CPU



FAST Index Rebuild
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-TF 80

▪ This is the key parameter: the more memory you make 
available to idxbuild, the less disk IO

▪ Ideally ZERO disk IO

▪ Pre-10.2B08, use ramdisk for sort files to simulate -TF



FAST Index Rebuild
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-z –rusage

▪ These parameters write detailed statistics info in the output
▪ IMPORTANT: look for zero writes to disk during sort/merge
▪ The only write to disk should be the actual creation of the b-

tree



Gotcha #1: idxbuild all

▪ Indexes deactivated at start and re-activated at end
▪ What happens if idxbuild fails in last area?

▪ All indexes remain inactive
▪ START OVER (NOOOOOOOOO !!!!!!!!)

▪ Solution: run idxbuild by area



Gotcha #2: wasted time

▪ Idxbuild will scan existing index areas
▪ Waste of time

▪ Solution: Manually truncate index areas before idxbuild

▪ CAREFUL: make sure there are no tables accidentally created 
in the index areas



Gotcha #3: Mixed tables and indexes in area

▪ Scan phase opens data files in read-only, allowing multiple 
threads

▪ If indexes to be built exist in the area, cannot open RO
▪ Cannot scan multi-threaded



Index Rebuild Example Results

Windows VM

 4 CPU

 16 GB RAM

 “Normal” gp2 disks



Windows VM
Baseline pre-10.2B04: 

 90 sec scan + 110 sec merge/sort/build
 Significant temp file writes slow everything down

Add multi-threading (-threadnum 8)
 90 sec scan + 63 sec merge/sort/build

Add 8 datascanthreads (default –TB 8 –TM 8 –TMB 8)
 35 sec scan + 64 sec merge/sort/build

Add –TB 64 –TM 32 –TMB 512 –B 512 –SG 64
 40 sec scan + 52 sec merge/sort/build

 Instead try –TB 8 –TM 32 –TMB 8 
 35 sec scan + 57 sec merge/sort/build



Index Rebuild Example Results

 Linux VM

 8 CPU

 16 GB RAM

 Fast disk with 4000 dedicated IOPS



Linux VM

 Scan time with 4 or 8 datascanthreads: 20 sec

Merge/sort/build time varied from 32-35 sec

With small –TB and –TMB: scan dropped to 14 sec 
and m/s/b to ~34 sec



General Comments

 Loading and index rebuilding into empty extent can 
be costly
 Constantly growing the extent files

 Keep your DB structures from your test runs
 They are already pre-grown to the correct size

 2nd load and idxbuild into pre-built structure will be 
faster



Agenda
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▪ Introduction
▪ Online idxactivate
▪ Idxbuild
▪ Fix it!



Fix It!

69

What to do when things break? 
 Last resort: backups and after image

 We all have that enabled, right?

 But plenty you can do first
We’re going to give you the chance to do this 

yourself



Fix It!
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 First you need to determine a problem – tooling

 Users
 often the first to notice a problem

 Protop dashboard
 Logfile errors monitored
 Paid service

 Idxanalys / dbanalys
 dbanalys contains idxanalys along with data analysis
 Careful - some corruption will cause database to stop - self 

preservation



Fix It!
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 Tooling cont...
 Logfiles

 database
 appserver
 client logs

 Idxcheck
 Online or offline
 Specify as narrow a field as possible
 Area/Table/Specific index
 Validation options customisable, but defaults usually suffice



Fix It!
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 Then you need to know how to fix it

 Knowledgebase
 Search by error number

 Good idea to backup before you try anything
 Probkup if you can
 OS Backup otherwise
 If your attempts make things worse you have something to return 

to



Fix It!
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Which tool, when? 

 idxcheck
When you want to check if index corruption is present
 Reports problems, no option to fix

 idxfix
When you want to fix a corrupt index
 Scan for records not in indexes and fix
 Scan for indexes with missing records and fix
 Delete records by recid (bypassing index)



Fix It!
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 idxbuild
 To rebuild an index entirely based on the existing records
 Powerful, but at the cost of downtime
 And AI/Replication must be off

 idxcompact
 To improve the space utilization of an index



Fix It! - Specific Scenarios
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 Let’s talk specifics

 Error 1422
 system error: index <index name> in  <table name > for recid

<recid> could not be deleted. (1422)

 This usually means you’re trying to write/delete a 
record whose index entry is missing/corrupt
 Sometimes a codepage issue

 If you need the data, find it using the recid and 
dump data then…

 idxfix option 6 to delete the record 
 Reload as necessary



Fix It! - Specific Scenarios

76

 Index storage area growing very fast
 Most likely the index area has a low RPB and large 

block size
 So every block only contains very few, even one 

record
 Run dbanalys and check for non index data in the 

area
 Someone has put a table or a LOB into the index 

storage area
 Move it using table move for a table 
 Move it using dump & load / buffer-copy for a LOB



Detect and correct 
issues before they affect 
your critical business processes

THE BEST OPENEDGE PERFORMANCE, MONITORING, AND ALERTING TOOL IN THE GALAXY!   |  WSS.COM/PROTOP



Questions?
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