FWD

ABL Code Analytics

Unique Tools for Deep Code Analysis and Inspection

Greg Shah 25 201
Golden Code Development Thursday October 25, 2018

Agenda

Background

Handling Flexibility and Scale
Code Analytics

Call Graph Analyzer

Usage Tips

How to Get Started

Planned Improvements

EVD anaytics

Background

FIWWD is an open source toolset for modernizing 4GL applications.

wm
| e o
- g
L . . Deveiog in veplay in
" - L1 Java
e : 2 2 d— : N
 mm - [ET :
-
Tools for reporting, statistics and Fully automated transformation and Compatible replacement for OpenEdge®
analysis, which expose the inner modernization of entire applications which leverages an enhanced runtime,
workings of applications. without a manual rewrite. an upgraded 4GL language and Java

to modernize and evolve applications.

Progress and OpenEdge are trademarks of Progress Software Corporation

FWD analylics Tools for reporting, statistics and analysis, which expose the inner workings of an application.

Build custom reports to meet
specific needs.

REAGHASHAREAEE 1
L

Search for arbitrary 4GL syntax to find
exact answers to questions that were

previously difficult or impossible to
answer.

[Generates logic flow charts
[for all code in the application.
fprimes.i Eshare_opt="new"} ﬂ T
Visualize and interactively explore i e :

P,
2=~ analytics

Call Graph Analysis determines program
dependencies, missing code and explores
all reachable code paths. Reports allow
identification and removal of dead code
reducing application size by 25% to 40%

the call graph.

Built-in reports and statistics provide
hundreds of predefined views of the
code and schemata.

Advantages

Reduce development effort.
Improve code quality.
Deeply understand existing code.
Compensate for missing documentation,
Empower developers to more capably handle: SN ®
= The most complex refactoring and

modernization projects.

= Making changes at scale, even with

the largest of applications.

matTost SETURNS LOGICAL (INPUT & 45 =
A2, (% - 1)) moulo ¥ £q 1

teprines:

Copyright 2004-2018 Golden Code Development, ALL RIGHTS RESERVED.
Progress and OpenEdge are trademarks of Progress Software Corporation.

Why Use FWD Analytics?

* Reduce development effort.

* Improve code gquality.

* Deeply understand and explore existing code.
* Compensate for missing documentation.
* Empower developers to more capably handle:

* The most complex refactoring, transformation and
modernization problems; AND

* Making changes at scale, even with the largest of
applications.

EWD analytics

Handling Flexibility and Scale

Your Source Is Not Helping

* Programmatic analysis of an application needs to be aware of the ABL language
syntax.

* Your source code is text. That text is non-regular and ambiguous.
- different text, same meaning (non-regular code)
- same text different meaning (ambiguous code)

* The more flexible the language’s grammar, the larger the set of possible valid
constructs that can be written by the programmer.
— Short Term: marginal time savings when writing new code.
- Long Term: Increased costs of reading, maintenance, debugging, support and refactoring.

* To enable proper analysis of code, we must transform the text into a data
structure that represents the purest form of the code.

* ASTs represent the code’s language syntax without syntactic sugar. The result is
regular and unambiguous.

File -> Char -> Token -> Tree

||

Token Stream

|||||||||||||||||||||||||||||||||||

hello.i

hello.p
Abstract Syntax Tree
(AST)

hello.p.cache

Scale Multiplies Issues

Spread that syntax flexibility across tens of thousands
of files and millions of lines of code.

How do you find specific patterns?
How do you even know if you have found all matches?
Brute force is not enough.

Scale makes hard problems impossible (or at least
impractical).

Automation is the only practical solution.

TRee Processing Language (TRPL)

* FWD provides tools to parse an entire application.

* Each source file and each schema file (.df) will be
represented as an AST.

* TRPL Is the analysis and transformation toolset In
FWD which can operate on the entire set of ASTs
as a batch.

* \WWhen you process trees, it is commonly called a
tree walk.

 TRPL includes an engine that handles the tree
walking for programs written in the TRPL language.

TRee Processing Language (TRPL) Event Model

KW_INPUT
(inpUT)

walk
descent
next-child
ascent
post

STRING
(II!II)

[40 |
BLOCK
(2]
\-\
EN STATEMENT STATEMENT
s A
DEFINE_PARAMETER KW_MSG
[:] (def) (message)
\-\ *
10 12 23
[10] S(YtMXBtO)L [12] K(\gu)S [23] EXPRESSION
* *
Kw_CHAR PLUS
(char) (+)
|
1
|
i
: PLUS
i (+) —El—
i
1
i
I
| STRING VAR CHAR
("Hello") —E— (txt)

AST Design for Transformation

» At parse time, there is a great deal of knowledge about the code. Encoding that
knowledge into the tree makes downstream work easier.

* Resolving data types of each expression component is very important. This allows
downstream code to calculate the type of each subexpression or expression in the
application.

* By tracking resources by scope and creating linkages between the references and the
definition, it becomes easier to work with these resources later.

 Structuring the tree is important. This can make it easier to walk the tree, match
patterns and transform.

- Multiple nodes can be rewritten as a single unambiguous node (e.g. KW_DEFINE
KW_PARAMETER can be written as DEFINE_ PARAMETER).

— Artificial nodes can be inserted to group multiple related nodes.

» Calculated values and context-specific information are stored in the associated nodes
as annotations.

* The ASTs created by FWD were designed with these issues (and others) in mind.

Report Generation

 After the entire application has been parsed, we can run the
report generation step.

* This is a non-interactive process that runs a set of pre-
defined TRPL programs to calculate a few hundred reports.

* This can take minutes for a small project or hours for a
large project.

* Both the parsing and the report generation can be scripted
and used in CI or build servers.

 After the reports are generated, they can be accessed via
an interactive web interface.

EVD anaytics

Code Analytics

Reports

List of predefined reports on left * Individual categories have their own statistics
Currently viewed report on right * Filter and sort columns using the column
header

Most reports are a set of mutually exclusive
categories « Click on a row in the current report to see the
exact list of matches
Summary statistics for the report at the top
« Pagination controls at the bottom

- .l < -
V analvt":s 0 " Call G ; P File List Log Qut

Source Code Reports Lines of Code Analysis By File (57,505 in 45 Files)

Report Category / Name Matches |Files Source File Lines of Code Lines of Direct ... |% Direct Code Lines of Include... | % Included Code
_fabl/activate-rooms-dialog.w 854 124 14.52% 730 85.48% ﬁ

~ Project Structure (2 tems) 1 Jabl/add-rooms-dialog.w 858 198 23.08% 660 76.92%
/abl/avail-rooms-frame.w 1.058 297 28.07% 761 71.93%

Lngrnt cods Andysts By Bl oy | & Jablicommon/acifli0.p 219 178 81.28% 41 18.72%

Lu:ex gl ot e Annims b Dncony i Jablicommon/adatesd0.w 303 303 100.00% 0 0.00%

~ Preprocessor (3 items) /abllcommon/adecomm/as-utils.w 284 266 93.66% 18 6.34%

Include File Usage (By Procedure) 2,191 38 Jablicommon/adm2/appserver.p 672 539 80.21% 133 19.79%

Include File Usage (By Included Filsname) 2191 38 Jablicommon/adm2/browser.p 2,038 2,543 86.56% 395 13.44%

Runtime Preprocessor Argument Usage 0 0 Jablicomman/adm2/containr.p 3,765 3,334 88,55 431 11.45%

~ Base Language (209 items) Jabl/common/adm2/data.p 5,876 5,156 87.75% 720 12.25%

Language Statement Usage 24,369 45 Jablicommon/adm2/dataext.p 1,973 1,693 85.81% 280 14.19%

Literal Usage (By Type) 37,727 45 Jablicommon/adm2/dataextcols.p 639 551 86.23% 88 13.77% |

Operator Usage 10,877 4 /ablicommon/adm2/datavis.p 2,448 2,118 86.52% 330 13.48% _

User-Defined Variable Usage (By Data Type) 40,509 4 Jablicommon/adm2/dyndata.w 981 182 18.55% 799 81.45% |

| lear_Nafinad Variahla | leana (Bu Mamal AN BENG A LW _a__mme_a arn nan -4 nmnr a4an I ArFr AAs

Category Details

List of predefined reports on left Each match has line/column numbers in the

“cache” file (fully preprocessed file)
Exact list of matches for the selected

category on the right * Filter, sort and pagination controls

Grouped by the file in which they appear * Click on a row of a specific match to go to

the source view at that exact location
Category statistics at the top

Loy N . i
V anal“tlcs k S ! .' 5 : : r P Search '. File List Log Out

Source Code Reports d Usage (By Name) (792 in 24 Files)

Report Category / Name Matches |Files b . . est.lask-i
File Name Line Col Maich Text
Lines of Code Analysis By Directory 57,505 45 -
B ' w ./abllupdate-guest-dialog.w (9 items) ‘
Include File Usage (By Procedure) 2191 a8 ./abl/lupdate-guest-dialog.w 171 (6 guest.last-name [FIELD_CHAR] @171:6
Include File Usage (By Included Filename) 2101 ag ./abl/lupdate-guest-dialog.w 3,970 (7 last-name [FIELD_CHAR] @3970:7
Runtime Preprocessor Argument Usage 0 0 ./abl/lupdate-guest-dialog.w 3,970 |41 last-name [FIELD_CHAR] @3970:41
~ Bask Laoguigs {200 s ./abl/lupdate-guest-dialog.w 397611 guest.last-name [FIELD_CHAR] @3976:11
P E—————— 24 369 5 ./abl/lupdate-guest-dialog.w 3,986 |11 guest.last-name [FIELD_CHAR] @3986:11
el e B o] a7.727 g ./abl/lupdate-guest-dialog.w 3,986 | 34 guest.last-name [FIELD_CHAR] @3986:34
P——— 10.877 4 ./abl/lupdate-guest-dialog.w 4172 |47 guest.last-name [FIELD_CHAR] @4172:47
er Dot Ve Usags (B e Toes) 40,509 7 ./abl/lupdate-guest-dialog.w 4,176 |55 guest.last-name [FIELD_CHAR] @4176:55
Usiet:Defined Variabis: Usage By NAMS) 40500 4 ./abl/lupdate-guest-dialog.w 4,203 41 guest.last-name [FIELD_CHAR] @4203:41
Database Field Usage (By Data Type) 792 24 > stiuipdae ssy diaiog W IS Iisms)
Database Field Usage (By Name) 792 24 ./abl/update-stay-dialog.w 25532 guest.last-name [FIELD_CHAR] @255:32
eip Balabass ekl saa e Eyilyms) 360 8 .fabl/update-stay-dialog.w 4,133 47 guest.last-name [FIELD_CHAR] @4133:47

Source/AST View

Fully preprocessed file on left with the Hover mouse over an AST node to get
match selected in pink. details.

Shift-click on the “root” node of the subtree
to traverse up the tree.

Current selection in the AST on the right.

Source and AST views are linked, a
selection on either side is highlighted and e Citrl-click on a child node to traverse down
made visible on the other side. the tree.

Jabl/update-guest-dialog.w (hotel.guest.last-name)

4159
4160

4161 PROCEDURE enable UL : EXPRESSION R,
4163 Purpose: ENABLE the User Interface

4164 Parameters: <nones

4165 Here we display/view/enable the widgets in the EXPRESSION ;i?ﬁﬁgdite
4166 user-interface. In addition, OPEN all queries

4167 associated with each FRAME and BROWSE.

4168 These statements here are based on the "Other

4169 Settings" section of the widget Property Sheets. EXPRESSION.
4170

4171 IF AVAILABLE guest THEN

4172 DISPLAY| guest.first-name guest.birth-date jguest g guest.country

4173 guest.guesi-id-type guest.city guest.address guest.guest-id-num EXPRESSION
4174 guest.phone

4175 WITH FRAME gDialog.

4176 ENABLE guest.first-name datePicker guest.birth-date guest.last-name

4177 guest.country guest.guest-id-type guest.city guest.address EXPRESSION
4178 guest.guest-id-num guest.phone Btn 0K Btn_Cancel
4179 WITH FRAME gDialog.

4180 VIEW FRAME gDialog.

4181 EXPRESSION.
4182 END PROCEDURE.

4183

4184 /* UIB-CODE-BLOCK-END */
4185 SR EXPRESSION
4186) text g ame

4187 Llne:col-n
4188 PROCEDURE initializeObject : et

FIELD_CHAR
e oldtype & B G guest.guest-id-num

FIELD_CHAR
guest.last-name

o FIELD_CHAR
guest.country

FIELD_INT
guest.guest-id-type
KW_DISP

DISPLAY

FIELD_CHAR
guest.city

AST ID 215043
FIELD_CHAR
guest.address

4190 Purpose: Super Override

4191 Parameters: schemaname hot
4192 bufname h

dbname h FIELD_CHAR
::gi recordtype Bl O guest.phone

4195 /* Code placed here will execute PRIOR to standard behavior. */ name g

4196 L1t
Format 0 FRAME_PHRASE WID. ME

4197 RUN SUPER. - _FRA,

4198 label "L WITHO gDialog

pr— columnlabel

Search

* If grep (regex searching) was fully aware of ABL syntax it would still not be as good as
this.

* Write expressions or arbitrary complexity that match based on the full richness of the
AST.

* The TRPL engine does the tree walk, you just specify exactly what you want to match.

* The TRPL expression syntax has many features that make it easier to process AST
concepts, including the knowledge of the current AST node being visited.

* Code that cannot be implemented in a single expression can be put into a callable
TRPL function and accessed from expressions.

* All AST nodes and other data being accessed are actually Java objects. You can call
Java instance methods (no statics or generics at this time) on these objects and you
can pass those same objects to Java methods or to TRPL functions.

« TRPL has a wide range of advanced AST processing features that can be leveraged.

Search: Field References

All references to guest.last-name:

type == prog.field_char and
getNoteString('"schemaname").equals("hotel.guest.last-
name')

Assignments to guest.last-name:

type == prog.field_char and
getNoteString('"schemaname").equals("hotel.guest.last-
name") and parent.type == prog.assign and childIndex ==

Search: Buffers That Hide Buffers

Version 1:

type == prog.define_buffer and
this.getChildAt(0).text.toLowerCase() ==
this.getChildAt(1).getChildAt(0).text.toLowerCase()

Version 2:

parent.type == prog.kw_for and parent.parent.type ==
prog.define_buffer and
text.equalsIgnoreCase(parent.prevSibling. text)

Version 3:

upPath("DEFINE_BUFFER/KW_FOR") and
text.equalsIgnoreCase(parent.prevSibling. text)

Search: FIND and NO-ERROR

* All FIND statements (62 matches):
type == prog.kw_find

* FIND statements without NO-ERROR (26
matches)
type == prog.kw_find and not

this.descendant (2, prog.kw_no_error)

* FIND statements with NO-ERROR (36 matches)

type == prog.kw_find and
downPath("RECORD_PHRASE/KW_NO_ERROR")

Custom Reports

Practice first with Custom Search

Refine output with Custom Reports
— Multiplex expressions to define “buckets”
- Specify “dump” text preferences

Persist the report definitions you find useful
Organize by category and title
Planned: Edit and Delete of custom reports

Custom Reports Example

Title:
FIND without NO-ERROR (by Buffer Name)

Condition:

type == prog.kw_find and parent.type == prog.statement and
not this.descendant(2, prog.kw_no_error)

Multiplex Expression:

this.getImmediateChild(prog.record_phrase,
null).getChildAt(0).getAnnotation('"schemaname")

Category:
Database

EVD anaytics

Usage Tips

Writing a Search Expression

Look at the AST structure that corresponds to the code you are trying to
match.

* Write a code snippet and parse it, then view it in the source/AST
view.

* Use the predefined reports to find locations that already exist.

Decide which node is the best situated. Usually this is about finding the
node that is most “centrally” located.

All the context for the expression is written from that node’s
“perspective”.

Use the token type first, to roughly match a set of possible nodes.

Refine this to get an exact match by addng use of tree structure,
annotations and text.

Look at the AST

 Tree visualization of DEFINE BUFFER

OSTMgEL
ttMode
0th child node
(level 1)
B)
this node
(level 0)
1st child node 0th child node
(level 1) (level 2)

KW_FOR TEMP_TABLE
FGRO O ttNode

Don’t Fight the Tree!

* Let the structure of the AST solve the problem for you.
 TRPL will walk the tree for you.

* Your expression Is being executed at each possible
location in the entire application.

* |t Is a “callback” model with the events determined by
the tree structure.

* The tree structure is the pure form of the language
syntax as represented in your code.

* Matching on the tree is matching on the syntax.

* If you are finding yourself doing something “unnatural”,
ask: how can the tree structure help me?

EVD anaytics

Call Graph Analyzer

Call Graph Analyzer

* Uses a graph database.

* Creates a “vertex” for every callable code block (e.qg.
function or internal procedure) in the application.

* Creates a “vertex” for every call-site (location that invokes
one or more code blocks, e.g. RUN statement).

e Creates an “edge” between the call sites and the code
blocks.

* Traversing from the a root entry point list (which you
provide), we can walk the entire call graph of your
application.

* This can be used to answer questions that are otherwise
difficult or impossible to answer.

Call Graph Visualization

Live model of the call tree using a
“force directed graph”.

User can load the graph from arbitrary
locations.

Traverse to “More” links with SHIFT-
click (load just that node) or CTRL-
click (add node to current graph
shippet).

Use this to explore the application.

Useful to identify macro patterns that
would be hard to see by reading
source code.

Zoom with mouse wheel, pan with
drag on background.

Still in very active development, this is
an early version.

Drag nodes to move them around.
Hover to see details.

SHIFT-click on AST nodes to go to the
source/AST view.

Logic Flow Charts

* Live model of the logic flow chart for Useful to identify macro patterns that
every callable block of code in the would be hard to see by reading
application. source code.

Zoom with mouse wheel, pan with
drag on background.

e Drag nodes to move them around.

* Traverse to called code from call sites Hover to see details.
such as RUN. * SHIFT-click on AST nodes to go to the

source/AST view.

» Accessed via the “Y” flow icon in the
call graph visualization.

 This is a form of documentation.

5D naiviics ©© 000006 @® 0 @

Search 41n F\IHL\ Sourc ces Log Ou
File Lis hn

Control Flow logic For ./abl/start.p - EXTERNAL_PROCEDURE

ASTID 214748365375
type KW_REPEAT
text REPEAT

line:col 73:1
ON STOP UNDO, NEXT
ON ERROR UNDO, NEXT
ON ENDKEY UNDO, NEXT

Call Graph Reports

Ambiguous Call Sites
— Caused by indirect calling conventions and runtime determination of call targets.

— To complete the graph, you provide hints to tell the call graph analyzer how to
traverse these.

— lterative process to define hints, run the analyzer, review the latest ambiguous listing,
provide hints... until there are no further ambigous locations.

Dead Code

— In our experience, 25% to 40% of every non-trivial application of a certain age (10+
years) is dead code.

— Once your graph is complete, this is an accurate list of the code you can delete.
- Delete the code and put it through testing to confirm that the graph hints were correct.

Missing Call Targets
External Dependencies

EVD anaytics

How to Get Started

How to Get Started

 Download and install FWD.

* Download one of the sample template projects (there is one for ChUI
and one for GUI).

* Follow the “Getting Started” instructions to get the template project
installed and configured for your application code, including placing
your code and schemata into the template project.

 Run the ant report_server target.
« Start the report server.
* Access the server at port 9443 via a browser.

» Full details of this process and all documentation:
https://proj.goldencode.com/projects/p2j/wiki/Code Analytics

EWD analytics

Planned Improvements

Planned Improvements

Add more built-in call-graph analysis and reports. One example: identifying
all locations that use a specific NEW SHARED variable (and the inverse).

Move our existing transformation rules that calculate important properties to
an early enough location that it can be integrated into reporting. This would
include things like buffer scoping, frame scoping, index selection,
transaction/block properties and more.

Duplicate Code ldentification. We can identify arbitrary code matches
across the entire application using a bottom-up fingerprinting approach for
each unique sub-tree in the application. By using fuzzy logic, we can match
code that is the same whether it was cut and pasted or just independently
coded the same way. Using these fingerprints we can turn duplicated code
into common code.

Improved TRPL syntax and structure, source level debugging.

@ www.beyondabl.com

§) facebook.com/beyondabl
© twitter.com/beyondabl
@ plus.google.com/+beyondabl

@ linkedin.com/company/fwd-project

youtube.com/channel/
UCk3pga7EKXAQVOV_CiYOR7g

	Title Page
	Agenda
	Background
	What is FWD?
	Explore
	Why Use FWD Analytics?
	Handling Flexibility and Scale
	Your Source Is Not Helping
	File -> Char -> Token -> Tree
	Scale Multiplies Issues
	TRee Processing Language
	TRPL Event Model
	AST Design for Transformation
	Report Generation
	Code Analytics
	Reports
	Category Details
	Source/AST View
	Search
	Search: Field References
	Search: Buffers That Hide Buffers
	Search: FIND and NO-ERROR
	Custom Reports
	Custom Reports Example
	Usage Tips
	Writing a Search Expression
	Look at the AST
	Don't Fight the Tree
	Call Graph Analyzer
	Call Graph
	Call Graph Visualization
	Logic Flow Charts
	Call Graph Reports
	Getting Started
	How to Get Started
	Plans
	Planned Improvements
	More Information

