

Transform a 4GL GUI into a
Modern Web Application

Without a Rewrite

Greg Shah, CEO
Golden Code Development

Thursday October 11, 2018
www.beyondabl.com

https://www.beyondabl.com/

Agenda

● UI Paradigm Evolution

● Conventional Modernization

● FWD

● Running 4GL GUI as Web UI

● Enhanced 4GL Capabilities

● Customer Demonstration and Testimonial

● Status

UI Paradigm Evolution

Strategic Assessment

● Web/Mobile is the strategic UI paradigm

● The shift away from desktop applications occurred between 2007 and 2011

● In 2017, “green field” business software is NOT written using Windows GUI
APIs, including Windows Forms (i.e. OpenEdge GUI for .NET)

● Windows Forms is not strategic, even for Microsoft; placed in maintenance
mode in 2014

● OpenEdge GUI for .NET is an evolutionary dead end

● Moving to web and mobile should be a high priority for all business software

● Disparity between 1990’s style WIN32 GUI and modern UI paradigms driving
UI Modernization

Conventional Modernization

The Long Tail

● Each dialog/window/ADM[2] tab is considered a “screen”

● Non-trivial applications have surprisingly large number of screens; empirical experience suggests
at least 500 screens per 1MLOC of code*

● Most (~90%) of application’s high value features done with ~10% of screens

● On average, cost and effort to rewrite a low value screen is same as to rewrite a high value screen

● Return on investment for ~90% of screens never achieved

* FWD Code Analytics can be used to get an exact number, no matter how large the project.

Extending 4GL GUI to the Web

● What if existing 4GL GUI could run in the web, without a rewrite?

● What if 4GL GUI features were enhanced to add new capabilities, new functionality, a
modern UI approach?

– some improvements could be implemented without code edits

– other improvements require some new code (or changing existing code to use new
features)

● Clean, evolutionary path that starts with existing GUI investment and allows developers
to achieve fully modern UI without a rewrite

● Developers focus on high value screens; modernization effort is additive/incremental

● Simultaneously avoids long tail problem while future proofing existing investment

● Would require re-imagining/re-implementing core 4GL UI capabilities, from the bottom
up

● This is exactly what many 4GL developers would have wanted Progress to do

FWD is this re-imagined, enhanced 4GL.

FWD

Running 4GL GUI as Web UI

Enhanced 4GL Capabilities

Pluggable Themes

Pluggable Themes

● Pixel level control over widget drawing.
● Control colors and fonts.
● Each widget type has its own drawing routines that

can be overridden.
● Subclass the built-in themes and just override the

parts you need.
● Build your own from scratch.
● Each FWD client session can use a different theme.
● The theme is chosen when the client is started.

Enhanced Browse - Filtering

Enhanced Browse - Sorting

Enhanced Browse - Sorting

Enhanced Browse - Sorting

Enhanced Browse - Export

Enhanced Browse – Export PDF

Enhanced Browse – Hyperlinking

DEFINE BROWSE staysBrowse

 QUERY staysBrowse NO-LOCK DISPLAY

 stay.room-num HYPERLINK "xprint-invoice"

 COLUMN-LABEL "Room Num" ...

PROCEDURE xprint-invoice:

 def input param xroom-num as char.

...

END.

subscribe to "xprint-invoice" anywhere

 run-procedure "xprint-invoice".

Dynamic Layout Phase 1

Report Engine
 OPEN QUERY qRpt FOR EACH person.

 DEF VAR rptPdf AS HANDLE.

 DEF VAR rptName AS CHAR FORMAT "X(256)".

 rptName = GUID(GENERATE-UUID) +".pdf".

 CREATE REPORT rptPdf.

 rptPdf:report-data-source = QUERY qRpt:handle.

 rptPdf:report-design = "jrxml/guests_report_pdf.jrxml".

 rptPdf:set-report-param("ReportTitle", "Guests Accomodation Report").

 rptPdf:export-report-pdf(rptName).

 OPEN-MIME-RESOURCE "application/pdf" STRING("file:///" + rptName) false.

Report Engine

● JasperReports engine.
● Integrated with the FWD application server.
● New 4GL language syntax to access it.
● MUCH easier than integrating with JasperReports from OpenEdge.
● Output in any format supported (PDF, XLS…).

Status

Status

● FWD v3.2 is available now, includes most of what was shown.
● FWD v3.3

– Expected in November 2018.
– Will include the recent changes for:

● Enhanced Browse
● Material Theme
● Dynamic Layout Phase 1

● FWD v3.4
– Expected February 2018
– New widgets (treeview, browser pages embedded in 4GL windows).
– OO 4GL

Open Source

● Solve your own problems
● See how it all works
● Collaborate / contribute
● Available now and forever
● Affero GPL (reciprocal)
● Dual licensing available
● https://proj.goldencode.com/p2j

	Title Page
	Agenda
	UI Paradigm Evolution
	UI Paradigm Evolution 1
	UI Paradigm Evolution 2
	UI Paradigm Evolution 3
	UI Paradigm Evolution 4
	Strategic Assessment
	Conventional Modernization
	Conventional Modernization 1
	The Long Tail
	Conventional Modernization 2
	Conventional Modernization 3
	Extending 4GL GUI to the Web
	FWD
	What is FWD?
	Enhanced Runtime Base
	Enhanced Runtime 1
	Enhanced Runtime 2
	Enhanced Runtime 3
	Enhanced Runtime 4
	Enhanced Runtime 5
	Enhanced Runtime 6
	Enhanced Runtime 7
	Running 4GL GUI as Web UI
	Custom Web Application
	FWD Embedded Web Client
	Javascript "Up-Calls"
	FWD Runtime Architecture
	FWD Client Runtime Architecture
	Enhanced 4GL Capabilities
	Pluggable Themes 1
	Pluggable Themes 2
	Enhanced Browse Filtering
	Enhanced Browse Sorting 1
	Enhanced Browse Sorting 2
	Enhanced Browse Sorting 3
	Enhanced Browse Export 1
	Enhanced Browse Export 2
	Enhanced Browse Hyperlinking
	Better Widgets
	Dynamic Layout Phase 1
	Dynamic Layout Phase 2
	Report Engine 1
	Report Engine 2
	Status
	Status 1
	Open Source
	More Information

