
ABL Unit Testing Part 1:

Test Strategy

Mike Fechner

Director

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 2

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 3

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Consultingwerk Software Services Ltd.

4

▪ Independent IT consulting organization

▪ Focusing on OpenEdge and related technology

▪ Located in Cologne, Germany, subsidiaries in UK and Romania

▪ Customers in Europe, North America, Australia and South Africa

▪ Vendor of developer tools and consulting services

▪ Specialized in GUI for .NET, Angular, OO, Software Architecture,

Application Integration

▪ Experts in OpenEdge Application Modernization

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Mike Fechner

▪ Director, Lead Modernization Architect and

Product Manager of the SmartComponent

Library and WinKit

▪ Specialized on object oriented design,

software architecture, desktop user interfaces

and web technologies

▪ 28 years of Progress experience (V5 …

OE11)

▪ Active member of the OpenEdge community

▪ Frequent speaker at OpenEdge related

conferences around the world

5

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

▪ Advanced Unit Testing Features

6

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Introduction

▪ Developer of SmartComponent Library Framework for OpenEdge

Developers

▪ Source code shipped to clients, 99% ABL code

▪ Used by over 25 customers

▪ Up to weekly releases (customers usually during development on a

release not older than 3 month)

▪ Fully automated update of the framework DB at client

▪ Almost no regression bugs within last 10 years

▪ Can only keep up that pace due to automation

7

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

From a recent real world example

▪ Windows 10 Creators Upgrate (April 2017) breaks INPUT THROUGH

statements from Progress 8.3 - OpenEdge 11.7

▪ Used in a method to verify email addresses (MX record lookup),

manual test of that functionality not likely

▪ Jenkins Job alerted us around noon after the Windows update was

applied to the build server

▪ Only two days later, discussions around the issue on StackOverflow,

Progress Communities and later in PANS

Unit Tests saved the day! As we had a fix in place already!

8

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 9

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 10

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

From a recent real world example

▪ A pretty simple API got broken; caused by a Windows update

▪ No matter if it’s Progress’ fault or Microsoft – it’s a 3rd party

▪ We execute our Unit Tests on OpenEdge 10.2B, 11.3, 11.6 and 11.7

▪ We execute our Unit Tests on Windows 10 and Linux (VMware)

▪ Considering to add additional Windows Versions in VM’s because of

the Easter 2017 experience

11

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Introduction

▪ “In computer programming, unit testing is a software testing method by

which individual units of source code, sets of one or more computer

program modules together with associated control data, usage

procedures, and operating procedures, are tested to determine

whether they are fit for use.”, Wikipedia

▪ A Unit should be considered the smallest testable component

▪ Unit Tests may be automated

▪ Automated Unit Tests simplify regression testing

▪ Write test once, execute for a life time

12

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

The test pyramid

▪ Symbolizes different kind of tests that can be used to automate testing

a (layered) application

▪ Unit Tests are relatively simple (cheap) to

program, there should be lots of them

▪ API/Service Tests are more complex to

write

▪ UI Tests are the most expensive to write

and may require humans to execute them, may require frequent

changes as the application evolves

▪ https://martinfowler.com/bliki/TestPyramid.html

13

https://martinfowler.com/bliki/TestPyramid.html

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

A customer’s testing stack for a web application

▪ Technology in use JavaScript, PASOE, Web Handlers for REST,

OERA

▪ Browser UI Tests: Selenium (https://www.seleniumhq.org/)

▪ REST API’s

▪ SOAP UI (https://www.soapui.org/), including load scripts

▪ NUnit (.NET Unit Testing) as the test manager knows this well, and C#

allows more complex test logic or sequences

▪ Backend Unit Test: ABLUnit and SmartUnit

▪ JavaScript Unit Testing: Soon to be adding JSUnit to the mix

14

https://www.seleniumhq.org/
https://www.soapui.org/

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

▪ Advanced Unit Testing Features

15

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 16

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 17

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Test for a specific exception to be thrown

18

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Expect a very specific error from a method

19

** Item record not on file.

(138)

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Demo

▪ Execute Unit Test in ABLUnit

▪ ABL Unit Launch Configuration in PDSOE

▪ ABLUnit View / Perspective

▪ Executing a single Unit Test Method

20

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

▪ Advanced Unit Testing Features

21

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Structure of a Unit Test

▪ (ABL) Unit Tests may be developed in procedures and in classes

▪ A Unit Test is a method or internal procedure which executes a piece

of code and asserts the result of that piece of code

▪ Unit Tests may be included in the compilation unit which is tested

▪ Unit Tests may be placed in separate class or procedure files to keep

them separated from deployed code (my preference)

▪ Unit Test classes and methods or procedures may not have

parameters

▪ Unit Test methods or procedures are annotated with @Test.

22

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 24

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Initialization/cleanup annotations

▪ @Before and @After methods can be used to initialize and shut down

framework components (or mocks of those) required to execute all unit

test methods/procedures in test class/procedure

▪ @Setup and @TearDown methods can be used to initialize and

cleanup for every test method in a test class

▪ Ensure that every test has the same starting point, e.g. loading of data

into temp-tables etc.

25

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Assert-Classes and methods

▪ Simple way to test a value received by the tested method

▪ STATIC methods

▪ A single method call that

▪ Tests a value

▪ THROW’s an error when the value does not match the expected value

▪ Fire and forget

27

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Assert-Classes and Methods

▪ OpenEdge.Core.Assert

▪ Consultingwerk.Assertions.*

▪ Roll your own

Consultingwerk.Assertion.Assert:EqualsCaseSensitive

(cReturnValue, “This is the expected value”) .

28

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 29

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 30

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

▪ Advanced Unit Testing Features

31

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Unit Testing Tooling

▪ #1 tool supporting Unit Testing: Structured Error Handling

▪ Unit Tests rely heavily on solid error handling

▪ Unit Testing tool can’t trace errors not thrown far enough

▪ ABLUnit OpenEdge’s Unit Testing tool integrated into PDSOE

▪ Proprietary ABL Unit Testing tools

▪ ProUnit

▪ OEUnit

▪ SmartUnit (component of the SmartComponent Library)

▪ All very similar but different in detail

32

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

JUnit legacy

▪ NUnit, JSUnit, ABLUnit, SmartUnit, …

▪ Most unit tests follow the JUnit conventions

▪ Usage of @Test. annotations (or similar)

▪ JUnit output file de facto standard

▪ xml file capturing the result (success, error, messages, stack trace) of a

single test or a test suite

▪ Understood by a bunch of tools, including Jenkins CI

▪ No formal definition though

33

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

JUnit output file

▪ results.xml produced by ABLUnit and similar tools

▪ Visualized by ABLUnit View

▪ Visualized / trended by Jenkins CI

▪ Visualized by ANT’s JUnit task (produces html output) or similar tools

▪ Alternatives like junit-viewer https://www.npmjs.com/package/junit-

viewer

34

https://www.npmjs.com/package/junit-viewer

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

ANT

▪ Apache Build Scripting Language

▪ XML based batch file, OS-independent

▪ ANT-File may contain multiple targets (sub routines)

▪ Sub routines may have dependencies to each other

▪ Macros

▪ Error-Handling & Conditional execution

▪ Properties/Variables/Parameters

35

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

ANT

▪ Originally a Java-Build System

▪ Compiles Java-Code, executes JUnit Tests, etc.

▪ Other built in features (among many others):

▪ File manipulations, copy, delete, …

▪ ZIP, UNZIP

▪ SCM Interaction

▪ https://ant.apache.org/manual/tasksoverview.html

▪ Extensible via plug-ins (offering further ANT Tasks)

36

https://ant.apache.org/manual/tasksoverview.html

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

ANT

▪ ANT supports Unit Test execution

▪ ABLUnit Task delivered by PSC

▪ ABLUnit Task in PCT

▪ PCTRun to execute your own unit tests

▪ ANT scripts may be executed as part of a build pipeline, nightly builds,

after every source code commit

37

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 38

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

PCT

▪ https://github.com/

Riverside-Software/pct

▪ ANT tasks for OpenEdge

▪ Progress Compiler Tools

▪ open-source

▪ „Support“ via Github Issue-Tracking

39

https://github.com/Riverside-Software/pct

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 40

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Jenkins CI Server

▪ Continuous Integration – permanent merging of various changes

▪ Forked from Hudson CI

▪ Standard tool for centralized execution of build and test jobs

▪ Controlled environment for the execution of (Build or Test) „Jobs“

▪ Visualization of success or failure of jobs, visualization of Unit Test

results

▪ Emails on failure or other events

43

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Jenkins CI Server

▪ Executes ANT scripts (and other scripts)

▪ Imports JUnit result files

▪ Provides trending on stability of software project

▪ Can propagate build artefacts based on test results

44

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 46

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 47

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 48

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 49

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Measuring your Unit Test Coverage

▪ Unit Test Coverage: % of lines of code which are executed during unit

tests

▪ There are only two kinds of people that know there Unit Test Coverage:

▪ Those that don’t use Unit Tests at all

▪ Those that measure Unit Test Coverage using SonarSource

50

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

SonarSource: Code Quality measuring

51

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

SonarQube by SonarSource

▪ Commonly used Lint tool

▪ Support for various programming languages via plug-ins

▪ Java, JavaScript, C#, HTML, XML, CSS, …

▪ OpenEdge Plugin developed by Riverside Software (Gilles Querret)

▪ engine open source

▪ rules commercial

▪ Available since 2016, permanently new features added

52

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

SonarQube by SonarSource

▪ Locates problems or potential bugs

▪ Violation of coding-standards

▪ Code duplication

▪ Unit-Test coverage

▪ Web-Dashboard

▪ CLI Utility (HTML or XML Reports)

▪ Eclipse Integration

53

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Demo

▪ Sonar Lint Plugin into Progress Developer Studio

54

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 56

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 57

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 58

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 59

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

▪ Advanced Unit Testing Features

60

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Object oriented or procedural?

▪ Procedures can be unit tested

▪ In fact, ABLUnit supports the execution of test-procedures as well

▪ OO-thinking however simplifies writing testable code

▪ Procedural code has tendency to be monolithic

▪ “Mocking” of dependencies requires patterns such as factories or

dependency injection

▪ In theory possible with procedures

▪ More natural in object oriented programming

61

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Writing testable code

▪ A huge financial report or invoice generation is barely testable in whole

▪ Large

▪ May call sub routines

▪ If it fails, what has been causing this?

▪ A bug in code

▪ False assumptions

▪ Wrong data in DB?

▪ Output: A PDF file, how to assert this?

62

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Writing testable code

▪ Break up financial report into a bunch of smaller components

▪ Test individual components

▪ Test report as a whole

▪ This allows to narrow down source of reported errors

▪ Separate report logic from output logic

▪ Financial report should return temp-tables first

▪ This can be tested

▪ A separate module produces PDF output based on temp-table data

▪ Testing difficult

63

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Errors must be THROWN

▪ BLOCK-LEVEL ON ERROR UNDO, THROW almost mandatory

▪ Alternative Form of solid error handling

▪ Unit Testing tools don’t capture ** Customer record not on file (138)

when written to stdout or a message box

64

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Testing PROTECTED members

▪ When unit test is in a seperate class, it only has access to PUBLIC

methods of the class to be tested

▪ Making internal methods PUBLIC for the purpose of testing is the

wrong approach!

▪ Solution:

▪ Unit Test class can inherit from class to be tested to access PROTECTED

▪ (some) Unit Test methods may be placed inside the class to be tested to

access PRIVATE members

▪ A combination

65

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

▪ Advanced Unit Testing Features

68

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Mocking Dependencies

▪ Writing Unit Tests (for complex code) is a permanent fight against

dependencies (and the bugs in them)

▪ If the PriceInfoService relies on the CustomerBusinessEntity, the

ItemBusinessEntity, an InventoryService and the framework’s

AuthorizationManager you’re always testing the integration of 5

components

▪ Who’s fault is it, when the test fails?

▪ How do we test extreme situations? Caused by unexpected data

returned from one of the dependencies?

69

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Mocking Dependencies - Wikipedia

▪ “In object-oriented programming, mock objects are simulated objects

that mimic the behavior of real objects in controlled ways. A

programmer typically creates a mock object to test the behavior of

some other object, in much the same way that a car designer uses a

crash test dummy to simulate the dynamic behavior of a human in

vehicle impacts.”

▪ “In a unit test, mock objects can simulate the behavior of complex, real

objects and are therefore useful when a real object is impractical or

impossible to incorporate into a unit test.”

70

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Mocking

▪ Requires abstraction of object construction

▪ PriceInfoService should not NEW CustomerBusinessEntity as this

would disallow to mock this

▪ Rather rely on Dependency Injection or CCS Service Manager

component (or similar) to provide CustomerBusinessEntity or a mock

based on configuration

▪ Same technique applies to any other sort of dependent components

71

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

CCS Business Entity getData instead of FIND in DB

73

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

▪ Advanced Unit Testing Features

74

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Dealing with Data

▪ We’re using ABL to develop database applications

▪ Application functionality highly dependent on data in a database

▪ That’s a resource that’s difficult to deal with …

75

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Don’t use a shared database for Unit Tests

▪ Your tests may rely on stock data or price data in the database

▪ A different developer may modify those records for his tests

▪ This can break your test

76

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Don’t reuse your own database

▪ Your test sequence will include tests that modify data

▪ Maybe there is even a test to remove the item record that some other

test depends on

▪ Suddenly after adding this new test, a different test fails as the database

contents are no longer the same

77

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Solutions to the database dependency

▪ Always restore a known database state from a backup

▪ Or rebuild a database for each test run from .d and .df

▪ This may be easier when the database schema may change during a test

sequence

▪ You may need to rebuild a database multiple times during a test

sequence

▪ Produces lots of Disk I/O

▪ Disk I/O on one of the SSD’s of the build server if the bottleneck in our

test environment (CPU and memory barely busy)

78

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Transactions

▪ When used carefully database transactions can be a solution to test

modifying or deleting records

▪ Execute deletion of a record

▪ Test that it’s really gone (CAN-FIND)

▪ UNDO transaction in test-class

▪ May cause side-effects if the code to be tested relies on a specific

transaction behavior influenced by the fact that there’s an outer

transaction now

79

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Mock the code that accesses the DB

▪ May follow OERA or CCS principles

▪ Data Access class should be the only code

that ever access the database

▪ Not even the business entity should be able

to know that the data access class is using

data from an XML file instead

80

Price Info Service

Item Business Entity

Item Data Access

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

▪ Advanced Unit Testing Features

82

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Scenario driven Unit Tests

▪ Many Unit Tests are alike

▪ Testing read functionality of Business Entitiy a very repeating tasks

▪ Should test for runtime performance characteristics

▪ Runtime (subject to system performance fluctuations)

▪ Records accessed in database

▪ Should test for values (e.g. calculated values)

▪ Tests can be expressed as scenario instead of code

83

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

SmartUnit Feature

▪ Unit Test tool of the SmartComponent Library

▪ https://documentation.consultingwerkcloud.com/display/SCL/Scenario+

based+Unit+Tests+for+Business+Entity+FetchData+%28read%29+op

erations

84

https://documentation.consultingwerkcloud.com/display/SCL/Scenario+based+Unit+Tests+for+Business+Entity+FetchData+(read)+operations

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Markup Driven Assertions

▪ Read Operations

▪ NumResults

▪ CanFind (allows to find for Unique Key + Calculated Field value)

▪ CanNotFind

▪ MaxRuntime (may fail, when test server is busy)

▪ MaxReads (in the database)

▪ Update Operations

▪ Expected validation messages or similar output

85

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Questions

86

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 87

