
Building Your Ant Colony
Designing an Automated Build System with Apache Ant

PUG Challenge Americas 2017

Build Systems

What is a Build System?
● Creates a “build” (Compile, Link, bundle)

● Automates tasks related to your codebase

● Reduces the amount of time you spend doing boring things

What’s the Business Case?
● Reduces manual boring stuff

● Easier to get new team members on board

● Continuous Integration

● Repeatable builds (Easier bug triage)

How much time do you
spend on manual build
tasks?

What can a Build System Do?
● Compile files

● Create files and directories

● Copy files and directories

● Delete files directories

● Rename files and directories

● Initialize data

● Run tests

● Run linting/static analysis

● Create docs from docstrings

● Download dependencies

● Zip/Unzip files

● FTP/Telnet/SSH

● Create a DB from a schema file

● Create a schema from a DB

● Index analysis

● Create a Procedure Library

● Create a REST WAR file

If you can script it, you can
build it.

Build System Examples
● Make (C, C++)

● Cake (C#)

● Rake (Ruby)

● Grunt (JS)

● Pavement (Python)

● Phing (PHP)

● GB (Go)

● Ant (Java)

● Maven (Java)

● Gradle (Java)

● NAnt (C#)

● MSBuild (C#)

all: hello

hello: main.o factorial.o hello.o

 g++ main.o factorial.o hello.o -o hello

main.o: main.cpp

 g++ -c main.cpp

factorial.o: factorial.cpp

 g++ -c factorial.cpp

hello.o: hello.cpp

 g++ -c hello.cpp

clean:

 rm *o hello

Apache Ant

Intro to Ant
● “Another Neat Tool”

● Java Based

● XML Based

● Integrates with PDSOE / Eclipse

● Extensions written in Java

Getting Started
● Setup Ant Environment Variables

● Download and install Progress Compilation Tools (PCT)

● Create build.xml file

https://github.com/Riverside-Software/pct/releases/latest

build.xml
● Consists of a

<project> followed by

some number of

<targets>

● Each target can

contain a number of

directives called

“tasks”.

● Targets are run from

the commandline via

`ant target_name`.

<?xml version="1.0"?>

<project name="Hello World" default="hello">

 <task name="hello">

 <echo>Hello World!</echo>

 </task>

</project>

> ant hello

Buildfile: /path/to/your/build.xml

hello:

 [echo] Hello World!

BUILD SUCCESSFUL

Total time: 0 seconds

Core Concepts
● Properties

● Run-Time Parameters

● Dependencies

● Calling

● Filesets

Properties
● Build Configuration

● Variables that can be

used in the build.

● Can be included directly

or via an external file.

<property name="SrcDir" value="src" />

<property name="BuildDir" value="build" />

<property name="DocDir" value="docs" />

<property name="DbDir" value="db" />

<property file="build.properties" />

build.properties

Dlc=C:\DLC116

Log=build.log

Run-Time Parameters
● Ant does accept run-time

parameters from the

command line, but it is

clunky.

● Try to avoid more than one

parameter.

● Spaces in the command are

seen as different targets.

<target name="echo">

 <description>Echoes the input parameter.</description>

 <echo>${echo}</echo>

</target>

>ant echo -Decho="HELLO PUG!"

Buildfile: build.xml

echo:

 [echo] HELLO PUG!

BUILD SUCCESSFUL

Total time: 1 second

Dependencies
● Targets can “depend” on other targets.

● Ensures that the “dependee” target is run before the “depender”.

● Useful for separating complex tasks

● Downside: Make tasks harder to reason about

<!-- Ensures that "init" is always run before "build" -->

<target name="build" depends="init">

Calling
● Another way of running other

tasks

● More like a function call

● Can conditionally execute

<antcall target="build" />

Filesets
● Allows selection of files that

a task acts on.

● Can black-list or white-list.

● Very powerful.

<copy todir="${BuildDir}">

 <fileset dir="${SrcDir}">

 <include name="**/*.resx"/>

 <exclude name="**/exclude.resx" />

 </fileset>

</copy>

Ant and OpenEdge

Progress Compilation Tools
● Ant Plugin

● Provides a large number of OE related tasks

● Free, Apache Licensed

● https://github.com/Riverside-Software/pct

https://github.com/Riverside-Software/pct
https://github.com/Riverside-Software/pct

Standard OpenEdge Build Targets
● Init

● Clean

● InitDB*

● CleanDB*

● Build

● Test

● Docs

● Package

● Install/Deploy

● Copy Resources

What do Ants and the
Moon have in common?

Integrating with Eclipse

Running Tasks from PDSOE
● Can be run from “External Tools” or the “Ant” View

Running Targets Automatically
● You can set build targets to run automatically after a PDSOE

compile.

DEMO

Questions?

Advanced Usage
● Continuous Integration

○ Commit to Git -> Push to Gitlab -> Sends to Gitlab CI runner -> Build in new

Container/VM

● Include Git Commit # in output

○ Run git via exec task to output SHA1 hash to a BUILD file.

● Deploy Via SSH/FTP

● Automatically Update Release Notes via Commit Logs

● Update Libraries

● Check listing/xref output

Further Reading
Ant Docs: https://ant.apache.org/manual/index.html

PCT Docs: https://github.com/Riverside-Software/pct/wiki

Github: Search for build.xml files or other build files.

https://ant.apache.org/manual/index.html
https://github.com/Riverside-Software/pct/wiki

Related Talks
● 430: The Future of OpenEdge build system

○ Wed 9:45

● 201: The Tool-Stack Used by an OpenEdge Tool Vendor

○ Tues 9:45

John Cleaver
Factivity, Inc.

Email: johnc@factivity.com

Talk: https://speakerdeck.com/jcleaver/intro-to-ant

mailto:johnc@factivity.com
https://speakerdeck.com/jcleaver/intro-to-ant

