
Introduction to OpenEdge REST

Session 426 – OE REST, Part 1 of 2

Dustin Grau – dgrau@progress.com

Principal Solutions Consultant

2

Introductions

3

“The times they are a changin“

4

“The times they are a changin“

5

REST is ReST: Representational State Transfer

§  Resource-based methodology that uses verbs to interact with nouns
•  GET (read) http://localhost:8080/app/customer

•  POST (create), PUT (update), Delete (remove)

§  Content may be part of the URI or the request body
•  Depends on the HTTP verb used

•  http://localhost:8080/app/customer?CustNum=1

•  More on this in Part 2

§  Many URI’s may refer to the same resource, for different purposes
•  GET http://localhost:8080/app/invoice/customer

•  GET http://localhost:8080/app/order/customer

6

REST Doesn’t Care

§  The server should not care how the data is ultimately presented to the user

7

Persistence is not RESTful

§  Each request should have just enough information to complete a request

8

REST Code of Conduct

§  Data is requested and delivered in a uniform manner (eg. JSON), but open to interpretation

9

OpenEdge 11.5

10

OpenEdge REST Adapter

§  Introduced several versions ago (11.2 w/ OE Mobile)
•  Provides performance and scalability

•  Means of direct data access via the web

§  Utilizes Apache Tomcat as HTTP front-end
•  Security via Spring framework in Tomcat

•  Alternative to WSA or WebSpeed

§  OE 11.5 adds Pacific AppServer (PAS)
•  Retains the “Classic AppServer”

•  We will focus on the “Classic” aspect
–  Roy Ellis has a full presentation on PASOE

11

Progress Developer Studio

§  PDSOE comes with “Tomcat in the Box”
•  Not meant for production use!

•  Has limited configuration changes (ie. None)

§  REST Service vs. Mobile Service project types
•  Manual mapping vs. annotation-driven mapping

•  Design-time catalog file (mobile service)

•  More on this in Part 2

§  Generation of service definition (PAAR file)
•  More on this in Part 2

§  Support for PASOE
•  Similar to WebSpeed (Messenger + Broker)

•  AppServer = blocking, WebSpeed = streaming

12

Configuration

13

AppServer Configurations

§  Examples in terms of Classic AppServer
§  Remember that Tomcat is involved

•  URI’s reflect the webapp in use

•  http://<server>:<port>/<webapp>/rest/<service>/<resource>[/<sub-resource>]

§  Configure the AppServer
•  State-free operating mode (remember session != state)

•  Tomcat will handle our session management

•  Configure server/port in runtime.properties

§  Multiple AppServers may be used
•  Primary application

•  Security (e.g. realm auth)

14

Sample runtime.properties

<?xml version="1.0" encoding="UTF-8"?>

<AppServer:AppServerEndpointBean …>

 <AppServer:userName xs:nil="true"/>

 <AppServer:password xs:nil="true"/>

 <AppServer:extraInfo xs:nil="true"/>

 <AppServer:sessionMode>1</AppServer:sessionMode>

 <bpm:ApplicationRuntimeProperties>

 <bpm:appServiceProtocol>AppserverDC</bpm:appServiceProtocol>

 <bpm:appServiceHost>localhost</bpm:appServiceHost>

 <bpm:appServicePort>3066</bpm:appServicePort>

 <bpm:appServiceName>yourbroker</bpm:appServiceName>

 …

 </bpm:ApplicationRuntimeProperties>

</AppServer:AppServerEndpointBean>

15

Tomcat Configurations

§  Use PDSOE’s Tomcat for development
•  Production requires Tomcat be installed

•  HTTPS is crucial for security (credentials)

§  Set your security model
•  WEB-INF/web.xml

•  contextConfigLocation in context-param block

§  Apply security to URI’s via security model
•  WEB-INF/appSecurity-*.xml

•  End-points are controlled via intercept-url rules

§  Test via http://<server>:<port>/<webapp>/rest (WADL)
§  Deploy/Undeploy vs. Republish (Windows has gotchas)

16

Spring Framework

§  Identity management
§  AuthN (who) vs. AuthZ (what)

•  Think: passport vs. keys

§  Basic vs. Form authentication models
•  Basic requires a special header w/ token on each request

•  Form provides true logoff enforcement (avoids replay attack)

§  Anonymous access – first default, simplest
§  Tomcat Users – adding auth complexity
§  OE Realm – true SSO potential
§  Client-Principal Object (CP Token)

•  Created automatically by Tomcat

•  Even anonymous users get a token!

17

Sample web.xml

 <context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 <!-- USER EDIT: Select which application security model to employ

 /WEB-INF/appSecurity-anonymous.xml

 /WEB-INF/appSecurity-basic-local.xml

 …

 -->

 /WEB-INF/appSecurity-form-oerealm.xml

 </param-value>

</context-param>

18

Sample appSecurity-form-oerealm.xml

 <intercept-url pattern="/rest/si/catalog/**"

 access="hasAnyRole('ROLE_ANONYMOUS', 'ROLE_EndUser')"/>

 <intercept-url pattern="/rest/si/customer/*”

 access=”hasRole(‘ROLE_CustAdmin’)"/>

 <intercept-url pattern="/static/js/*" method="GET"

 access="permitAll()"/>

 <anonymous enabled="true" />

19

OERealm Security

§  Still relies on Spring security framework (an industry standard)
•  OE Realm is an information conduit, not the actual authenticator

§  Uses a pre-defined interface to access an ABL class (IHybridRealm)
•  Performs lookup of user by some UserID (numeric)

•  Confirms account is NOT locked, NOT expired, IS enabled

•  Compares password via your hash process

§  Spring manages a Tomcat session (+CP token)
•  CP token provides identification for authorization, access to URI’s

§  You should secure the access between Tomcat and authenticating AppServer
•  Use a private, pre-generated client-principal object

•  Mike Jacobs covers this in his session on OE Realm Security

20

Sample appSecurity-form-oerealm.xml

 <b:bean id="OERealmUserDetails"

 class="com.progress.rest.security.OERealmUserDetailsImpl" >

 <b:property name="realmURL" value="AppServerDC://localhost:3066/oerealm" />

 <b:property name="realmClass" value=”Path.To.Security.RealmClass" />

 <b:property name="grantedAuthorities" value="ROLE_EndUser" />

 <b:property name="rolePrefix" value="ROLE_" />

 <b:property name="roleAttrName" value="ATTR_ROLES" />

 <b:property name="enabledAttrName" value="ATTR_ENABLED" />

 <b:property name="lockedAttrName" value="ATTR_LOCKED" />

 <b:property name="expiredAttrName" value="ATTR_EXPIRED" />

 <b:property name="realmPwdAlg" value="0" />

 <b:property name="realmTokenFile" value=”AuthRealm.cp" />

 <b:property name="certLocation" value="" />

 </b:bean>

21

The IHybridRealm Interface

 method public character GetAttribute (input piUserID as integer, input pcAttrName as character).

 method public character extent GetAttributeNames (input piUserID as integer).

 method public character extent GetUsernames ().

 method public character extent GetUsernamesByQuery (input pcQueryString as character).

 method public character extent GetUsernamesByQuery (input pcAttrName as character, input pcAttrValue as character).

 method public logical RemoveAttribute (input piUserID as integer, input pcAttrName as character).

 method public logical SetAttribute (input piUserID as integer, input pcAttrName as character, input pcAttrValue as character).

 method public logical ValidatePassword (input piUserID as integer, input pcPassword as character).

 method public logical ValidatePassword (input piUserID as integer, input pcDigest as character,

 input pcNonce as character, input pcTimestamp as character).

 method public integer ValidateUser (input pcUsername as character).

22

*Diagram will be

available after

the conference

23

Management

24

Deploying to Non-Development Servers

§  Install minimum versions Java 1.7 and Tomcat 7
•  Else errors will be thrown about mismatched libraries

•  Java libraries are copied to any WAR files created

§  When bundling a WAR file, deploy as WebApp
•  Right-click on a defined service in PDSOE project

•  Select “Export Services Incrementally”

•  Use Tomcat management (http://localhost:8080)

§  Configure any “Classic AppServer” instances normally
•  OpenEdge Management Console (http://localhost:9090)

•  Directly via ubroker.properties files in $DLC/properties

25

Accessing a REST Service

§  JavaScript libraries (e.g. jQuery)
•  $.ajax(…)

§  Postman or RESTclient
•  Browser plugins for Chrome, Firefox

§  Just use your browser!
•  Ok, this is mainly for GET’s

§  If it can speak HTTP…

26

When Things Go Sideways

§  Where is my log file?!
•  /WEB-INF/adapters/logs/<service>.log

•  PDSOE Tomcat: <DLC>/servers/tomcat/webapps/<webapp>

•  Standalone Tomcat: <CATALINA_HOME>/webapps/<webapp>

§  When in doubt, use TRACE/DEBUG modes
•  Found in WEB-INF/classes/log4j.properties

27

Demonstration

Quick setup of a new REST project

28

Thank You!

§  “REST Support for B2B Access to Your OpenEdge AppServer”
•  Kumar Navneet & David Cleary, Progress Exchange 2014

§  “210: OE Realm and Your Application’s Authentication Process”
•  Kumar Navneet & Mike Jacobs, PUG Challenge Americas 2015

§  “402: OpenEdge REST for Any Application”
•  Matt Baker, PUG Challenge Americas 2015

§  Part 2 of this presentation covers actual development!

