
Simon has been working with the Progress 4GL and the database for the last 18 
years. Keeping up with the developments in the 4GL and the database has always 
been his passion.

Simon has been involved in CASE tools since his first introduction to the 4GL and 
worked on various other systems, including the Namibian Tax System, large ERP 
systems in Southern Africa and a number of smaller systems.

Progress Software South Africa used Simon at various times to present Progress 
training courses for version 9 and early version 10. He also presented sessions at 
three regional Progress conferences in South Africa.

He created Vidisolve in 2011 and started to focus much more actively on the 
modernisation efforts of his clients. He is currently also busy with his Masters degree 
in Information Technology at the University of Pretoria.

1



2



3



4



The index selection is rule based. That enables it to be done at compile time and it 
results in predictable, reproducible index selection. But applying good rules on an 
abnormal data distribution can have unwanted consequences.

For example, a pipeline of records that needs to be processed can have a logical field 
indicating whether the record was processed or not. As long as we read the 
unprocessed records, the set will be very small, but if we read processed records, the 
set will very quickly be very large.

5



6



7



8



If you do not have a Type II storage area and you use TABLE-SCAN, the DBMS will 
simply fall back to a full index scan of your primary index.

9



Of course, if there is a USE-INDEX or a TABLE-SCAN, the compiler will not select an 
index, it will do what it is told.

These rules will also apply top to bottom until only one index is left. In essence, each 
rule eliminates all indexes that does not fit the rule, but if it would eliminate all 
indexes, the rule is skipped. If more than one index is left after a rule was applied, 
we move on to the next rule. 

10



11



If none of the first four rules are applied to reduce the index set, you are most likely 
in trouble. 

Rule 5 can cause a selection or act as a tie breaker between two or more indexes, in 
which case it is beneficial. But if it is the sole reason for index selection, it means the 
whole table will be scanned.

Rule 6 and 7 are essentially mutually exclusive. If two or more suitable indexes 
remains even after applying rule 5, rule 6 will apply. But if none of the indexes are in 
the list after rule 5, rule 7 will apply. It is however possible that rule 7 may outrank 
rule 6 in a case where the Primary index are one of the tied indexes. I did not test 
this (yet).

12



The index selection is rule based. That enables it to be done at compile time and it 
results in predictable, reproducible index selection. But applying good rules on an 
abnormal data distribution can have unwanted consequences.

For example, a pipeline of records that needs to be processed can have a logical field 
indicating whether the record was processed or not. As long as we read the 
unprocessed records, the set will be very small, but if we read processed records, the 
set will very quickly be very large.

13



14



15



16



17



transactionDate has range matches and will not be considered for the combination 
of indexes when used as part of an AND.

18



This is a rather awkward structure, but will it give us some better performance if we 
need it?

19



20



All index components of the two candidate indexes are used in equality matches. For 
that reason, they can be combined by the FOR EACH.

21



22



23



In this case we are lucky. It is pure coincidence that the date index should work 
better. If it was the other way round, we could have been stuck with reading many 
more records and dropping most of it.

24



25



26



27



There is essentially no difference between selection rules for this example and 
example one, but we will get significantly better performance in this case, as we not 
only have an equality bracket on the first component of the index, but also have a 
range match on the second component.

28



This one is the same example as we had in example two, where both indexes was 
selected by rule 3 and then combined.

29



30



I cannot find a reference to this behaviour in the documentation, but it makes sense, 
as both indexes would render the exact same list of rowids, albeit in a different 
sequence. However, this construct is awkward and gains us nothing over example 4.

31



This is basically the same as example 4 – Equality on the type and range on the date, 
but here we have an OR

32



Not a good idea, as it will not leverage the second (transaction type) level of the 
index.

33



Because the expression inside the () must resolve first, we end up with WHERE
clause that essentially boils down to a simple WHERE with AND, but the first one of 
the three expressions bound by AND is not a straight equality or range match.

34



With the expected data distribution this is not too terrible, but we do utilize the 
index in an optimal way.

35



We now have a WHERE with an OR and each OR fragment can be treated as an 
independent WHERE with AND. 
This leads to the selection of the better index. Two brackets are made on the index 
and both levels of the index are leveraged.

36



This is the same as before, is it not? After all, the compiler would have selected the 
index that we indicate in any case.

37



38



USE-INDEX allows for a single bracket. The only bracket that enclose all the options 
encompass the entire index. If we did not have the OR, i.e. if we had only the first or 
the last part, it would still bracket properly and the WHOLE-INDEX will go away.

39



This set is fairly similar than the first one, except that the index with transactionType
has a second component. We will now see how that change some rules.

40



This is the same as in example 1.

41



This is essentially the same as the second case, where two single indexes was 
selected and combined.

42



43



The compound index is not combined with the single index, because the whole index 
must be used in equality matches.

44



If the full index participated in the equality match, it would indeed combine with the 
other index, as happened in example 2.

45



Note that this (rather unlikely) query contains an OR.

46



47



Each side of the OR is evaluated as a separate query and gets its own index bracket. 
Note that if any one of these resulted in a full index scan of any index, only that 
index would be used, as all the records will be accessed in any case.

48



What will happen when we use a FIND?

49



50



FIND allows for the use of a single index bracket only. Of the two candidate indexes 
that was used in example 11, neither one will satisfy the other side of the OR, hence 
both gets eliminated early on and the compiler falls back to rule 7.

51



Once again, all indexes are eliminated early on, and the compiler falls back to its 
default of scanning the primary index.

52



I often see this previous problem solved using code as above. Will it work?

53



54



The index with the most range matches was selected. This means that components 
after the range matching component (transactionType) are ignored.

Since anything is > “”, we have a range here that spans the whole index, but the 
compiler does not realize this, at is has a “value” for the lower boundary of the 
bracket, so the WHOLE-INDEX is missing from the cross reference. But this index has 
two fields. Thus the index tree consists of all the rowids in the table plus all the 
transaction types plus all the document numbers, which could in total actually 
occupy more disk space than the primary index, which consists of all the rowids and 
all the transactionIDs, in which case we are now reading more blocks from disk and 
still access the entire table. Note however that in this design we expect the 
transactionID to be large, random values that will compress poorly, while the 
document type and number should lead to fairly good index compression, so this 
might still be the better option.

55



Once again, we have a range match bound with AND to an OR function, hence the 
index with the most range matches is selected.

56



57



58


