N2
Z

)

< 2. e = I
& =
mm‘iwl d ls n “e

Seen it. Solved it.

i

/

Of course it will take

the right index!
Oh... Why did it take that one?

Simon L. Prinsloo pUG
o CHALLENGE
simon@vidisolve.com EXCHANGE
AMERICAS

Simon has been working with the Progress 4GL and the database for the last 18
years. Keeping up with the developments in the 4GL and the database has always
been his passion.

Simon has been involved in CASE tools since his first introduction to the 4GL and
worked on various other systems, including the Namibian Tax System, large ERP
systems in Southern Africa and a number of smaller systems.

Progress Software South Africa used Simon at various times to present Progress
training courses for version 9 and early version 10. He also presented sessions at
three regional Progress conferences in South Africa.

He created Vidisolve in 2011 and started to focus much more actively on the
modernisation efforts of his clients. He is currently also busy with his Masters degree
in Information Technology at the University of Pretoria.

Introduction

Simon Prinsloo

Vidisolve in Pretoria

Working with Progress since v.7 in 1996
Worked on various commercial systems

Mostly focused on CASE tools and implementing new
functionality in legacy projects

PUG
CHALLENGE
EXCHANGE

AMERICAS

Why do we care?

»Hardware is getting bigger and faster
»The compiler selects the index

~ |t uses a fantastic set of rules

~ 1t will combine indexes

PUG
CHALLENGE
EXCHANGE

AMERICAS

Why do we care?

Knowing the importance of creating indexes to support common
data access patterns is a big step toward efficient design. However,
to make your query code and indexes work together effectively, you
must understand how ABL chooses indexes to satisfy a particular
query.

OpenEdge Web Paper: ABL Database Triggers and Indexes

PUG
CHALLENGE
EXCHANGE

AMERICAS

Why do we care?

»Data bases grow faster than ever
This negates the effect of faster hardware

»The compiler lacks key information
It has no way to predict data distribution
It has no way to resolve certain constructs PU

G
CHALLENGE
EXCHANGE

AMERICAS

The index selection is rule based. That enables it to be done at compile time and it
results in predictable, reproducible index selection. But applying good rules on an
abnormal data distribution can have unwanted consequences.

For example, a pipeline of records that needs to be processed can have a logical field
indicating whether the record was processed or not. As long as we read the
unprocessed records, the set will be very small, but if we read processed records, the
set will very quickly be very large.

Terminology
WHERE

WHERE searchExpr [BY field]
WHERE searchExpr AND searchExpr [BY field]
WHERE searchExpr OR searchExpr [BY field]

Bracketing
WHOLE-INDEX
Sort
SORT-ACCESS

PUG
CHALLENGE
EXCHANGE

AMERICAS

Using multiple index brackets

Multi-bracket queries can be used by
»FOR EACH

»PRESELECT

»QUERY objects

Different brackets can be for the same index or for

PUG
CHALLENGE
EXCHANGE

AMERICAS

other indexes.

Using single index bracket

A single index bracket is selected when
»FIND is used
» USE-INDEX is specified

» A condition is encountered that forces a
WHOLE-INDEX bracket.

PUG
CHALLENGE
EXCHANGE

AMERICAS

Prime directive

»The programmer’s whish, the compiler’s command.
v TABLE-SCAN (Type |l Storage only)
v USE-INDEX

With great power comes great responsibility.

PUG
CHALLENGE
EXCHANGE

AMERICAS

If you do not have a Type Il storage area and you use TABLE-SCAN, the DBMS will
simply fall back to a full index scan of your primary index.

Rules for selecting a single index

1. CONTAINS — Use the word index
2. Use a unique index —0 or 1 record

All components must be used in equality matches

3. Use the index with the most active equality
matches

Must apply to successive, leading components
Must be joined with AND

PUG
CHALLENGE
EXCHANGE

AMERICAS

Of course, if there is a USE-INDEX or a TABLE-SCAN, the compiler will not select an
index, it will do what it is told.

These rules will also apply top to bottom until only one index is left. In essence, each
rule eliminates all indexes that does not fit the rule, but if it would eliminate all
indexes, the rule is skipped. If more than one index is left after a rule was applied,
we move on to the next rule.

10

Selecting a single index

4. Use the index with the most active range matches

The component is the first or only component
All preceding components in the index have active equality matches — joined with
AND
5. Use index with the most sort matches
Use index that comes first alphabetically

Use the primary index

PUG
CHALLENGE
EXCHANGE

AMERICAS

11

Selecting a single index

4. Use the index with the most active range matches

The component is the first or only component
All preceding components in the index have active equality matches — joined with

AND

5. Use index with the most sort matches

6. Use index that comes first alphabetically

7. Use the primary index
PUG
CHALLENGE
EXCHANGE

AMERICAS

If none of the first four rules are applied to reduce the index set, you are most likely
in trouble.

Rule 5 can cause a selection or act as a tie breaker between two or more indexes, in
which case it is beneficial. But if it is the sole reason for index selection, it means the
whole table will be scanned.

Rule 6 and 7 are essentially mutually exclusive. If two or more suitable indexes
remains even after applying rule 5, rule 6 will apply. But if none of the indexes are in
the list after rule 5, rule 7 will apply. It is however possible that rule 7 may outrank
rule 6 in a case where the Primary index are one of the tied indexes. | did not test
this (yet).

12

When multiple indexes can be combined
WHERE with AND

~ All components of each candidate index are involved in equality
matches

~ None of the candidate indexes are unique

WHERE with OR

~ Each side of the OR can be used to select an index that does not
result in a WHOLE-INDEX scan

PUG
CHALLENGE
EXCHANGE

AMERICAS

The index selection is rule based. That enables it to be done at compile time and it
results in predictable, reproducible index selection. But applying good rules on an
abnormal data distribution can have unwanted consequences.

For example, a pipeline of records that needs to be processed can have a logical field
indicating whether the record was processed or not. As long as we read the
unprocessed records, the set will be very small, but if we read processed records, the
set will very quickly be very large.

13

How to find out which index is used

» COMPILE ... XREF
»SEARCH
» SORT-ACCESS
» WHOLE-INDEX

»QUERY-HANDLE:INDEX-INFORMATION (n)

» Comma separated list of index names, one for each bracket
~ First entry can be WHOLE-INDEX

PUG
CHALLENGE

EX

CHANGE

AMERICAS

14

Single-field indexes

glTransaction
transactioniD
transactionDate
transactionType

transactionDate + transactionDate

* transactioniD + transactionID

transactionType + transactionType

PUG
CHALLENGE
EXCHANGE

AMERICAS

15

FOR EACH glTransaction NO-LOCK

ngransaction WHERE t;ransact;onType = »INV -
AND transactionDate >= 05/01/2015
transactionlD AND transactionDate <= 05/31/2015:
transactionDate
transactioniype END.
Which Index?

Indexes

transactionDate
+ transactionDate

transactioniD
+ transactionlD

PUG
transactionType CHALLENGE
+ transactionType EXCHANGE

AMERICAS

FOR EACH glTransaction NO-LOCK

ngransaction WHERE t;ransar:tjlonType = 'fIN‘v"' -
AND transactionbDate >= 05/01/2015

transactionlD AND transactionDate <= 05/31/2015:
transactionDate

transactioniype END.

Which Index?
Indexes » transactionType
transactionDate Why"

+ transactionDate

transactionliD

+ transactionlD

PUG
transactionType CHALLENGE
+ transactionType EXCHANGE

AMERICAS

glTransaction

transaction!D
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate

transactioniD
+ transactionlD

transactionType
+ transactionType

FOR EACH glTransaction NO-LOCK
WHERE transactionType = "INV"
AND transactionbDate >= 05/01/2015
05/31/2015:

|

AND transactionDate <

F.m-.m

Which Index?

» transactionType

Why?

~ Rule 3: Use the index with the most active

equality matches.

PUG
CHALLENGE
EXCHANGE

AMERICAS

transactionDate has range matches and will not be considered for the combination
of indexes when used as part of an AND.

18

glTransaction

transactionlD
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate

transactionliD

+ transactionlD

transactionType
+ transactionType

DO vDate 05/01/2015 TO 05/31/2015:
FOR EACH glTransaction NO-LOCK

WHERE transactionType = "INV"
AND transactionDate = vDate:
-F:':HD.
END.
Which Index?
PUG
CHALLENGE

EX

CHANGE

AMERICAS

This is a rather awkward structure, but will it give us some better performance if we

need it?

19

glTransaction

transactionlD
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate

transactioniD
+ transactionlD

transactionType
+ transactionType

DO vDate

FOR EACH glTransaction NO-LOCK
WHERE transactionType
AND transactionDate

EHD.
END.
Which Index?
~transactionType
» TransactionDate

Why?

05/01/2015 TO 05/31/2015:

= " 1 N\"' ”
= vDate:

PUG
CHALLENGE

AMERICAS

EXCHANGE

20

glTransaction

transaction!D
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate

transactioniD
+ transactionlD

transactionType
+ transactionType

DO vDate 05/01/2015 TO 05/31/2015:
FOR EACH glTransaction NO-LOCK

WHERE transactionType = "INV"
AND transactionDate = vDate:
END.
END.
Which Index?
~transactionType
» TransactionDate
Why?

~ Rule 3 renders two options

» FOR EACH can combine indexes EHELLENGE

EX

CHANGE

AMERICAS

All index components of the two candidate indexes are used in equality matches. For
that reason, they can be combined by the FOR EACH.

21

glTransaction

transactionlD
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate

transactioniD
+ transactionlD

transactionType
+ transactionType

FIND LAST glTransaction NO-LOCK

WHERE transactionType
AND transactionDate

NO=ERROR.

Which Index?

"INV"
TODAY

PUG
CHALLENGE
EXCHANGE

AMERICAS

22

glTransaction

transactionlD
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate

transactioniD
+ transactionlD

transactionType
+ transactionType

FIND LAST glTransaction NO-LOCK

WHERE transactionType = "INV"
AND transactionDate = TODAY
NO=ERROR.
Which Index?
~transactionDate
Why?

PUG
CHALLENGE
EXCHANGE

AMERICAS

23

FIND LAST glTransaction NO-LOCK
¢ WHERE transactionType = "INV"
gITransactlon AND transactionDate = TODAY

transactionlD NO=~ERROR.

transactionDate .
transactionType Which Index?
~transactionDate

Indexes Why?
» Rule 3 renders two options

» FIND cannot combine indexes
» Rule 6; Take the index that comes first
alphabetically.

transactionDate
+ transactionDate

transactionliD

+ transactionlD PUG
transactionType CHALLENGE
+ transactionType EXEMllEllﬁ(gSGE

In this case we are lucky. It is pure coincidence that the date index should work
better. If it was the other way round, we could have been stuck with reading many

more records and dropping most of it.

24

Compound indexes

glrTransaction
transactioniD
transactionDate
transactionType

transactionDate + transactionDate
+ transactionType

* transactioniD + transactionID

transactionType + transactionType
+ transactionDate

PUG
CHALLENGE
EXCHANGE

AMERICAS

25

glrTransaction

transactionlD
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate
+ transactionType

transactionlD
+ transactioniD

transactionType
+ transactionType
+ transactionDate

FOR EACH glrTransaction NO-LOCK

WHERE transactionType = "INV"
AND transactionbate >= 05/01/2015
AND transactionDate <= 05/31/2015:
END.
Which Index?

PUG
CHALLENGE
EXCHANGE

AMERICAS

26

FOR EACH glrTransaction NO-LOCK

gIrTransaction WHERE t;ransact;onType = »INV o
AND transactionbDate >= 05/01/2015
transactionlD AND transactionDate <= 05/31/2015:
transactionDate T
transactionType END.
Which Index?

Indexes

> ;
transactionDate transactlonType

+ transactionDate Why?

+ transactionType

transactionlD
+ transactioniD

transactionType

PUG
+ transactionType CHALLENGE
+ transactionDate EXCHANGE

AMERICAS

glrTransaction

transactionlD
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate

+ transactionType

transactionlD
+ transactioniD

transactionType
+ transactionType
+ transactionDate

FOR EACH glrTransaction NO-LOCK

WHERE transactionType = "INV"
AND transactionbDate >= 05/01/2015
AND transactionDate <= 05/31/2015:
END.
Which Index?
» transactionType
Why?

» Rule 3: Use the index with the most active
equality matches.
PUG
CHALLENGE
EXCHANGE

AMERICAS

There is essentially no difference between selection rules for this example and
example one, but we will get significantly better performance in this case, as we not
only have an equality bracket on the first component of the index, but also have a
range match on the second component.

28

DO vhate = 05/01/2015 TO 05/31/2015:

gIrTransaction FOR EACH glrTransaction NO-LOCK
WHERE transactionType = "INV"
transactionlD AND transactionDate = vDate:
transactionDate e
transactioniype END.
END.
Indexes Which Index?

transactionDate
+ transactionDate
+ transactionType

transactionlD
+ transactioniD

transactionType

PUG
+ transactionType CHALLENGE
+ transactionDate EXCHANGE

AMERICAS

This one is the same example as we had in example two, where both indexes was
selected by rule 3 and then combined.

29

glrTransaction

transactionlD
transactionDate
transactionType

Indexes

transactionDate
+ transactionDate
+ transactionType

transactionlD
+ transactioniD

transactionType
+ transactionType
+ transactionDate

DO vDhate = 05/01/2015 TO 05/31/2015:
FOR EACH glrTransaction NO-LOCK

WHERE transactionType
AND transactionDate

END.
END.

Which Index?

» transactionDate

Why?

= "INV"
= vDate:

PUG
CHALLENGE
EXCHANGE

AMERICAS

30

glrTransaction

transaction!D
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate

+ transactionType

transactionlD
+ transactioniD

transactionType
+ transactionType
+ transactionDate

DO vDhate = 05/01/2015 TO 05/31/2015:
FOR EACH glrTransaction NO-LOCK

WHERE transactionType = "INV"
AND transactionDate = vDate:
END. o

END.
Which Index?
» transactionDate
Why?
~ Rule 3 yields two possibilities
» Both indexes contains the same PUG

fields and one is selected. CHALLENGE

CHANGE

EX

AMERICAS

| cannot find a reference to this behaviour in the documentation, but it makes sense,
as both indexes would render the exact same list of rowids, albeit in a different
sequence. However, this construct is awkward and gains us nothing over example 4.

31

FOR EACH glrTransaction NO-LOCK

gerransaCtion WHERE (transactionType = "INV" OR
transactionType = "CRN")
transactionlD AND transactionDate >= 05/01/2015%
transactionDate AND transactionDate <= 05/31/2015:
transactioniype re
END.
Indexes Which Index?

transactionDate
+ transactionDate
+ transactionType

transactionlD
+ transactioniD

transactionType

PUG
+ transactionType CHALLENGE
+ transactionDate EXCHANGE

AMERICAS

This is basically the same as example 4 — Equality on the type and range on the date,
but here we have an OR

32

FOR EACH glrTransaction NO-LOCK

gerransaCtion WHERE (transactionType = "INV" OR
transactionType = "CRN")
transactionlD AND transactionDate >= 05/01/2015%
transactionDate AND transactionDate <= 05/31/2015:
transactioniype re
END.
Indexes Which Index?

transactionDate ~ transactionDate

+ transactionDate

+ transactionType Whv"

transactionlD
+ transactioniD

transactionType

PUG
+ transactionType CHALLENGE
+ transactionDate EXCHANGE

AMERICAS

Not a good idea, as it will not leverage the second (transaction type) level of the
index.

glrTransaction

transaction!D
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate

+ transactionType

transactionlD
+ transactioniD

transactionType
+ transactionType
+ transactionDate

FOR EACH glrTransaction NO-LOCK
WHERE (transactionType = "INV" OR
transactionType = "CRN")
AND transactionDate >= 05/01/2015
AND transactionDate <

END. :
Which Index?
» transactionDate

Why?

~ Rule 4: Use the index with the most active

range matches

EX

05/31/2015:

PUG
CHALLENGE

CHANGE

AMERICAS

Because the expression inside the () must resolve first, we end up with WHERE
clause that essentially boils down to a simple WHERE with AND, but the first one of

the three expressions bound by AND is not a straight equality or range match.

34

glrTransaction

transactionlD
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate

+ transactionType

transactionlD
+ transactioniD

transactionType
+ transactionType
+ transactionDate

FOR EACH glrTransaction NO-LOCK
WHERE (transactionType = "INV" OR
transactionType = "CRN")
>= 05/01/2015

AND transactionDate
05/31/2015:

AND transactionDate <

END. :
Which Index?
» transactionDate

Why?

~ Rule 4: Use the index with the most active
range matches

PUG
CHALLENGE

Can we fix this? EXCHANGE

AMERICAS

With the expected data distribution this is not too terrible, but we do utilize the

index in an optimal way.

35

glrTransaction

transaction!D
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate
+ transactionType

transactionlD
+ transactioniD

transactionType
+ transactionType
+ transactionDate

Yes, we can fix it
FOR EACH glrTransaction NO-LOCK
WHERE transactionType "INV"

AND transactionDate >= 05/01/2015
AND transactionDate <= 05/31/2015
OR transactionType = "CRN"
AND transactionDate >= 05/01/2015
AND transactionDate <« 05/31/2015:
END.
Index:

~transactionType (INV + Date range)
»transactionType (CRN + Date range)PUG

CHALLENGE
EXCHANGE

AMERICAS

We now have a WHERE with an OR and each OR fragment can be treated as an
independent WHERE with AND.

This leads to the selection of the better index. Two brackets are made on the index
and both levels of the index are leveraged.

36

FOR EACH glrTransaction NO-LOCK

gIrTransaction WHERE t;rans§ct;|3nTyp»e = "%NV" -
AND transactionbDate >= 05/01/2015
transactionlD AND transactionDate <= 05/31/2015
transactionDate OR transactionType "CRN"
transactioniype AND transactionbDate >= 05/01/2015
AND transactionDate <= 05/31/2015

USE-INDEX transactionType:

Indexes

transactionDate END.
+ transactionDate WhiCh Index?

+ transactionType

transactionlD
+ transactioniD

transactionType

PUG
+ transactionType CHALLENGE
+ transactionDate EXCHANGE

AMERICAS

This is the same as before, is it not? After all, the compiler would have selected the
index that we indicate in any case.

glrTransaction

transactionlD
transactionDate
transactionType

Indexes

transactionDate
+ transactionDate

+ transactionType

transactionlD
+ transactioniD

transactionType
+ transactionType
+ transactionDate

FOR

EACH glrTransaction NO-LOCK

WHERE transactionType = "INV"
AND transactionbDate >= 05/01/2015
AND transactionDate <= 05/31/2015

OR transactionType "CRN"

AND transactionDate >= 05/01/2015
AND transactionDate <= 05/31/2015

USE-INDEX transactionType:

END.

Which Index?
~transactionType WHOLE-INDEX

Why?

EX

PUG
CHALLENGE

CHANGE

AMERICAS

38

glrTransaction

transaction!D
transactionDate
transactioniype

Indexes

transactionDate
+ transactionDate

+ transactionType

transactionlD
+ transactioniD

transactionType
+ transactionType
+ transactionDate

FOR EACH glrTransaction NO-LOCK

WHERE transactionType = "INV"

AND transactionDate >= 05/01/2015
AND transactionDate <= 05/31/2015

OR transactionType "CRN"

AND transactionbDate >= 05/01/2015

AND transactionDate <= 05/31/2015

USE-INDEX transactionType:

END.

Which Index?
~transactionType WHOLE-INDEX
Why?

~ Prime directive

~ Only one bracket can be used

PUG
CHALLENGE
EXCHANGE

AMERICAS

USE-INDEX allows for a single bracket. The only bracket that enclose all the options
encompass the entire index. If we did not have the OR, i.e. if we had only the first or
the last part, it would still bracket properly and the WHOLE-INDEX will go away.

39

glrTransaction
transactioniD
transactionDate
transactionType
documentNo

Mixing single-field and compound indexes

transactionDate + transactionDate

* transactionlID

typeDocNo

+ transactionlID

+ transactionType
+ documentNo

PUG
CHALLENGE
EXCHANGE

AMERICAS

This set is fairly similar than the first one, except that the index with transactionType
has a second component. We will now see how that change some rules.

40

gldTransaction

transactionlD
transactionDate
transactionType
documentNo

Indexes

transactionDate
+ transactionDate

transactionlD
+transaction|D

typeDocNo
+ transactionType
+ documentNo

FOR EACH gldTransaction NO-LOCK

WHERE transactionType = "INV"
AND transactionbate >= 05/01/2015
AND transactionDate <= 05/31/2015:
END.
Which Index?
» typeDocNo
Why?

» Rule 3: Use the index with the most active
equality matches.

PUG
CHALLENGE
EXCHANGE

AMERICAS

This is the same as in example 1.

41

DO vDhate = 05/01/2015 TO 05/31/20165:

gldTransaction FOR EACH gldTransaction NO-LOCK
transactionlD WHERE transactionType = "INV"
transactionDate AND transactionDate = vDate:
na ’ L/
transactionType FHD. 22
documentNo END.
Indexes Which Index?

transactionDate
+ transactionDate

transactionlD
+transaction|D

typeDocNo PUG
sl CHALLENGE
EY(CHANGE

AMERICAS

This is essentially the same as the second case, where two single indexes was
selected and combined.

42

gldTransaction

transactionlD
transactionDate
transactionType
documentNo

Indexes

transactionDate
+ transactionDate

transactionlD
+transaction|D

typeDocNo
+ transactionType
+ documentNo

DO vDhate = 05/01/2015 TO 05/31/2015:
FOR EACH gldTransaction NO-LOCK

WHERE transactionType = "INV"
AND transactionDate = vDate:
END.
END.
Which Index?
» transactionDate
Why?

PUG
CHALLENGE
EXCHANGE

AMERICAS

43

DO vDhate = 05/01/2015 TO 05/31/20165:

gldTransaction FOR EACH gldTransaction NO-LOCK
transactionlD WHERE transactionType = "INV"
'__ e AND transactionDate = vDate:
transactionDate
transactionType et
END.
documentNo END.
Indexes Which Index?
transactionDate) :
+ transactionDate » transactionDate
transactionID Why?
rusasacHoniD » With AND, indexes do not combine unless
typeDocNo all fields are used in equality PUG
+ transactionType
+ documentNo matches. EHACLA'ENEE
XAMERICAS

The compound index is not combined with the single index, because the whole index
must be used in equality matches.

44

10

gldTransaction

transactionlD
transactionDate
transactionType
documentNo

Indexes

transactionDate

DO wvDate 05/01/2015 TO 05/31/2015:
FOR EACH gldTransaction NO-LOCK
WHERE transactionTyps = "INV"
AND documentNo = "I12300121"
AND transactionDate = yDate:

END.
END.

Which Index?
» transactionDate

+ transactionDate

» typeDocNo

transactionlD

+transaction|D Why?
typeDocNo » All fields are used in equality
+1 ctionT i i i :
,d';czsnfen:’N“O ype matches, neither index is unique. CHALLENGE
EXCHANGE
AMERICAS

If the full index participated in the equality match, it would indeed combine with the
other index, as happened in example 2.

45

11

gldTransaction

transactionlD
transactionDate
transactionType
documentNo

Indexes

transactionDate
+ transactionDate

transactionlD
+transaction|D

typeDocNo
+ transactionType
+ documentNo

FOR EACH gldTransaction NO-LOCK

WHERE transactionType
OR transactionbDate
AND transactionDate

END.

Which Index?

Note that this (rather unlikely) query contains an OR.

= "INV"

>= 05/01/2015
<= 05/31/2015:

PUG
CHALLENGE

EXCHANGE

AMERICAS

46

11
gldTransaction

transactionlD
transactionDate
transactionType
documentNo

Indexes

transactionDate
+ transactionDate

transactionlD
+transaction|D

typeDocNo
+ transactionType
+ documentNo

FOR EACH gldTransaction NO-LOCK
WHERE transactionType

OR transactionbDate

AND transactionDate

END.

Which Index?

» typeDocNo
» transactionDate

Why?

= 05/01/2015
<= 05/31/2015:

PUG
CHALLENGE
CHANGE

47

11

gldTransaction

transactionlD
transactionDate
transactionType
documentNo

Indexes

transactionDate
+ transactionDate

transactioniD
+ transactionlD

typeDocNo
+ transactionType
+ documentNo

FOR EACH gldTransaction NO-LOCK

WHERE transactionType
OR transactionDate
AND transactionDate <

END.

Which Index?

» typeDocNo
» transactionDate

Why?
» Rule 3 for the first part

~ Rule 4 for the second part

- "INV"

>= 05/01/2015

|

05/31/2015:

PUG
CHALLENGE
EXCHANGE

AMERICAS

Each side of the OR is evaluated as a separate query and gets its own index bracket.
Note that if any one of these resulted in a full index scan of any index, only that
index would be used, as all the records will be accessed in any case.

: FIND FIRST gldTransaction NO-LOCK
gldeaﬂsaCtIOﬂ WHERE transactionType = "INV"
OR transactionbDate > 05/01/2015

transaction!D
NO-ERROR.

transactionDate
transactionType

documentNo Which Index?

Indexes

transactionDate
+ transactionDate

transactionlD
+transaction|D

typeDocNo

+ transactionType PU G
+ documentNo CHALLENGE
EXCHANGE

AMERICAS

What will happen when we use a FIND?

49

12

gldTransaction

transactionlD
transactionDate
transactionType
documentNo

Indexes

transactionDate
+ transactionDate

transactionlD
+transaction|D

typeDocNo
+ transactionType
+ documentNo

FIND FIRST gldTransaction NO-LOCK
WHERE transactionType = "INV"
OR transactionbDate > 05/01/2015
NO-ERROR.

Which Index?
» transactionID — WHOLE-INDEX

Why?

PUG
CHALLENGE
EXCHANGE

AMERICAS

50

12

gldTransaction

transactionlD
transactionDate
transactionType
documentNo

Indexes

transactionDate
+ transactionDate

transactioniD
+ transactionlD

typeDocNo
+ transactionType
+ documentNo

FIND FIRST gldTransaction NO-LOCK

WHERE transactionType = "INV"
OR transactionbate > 05/01/2015
NO-ERROR.
Which Index?

» transactionID — WHOLE-INDEX

Why?
~Rule 7 Use primary
PUG
CHALLENGE
EXCHANGE
AMERICAS

FIND allows for the use of a single index bracket only. Of the two candidate indexes
that was used in example 11, neither one will satisfy the other side of the OR, hence
both gets eliminated early on and the compiler falls back to rule 7.

51

FOR EACH gldTransaction NO-LOCK

gldTransaction WHERE documentNo = "123001214":
transaction!D it B
transactionDate ND;
transactionType =
documentNo Which Index?
Indexes »~ transactionlD — WHOLE-INDEX
transactionDate
+ transactionDate
. ?
transactioniD Why'
+ transaction|D ~Rule 7 Use primary
typeDocNo PUG
+ transactionType
+ documentNo CHALLENGE
EXCHANGE
AMERICAS

Once again, all indexes are eliminated early on, and the compiler falls back to its
default of scanning the primary index.

52

14

FOR EACH gldTransaction NO-LOCK

SldTransaction WHERE transactionType > ""
transactionlD AND documentNo = "123001214":
tramactnon?atp .
transaction iype
documentNo

Which Index?

Indexes

transactionDate
+ transactionDate

transactionlD
+transaction|D

typeDocNo

+ transactionType PU G
+ documentNo CHALLENGE
EXCHANGE

AMERICAS

| often see this previous problem solved using code as above. Will it work?

53

14

FOR EACH gldTransaction NO-LOCK

SldTransaction WHERE transactionType > ""
transactionlD AND documentNo = "123001214":
tramactnon?atp .
transaction iype
documentNo

Which Index?

Indexes

transactionDate
+ transactionDate Why?

» typeDocNo

transactionlD
+transaction|D

typeDocNo PUG
sl CHALLENGE
EY(CHANGE

AMERICAS

14

FOR EACH gldTransaction NO-LOCK

gldTransaction WHERE transactionType > ""
AND documentNo = "123001214":
transactionlD .
transactionDate END.
transactionType
documentNo Which Index?
Indexes » typeDocNo
transactionDate Why?
GISE NN 530 »Rule 4 Use index with most active range
transactionID matches.
+ transaction|D
typeDocNo . .
e e naoTvEs We made it worse but hides PUG
CHALLENGE
+ documentNo he fact! E CHANGE
XANERICAS

The index with the most range matches was selected. This means that components
after the range matching component (transactionType) are ignored.

Since anything is > “”, we have a range here that spans the whole index, but the
compiler does not realize this, at is has a “value” for the lower boundary of the
bracket, so the WHOLE-INDEX is missing from the cross reference. But this index has
two fields. Thus the index tree consists of all the rowids in the table plus all the
transaction types plus all the document numbers, which could in total actually
occupy more disk space than the primary index, which consists of all the rowids and
all the transactionIDs, in which case we are now reading more blocks from disk and
still access the entire table. Note however that in this design we expect the
transactionID to be large, random values that will compress poorly, while the
document type and number should lead to fairly good index compression, so this
might still be the better option.

55

’ - - - ?
gldTransaction Will the compound index solve this?
FOR EACH gldTransaction NO-LOCK
transactionlD WHERE (transactionType = "INV" OR
transactionDate transactionType = "CRN")
transactionType AND transactionDate >= 05/01/2015
documentNo AND transactionDate <= 05/01/2015:
Indexes END.
transactionDate
+ transactionDate
No
transactionID .
+ transaction|D ~ transactionDate
typeDocNo PUG
+ transactionType
+ documentNo EHACLA'ENEE
XAMERICAS

Once again, we have a range match bound with AND to an OR function, hence the
index with the most range matches is selected.

56

Questions?

PUG
CHALLENGE
EXCHANGE

AMERICAS

57

Feedback and more examples welcome

Simon Prinsloo

simon@vidisolve.com

PUG
CHALLENGE
EXCHANGE

AMERICAS

58

