
1

Let me begin by introducing myself. I have been a Progress Application
Partner since 1986 and for many years I was the architect and chief
developer for our ERP application. In recent years I have refocused on the
problems of transforming and modernizing legacy ABL applications. This
has led me to exploring UML as a tool in the transformation process.
Today’s talk is to tell you about my efforts to analyze existing applications
using UML.

2

Here is our agenda for today. First we are going to talk a little bit about the
background, then about what UML offers, a UML Profile for ABL, the initial
version of ABL2UML, and then look forward to work in process.

3

First, let’s briefly consider what problem we are trying to solve.

4

Many ABL systems are 10 or even 20 years old or more.
Many systems were purchased originally from a partner, but
• The partner may no longer be in business; or
• The system is heavily customized so the site cannot upgrade; or
• There may be a breakdown in the relationship with the partner.
The result is an orphaned system.
Whether the system was purchased or built entirely in-house, modifications
are typically patchwork, on demand, spot changes with no overriding
architectural vision.
Progress’ low cost of ownership ironically leads to low investment, minimal
changes, and limited staff resources.
PSC’s principle of upward compatibility means no need for periodic
architectural revisions such as are required in most other languages.
Many sites have minimal staff, who just get the work done, with no time or
budget for documentation, review, restructuring, etc.
I.e., most shops can go on and on comfortably for many years enjoying the
low cost of ownership.

5

Many legacy systems work well and have rich functionality appropriate to the
business, but because many older systems are still ChUI, people become
dissatisfied with what is seen as old “clunky” interfaces. However, these
legacy ChUI architectures typically have UI, BL, and DA all mixed together,
making it difficult to just change the UI. This is also true for many older
client/server ABL GUI systems. The rewrite to separate UI and introduce a
more modern interface can seem like having to nearly rewrite the entire
application.
The accumulation of multiple systems in one business can result in near
duplication of functions and enormous maintenance burdens. Moving to a
SOA, which centralizes each service, is a solution, but a major architectural
change.
In the current world, there are many forces driving toward integration –
suppliers, customers, and various related services such as shipping, pricing,
credit, etc., particularly the increased range and complexity of expectations
for web services. But, legacy applications are rarely structured for easy
integration and so major architectural changes are required.
Even the need for major changes to a single subsystem can precipitate a
crisis because the work is far more extensive than the small modifications
which have traditionally been done by the in-house shop.

6

So, what tools does the Progress community have already?

7

Some shops have used ERD (Entity Relationship Diagram) tools to provide
some help understanding their applications since few programmers are likely
to know and understand the functioning of the hundreds of tables typical of
many legacy ABL applications.
Even if the tool supports OpenEdge enough to provide automated
initialization from the schema, the schema contains no explicit information
about foreign keys. So, relationships between tables have to be created by
hand. Moreover, long histories of patchwork development mean there is no
guarantee that indexes are currently in use or are good descriptors of how
tables are accessed. Individual fields and even entire tables may have fallen
into disuse.

8

To complement ERD tools, some shops have tools which analyze the output
of COMPILE XREF, in some cases storing it in a database for later queries
and analysis. This is probably one of the most frequent tool implementations
in an ABL shop, although no standard tool has ever emerged to become
widely adopted.
This information includes table access and index usage, but not actual
WHERE clauses. It has information on what columns within a table are
actually being used or modified by the program is imprecise and limited to
the containing source file, not the internal procedure or function. This is the
kind of information one needs for procedure to service decomposition.
Often, these tools were written years ago and fail to take advantage of
additional information now reported by XREF.
There is nothing in the XREF data which helps understand dynamic calls
such as RUN VALUE() or a RUN of a procedure in a SUPER, so information
on the linkage of program units is very fragmented at best.
One of the major limitations of these tools is that COMPILE XREF is an
analysis of individual compile units, one by one. These tools can be
effective in answering questions like “which compile units access table X”,
but are not useful in describing the operational structure of an application.

9

So, what do we need to go beyond this?

10

While tools like Roundtable may have integrated several tools into a
coordinated whole, there is nothing about this integration which transcends
the limitations of the individual components.
One of the most conspicuous weaknesses relates to dynamic call resolution,
about which I will say more shortly. Any time it is not clear what program,
procedure, or function is being executed, the structural relationships in the
code are obscured.
Even such information as is available in any given tool set is generally
accessible only via limited methods such as queries or browsers, which are
far less rich than true modeling systems.
The diversity of tools built shop by shop also means that no leverage has
been gained such as would come from many people working on a common
standardized modeling tool.

11

Dynamic call mechanisms have added great power to ABL. Even in very
early systems, one saw RUN VALUE() with the value coming from a
database table, local list, or a computation being heavily used in ABL to
provide dynamic operation and simplify what would otherwise have been
extensive control logic.
Persistent procedures and later superprocedures have done a great deal to
enhance the capabilities of ABL programming, but have also often made it
unclear, without reading a lot of code, exactly which code is being executed
by which statement. Even when the link between one procedure and a
persistent or super procedure is clear, it is not obvious from that context
what other procedures might also use that same code.
These same issues exist for function calls.
How severe a problem this is depends on the specific code base, but is likely
to be some issue in most.

12

Many of you will be familiar with Proparse, which parses ABL code in a fashion
similar to what happens during compilation, but which makes the results of that
parsing available for analysis by tools such as ProLint, an open source code quality
tool originally created by Jurjen Dijkstra. These capabilities were extended in
ProRefactor to provide the basic structures and tools for refactoring ABL code.
Joanju Software, which created both Proparse and ProRefactor has now built on
this foundation to create Analyst, which adds call graph analysis and other features.
Analyst is capable of automatic resolution of many kinds of dynamic calls and
provides reporting for those which cannot be resolved automatically. The user can
then provide “hints” which will allow Analyst to build a complete call graph of the
application. The result is a rich database from which one can dynamically generate
HTML pages showing the code with links which allow one to follow the call tree
through all its branches. There is also a powerful query tool for inspecting aspects
of the structure.
As part of our cooperative effort, John Green of Joanju has provided Analyst with
the ability to also produce an XML “bill of materials” file which covers all code
components (procedures, classes, internal procedures, functions, etc.), the call path
between those units, access to tables, where clauses, and even field-level
information on the create, read, update, or delete operations performed by any
code component.
Sadly, it has no support for any version past 10.2B. I’ll talk more about this in a few
minutes, but let’s see what we accomplished thus far.

13

My proposed replacement for the dependency on Analyst is ABL2DB, which I
will talk a bit more about later as well as in some depth at 3:30 tomorrow
afternoon.

14

Given a source of information from Analyst or an alternate tool, let’s look at
what we were able to accomplish with it. First, we need a way to identify a
way to represent the information.

15

UML was created to unify three different modeling schemes, each of which
had its strengths. It represents a rare case in which three competing
providers recognized that the absence of a standard weakened all their
efforts, so they worked together to create a single superset standard. Since
its introduction and broad acceptance, it has grown enormously in scope and
capability and is very widely used in object-oriented development. Tools for
UML are quite numerous, ranging from free open source efforts to quite
expensive proprietary systems, notably Rational.
While its primary use is in designing new applications, reverse engineering
of OO applications is quite standard and there is a small but growing, body
of work and literature on its use for legacy, non-OO applications, although I
confess that I find myself something of an unexpected pioneer in that realm.

16

UML 2.0 and 2.1 have become a very rich set of modeling tools. A great
many of these are intended for use as part of the Object-Oriented Analysis
and Design process which begins with collecting Requirements and Use
Cases and proceeds through multiple steps before resulting in the design of
a specific system and actual code.
The problem with legacy ABL code, however, is that we have the actual
finished system without any of the conceptual design material, and it is that
existing system we want to model. Depending on the ultimate purpose,
there may also be a need at some point for traditional analytic models, but
the first step is to model the system as it has been built. For this, we will
primarily use three categories of model – Data Models, Component Models,
and User Interface models.
The Data Model is used for all aspects of the OpenEdge schema –
databases, tables, columns, indexes, triggers, etc. all properties of those
elements.
The Component Model is used for Program Units (.p, .w, and .cls files plus
Internal Procedures and Functions), Include Units (.i files), and Compile
Units (.r files).
The User Interface Model is used for Menus and Functional Units.

17

While UML is a standard, support for the full standard varies considerably
among the available tools, and the tools vary widely in price. In the ABL
world, while there are some using Rational (the top of the line, but very
expensive), a large number of ABL sites working with UML have adopted
Enterprise Architect from Sparx Systems. It offers a very capable tool, very
close to Rational in many respects and perhaps even superior in some, but
at a very modest price. It supports the use of an OpenEdge database as a
repository and while the native product will not read an OpenEdge schema,
Phil Magnay of Progress has published a tool on PSDN which will read a .df
file and build an EA data model. There have also been some recent
publications of his on PSDN for limited reverse engineering in association
with OpenEdge Architect.

See
https://community.progress.com/technicalusers/w/openedgedevelopment/93
7.openedge-add-in-for-enterprise-architect.aspx and
https://community.progress.com/technicalusers/w/openedgedevelopment/93
6.openedge-mdg-technology-for-enterprise-architect.aspx on the PSDN
Community Wiki pages.

18

Having selected UML, we need to do some setup for ABL.

19

In UML, there is the concept of a “profile” which is a mechanism for
extending the intrinsic parts of UML to provide a vocabulary appropriate to a
particular domain or methodology. A profile consists of ‘stereotypes’ which
provide a map between UML elements and connectors to terms appropriate
to the domain or methodology. The profile can also include constraints and
rules about how the elements are to be used as well as tags which can be
used to assign properties to elements beyond those which are inherent to
UML. Other standard UML properties include the Alias, often used for a
descriptive name, and Notes, which can record more detailed information
such as might be extracted from comments, when these are available.

20

As a simple example of what goes into a UML Profile, consider
«oeProgram», the stereotype that we use for a .p file. The double brackets
called guillemets or angle quotes are used in UML to set off stereotypes. An
«oeProgram» is mapped onto the UML construct called Component.
Components can have associated Tagged Values and three of these for
«oeProgram» are PathName, HasUI, and HasDA. Shared variables in the
program are mapped to Attributes of the Component.

21

Profiles are normally defined for a particular application domain, like
telephony, or for a particular form of analysis or methodology. They are not
normally used for a language. However, OO languages tend to map onto
UML components in a fairly simple way, but ABL, particularly legacy ABL,
does not have such an obvious mapping.
Therefore, I decided that we needed a profile to facilitate modeling of legacy
ABL systems. My goal was to create a robust, complete profile which would
be suitable for adoption as a standard, thus providing all people working with
UML and ABL with a common vocabulary and the potential for sharing of
tools. This effort is being treated as an open source project hosted on
OpenEdge Hive. I encourage others working with ABL and UML to
contribute to and adopt this profile.

22

The stereotypes and tags for the data model cover all properties in the
schema, including physical layout of the database, although we have not yet
implemented the DataServer portions.
The tools Phil Magnay published include one that will “discover” foreign key
relationships by looking for field name matches. This might be helpful for
some databases, but fails on those which use table-specific field names or
those which have common auditing fields in many tables, resulting in false
keys. A structure for keys and relationships has been included in the profile,
but I have not provided code for this in the initial ABL to UML tool. However,
the tool does show actual use.

23

Here is a quick look at a piece of the Data Model for ProLint as it is displayed
in the Project Browser panel of Enterprise Architect. As noted, all UML
examples in this presentation are taken from an analysis of ProLint. Here
one can see that a single database has been divided into packages for
Metaschema and the ProLint schema proper. Packages for pieces of the
Roundtable and Sports schema also exist, but do not show here. One can
see a table with its columns, primary key, and indexes. Of course, there are
a large number of details which don’t show in this view and which are
available by looking at the details of the table object.

24

The stereotypes for code emphasize the structural units of the code, i.e.,
those subdivisions of the code from which and to which control flows. Thus,
there are stereotypes for programs, classes, and compile units at the top
level, and internal procedures, functions, and methods for the internal
structures. Include files are treated separately since they may be used in
multiple places.
As a part of the analysis in building the model, internal procedures and
functions are classified as public or private based on whether any of the
references to them come from outside the compile unit.
All new shared definitions and references to shared variables are also
included in the Profile.
As tools evolve, I hope to include more aspects of the code as additional
stereotypes and tags. This will depend largely on what the market needs.

25

Within the Component Model there are packages for Compile Units, Include
Units, and Program Units. Compile Units cover all compiled code packages,
i.e. .r file. Include Units cover all .i files. Program Units cover all source
except Include Units. A portion of the Program Unit hierarchy from ProLint is
shown here, where you can see both private and public IPs under the
filterplugins.p program.

26

Stereotypes for control flow connections between code components cover all
types of possible relationships including simple run statements of programs
or internal procedures, new class statements, method invocations, function
calls and forward references, and the add of local or session
superprocedures. For all control flow links, there is both a detail link
between the actual code units in which the flow begins and end and there is
a summary link between the enclosing procedures or classes. A second
summary link is created between the compile units. This facilitates
diagramming at multiple levels.

27

Here you can see a portion of a UML diagram illustrating a portion of ProLint.
• Blue boxes with solid boundaries are programs;
• Dashed boundaries are internal procedures;
• Dotted boundaries are functions;
• Blue IPs and Functions are public; and
• Green IPs and Functions are private.
Similarly, run program, run IP, and function calls are solid, dashed, dotted,
and colored correspondingly.
The standard stereotype definitions available on OpenEdge Hive include the
scripts to provide this coloration and line treatment in Enterprise Architect. A
key is available there describing the standards used.

«oeProgram»

prolint/filters/ignoreab.p

«oeProgram»

prolint/filters/exclude.p

«oeProgram»

prolint/filters/nowarn.p

«oeProgram»

prolint/core/lintsuper.p

«oeProgram»

prolint/core/filterplugins.p

«oeIPPublic»

prolint/core/filterplugins.p:
AddNowarnFilter

«oeIPPublic»

prolint/core/filterplugins.p:
GetFilterResult

«oeIPPrivate»

prolint/core/filterplugins.p:
InitializePlugins

«oeFunctionPrivate»

prolint/core/filterplugins.p: RelativeFilename

«oeIPPublic»

prolint/core/filterplugins.p: SethLintSuper

«oeIPPublic»

prolint/core/lintsuper.p:
PublishResultSeverity

«oeProgram»

prolint/core/prolint.p

«oeFunctionPublic»

prolint/core/lintsuper.p:
RelativeFilename

«oeFunctionPrivate»

prolint/core/prolint.p:
ParseProparseDirectives

«oeIPPrivate»

prolint/core/prolint.p:
PublishWarnings

«oeIPPublic»

prolint/core/lintsuper.p:
PublishResultSeverityRelative

«oeIPPublic»

prolint/filters/nowarn.p: GetFilterResult

«oeIPPublic»

prolint/filters/exclude.p:
GetFilterResult

«oeIPPublic»

prolint/filters/ignoreab.p:
GetFilterResult

28

Detail links are created between the smallest containing source code unit,
e.g., program, class, internal procedure, function, or method, and are
summarized at the level of the containing program and compile unit.
Stereotypes distinguish between read only links and those where create,
delete, or update activity occur and the type of activity is provided in a tag.
The actual WHERE clause for any query is also captured. Each field which
is explicitly read or written is noted in a tag along with the action which
occurs.

29

Here is a simple UML diagram showing one of the database tables for
ProLint in pink in the center with the detail data access from internal
procedures and main program bodies. The two solid lines in the lower right
indicate modify access from those two internal procedures. All other links
are read only and are shown as dashed lines, although that may not be clear
in this reproduction. With diagrams like this, it is very easy and fast to see
what is going on in the relationship of the tables and programs.

«oeTable»

lint_session

«oeProgram»

prolint/prolintdb/findsessions.w

«oeIPPrivate»

prolint/prolintdb/findsessions.w: OpenQ

«oeIPPrivate»

prolint/prolintdb/findsessions.w: PublishResults

«oeIPPrivate»

prolint/prolintdb/findsessions.w: SetSession

«oeIPPrivate»

prolint/prolintdb/findsessions.w: enable_UI

«oeProgram»

prolint/prolintdb/lintstats.p

«oeIPPrivate»

prolint/prolintdb/lintstats.p:
openqSessions

«oeProgram»

prolint/outputhandlers/prolintdb.p

«oeIPPrivate»

prolint/outputhandlers/prolintdb.p:
Prolint_FinalizeResults

«oeIPPrivate»

prolint/outputhandlers/prolintdb.p:
Prolint_Status_FileStart

30

While implemented differently in different applications, a general set of
stereotypes for modeling menus is included in the Profile since they provide
an important functional structure to the way in which an application is used.
Each menu selection that causes the execution of something other than a
menu program is linked to a Functional Unit. The Functional Unit serves as
a container for all of the code which might be reached during the execution
of that function. The Functional Unit is in turn linked to the Compile Unit
which is the program first executed by that Functional Unit.

31

Here we see a fragment of the menu system of ProLint with the menu
selections leading to Functional Units. On the left in the dashed box is a
special stereotype called a Dynamic Set for menu-like sets which are
selected as a part of configuration rather than step-wise user interaction.

«oeFunctionalUnit»

prolint/core/add2protools.p

«oeFunctionalUnit»

prolint/core/checkrelease.p

«oeFunctionalUnit»

prolint/core/dnewrule.w

«oeFunctionalUnit»

prolint/core/l intcfg.w

«oeFunctionalUnit»

prolint/core/openhtml.p

«oeFunctionalUnit»

prolint/launch/lintcurrent.p

«oeFunctionalUnit»

prolint/launch/lintopen.p

«oeFunctionalUnit»

prolint/launch/start.p

«oeFunctionalUnit»

prolint/launch/test.p

«oeFunctionalUnit»

prolint/prolintdb/dirstats.w

«oeFunctionalUnit»

prolint/prolintdb/incstats.w

«oeFunctionalUnit»

prolint/prolintdb/l intstats.p

«oeFunctionalUnit»

prolint/prolintdb/rulestats.w

«oeFunctionalUnit»

prolint/outputhandlers/logwin.p

«oeFunctionalUnit»

prolint/outputhandlers/logwin8.p

«oeMenu»

1 Main Prolint Screen

«oeMenu»

2 Using Prolint

«oeMenu»

3 Query Prolintdb

«oeMenu»

4 Developing Prolint

«oeMenu»

5 Other

«oeMenu»

3 Result Window

32

So, having defined how we want to represent the ABL code in UML, how do
we build the model?

33

Based on this profile, I have written ABL code which reads from a variety of
sources and builds a UML model by directly writing into an OpenEdge
repository for Enterprise Architect. This is an open source project based on
the principle that sharing tools and adhering to common standards such as
the published profile will get us all a lot farther than if each of us just builds
our own tools. I have taken special care in the writing to make the code
clear and easy to modify for the specifics of an individual site and will be
publishing multiple versions of the site-specific code to illustrate how
different schema and menu structures can be adapted to the common
stereotypes. Most of the code -- all the really hard parts -- should be
standard across all sites. This version is mostly not OO.

34

The schema portion of the tool reads directly from an OpenEdge database to
build the model. If one has a large number of tables and a mechanism by
which to group them into packages, there is a piece of the custom site code
for this purpose. All details about tables, all columns, all details about
columns, all indices, the primary key, and all triggers are captured. The code
doesn’t currently handle data server aspects, but this is an easy adaptation
with pre-existing stereotypes, if there is demand.
The related tool on PSDN has a component which will guess at foreign key
relationships between tables. This capability is currently omitted from the
current code on OE Hive since we are capturing actual use and WHERE
clauses from the code portion. Again, if there is demand, I will add a foreign
key guessing tool, written in ABL so that it is easily customized, and with
structures to make it easy to omit selected columns from comparisons, e.g.,
audit trail fields, and to manipulate column names prior to matching, e.g.,
removing table prefixes.

35

The code portion is primarily based on the “bill of materials” XML file
produced by Analyst, but the site-specific portion is easily tailored to fit local
menu systems, list of program descriptions, standard naming conventions, or
whatever might be available to assist in making the model more meaningful.
There is also the option of using additional custom stereotypes and custom
post-processing where needed.
The code stage consists of basically five phases:
1. Building components from the bill of materials;
2. Building connectors between the components from the bill of materials;
3. Postprocessing to identify private versus public access;
4. Optional custom additions; and
5. Optional custom postprocessing for analysis similar to private versus
public.

36

As noted, there is a separate program for custom processing with a skeleton
structure and multiple examples of how to adapt the usage to site-specific
implementations.

37

As you have seen, we have applied these tools to ProLint, a small but quite
complex tool whose source code is freely available for download.
They have also been applied to a large, complex ERP application of nearly 2
million lines of ABL running at Kal Tire in Canada and are being used by
them to analyze subsystems and potential services. Nómadesoft uses it to
produce documentation that they supply with their software.

38

So far I have been talking about the original release of the tool. Now let’s
consider where to go from here.

The previously released version of this tool is an interesting and valuable
start, but also clearly just the beginning. I have had many ideas for adding to
its capabilities. But, I have been very concerned about the dependence on
Analyst. It is a wonderful tool, but it failed to thrive in the marketplace and
the discontinuation of maintenance for new versions has provoked an
increasing crisis, particularly with the accelerating delivery of new versions
from PSC. While many sites may be primarily version 9 or even earlier in
the code base, there is a real problem if the tool is going to fall down the
minute one uses a single new verb. Two things have come together this
year to change that.

One is that I had thought for some time to create an open source tool which
would database XREF and LIST data as completely as possible. This
clearly would cover a lot of the need in the current tool, albeit with some
notable exceptions. In fact, the version used by Nomadesoft is based on an
XREF database rather than Analyst which was adequate for their needs.
The other development this year was the work by Gilles Querret with the
parser from Progress Development Studio. Let’s explore these a bit further.

39

Creating a database of XREF data is hardly a new idea. Indeed, it has been
done many times by various ISVs for their own codebase. But, these are not
generally available, often incomplete for what they might cover, and have
features specific to the code base of that ISV, e.g., picking up the first line of
the code as the description or how to read menu information. Nevertheless,
making a version which is complete and which is structured for easy
configuration to the specific code base does not seem that difficult. I have
had some experience with the ABL2UML code itself doing this kind of thing.
And, making it open source might make it easier for people to start using it,
particularly since the tool would have value in its own right.

40

Relying solely on XREF and LIST data is going to have some limitations.
Most dramatic among these will be the lack of dynamic call resolution since
this is dependent on call graph analysis, which is beyond what we can
expect to include in an initial release at least. However, one can certainly
provide an unresolved dynamic call report and a mechanism for manual
resolution. Depending on the code base, this will vary from easy to difficult
to complete.

There are also some attributes in the current profile which may be less easy
to identify. One of these is the HasUI property. The HasDA property we can
probably provide by parsing the COMPILE LIST output for buffers.

Also, the current profile includes the full WHERE clause for an data access.
It may be possible to parse this from the COMPILE LIST output using
indicators from the COMPILE XREF output, but this may not be easy.

41

To supplement what one can get from the COMPILE options, I am going to
explore what can be done with the parser in Progress Development Studio.
Gilles Querret has shown that it is possible to use this to access the Abstract
Symbol Tree in much the same way that PDS does to provide syntax aware
coloration and the like. He is using it to provide input to Sonar Qube, an
open source code analysis tool. This should allow fairly quickly removing all
limitations except the dynamic call resolution and provides the foundation for
many possible additions.

42

In addition to the move to an open source database and possible parser,
there are some addition goals in the current work. I want to move the tool to
OO because it is the right thing to do. When first written, 10.1A was new
and I was concerned about how many people would have that recent a
version. Now, I tend to think that one’s development and analysis platform
should be current, even if the production code isn’t. I would like to provide
for incremental builds, although full builds provide a certain confidence. I
want to make it easier and more obvious how to use pieces separately, e.g.,
just the schema. While there is appeal about building directly to an
OpenEdge database, I want to allow building to other technology respository
databases and even non-EA products. The current product builds directly
from the schema, but I would like to add building from a .df including
incremental. And, I want to consider further tools such as a bulk generator
for diagrams of specified types, a connectedness assessment tool, and to
finalize the existing diagram generator.

43

44

I am also looking at code generation from a revised model. Initially, this will
not be anything like full transformation, but simply being able to make small
changes in the model and then produce revised code. This will be
connected to roundtrip integration with OpenEdge Architect, not just for OO
code, but any code in a legacy system. While a primary target will be
OpenEdge Architect, I will be looking at ways to make this available to those
using other development tools as well.
I will also be working on various forms of impact analysis and subsystem and
service identification tools.

45

46

Automated building of UML models from ABL code and schema is available
today and in production at a large site. This is a more comprehensive and
complete tool than any prior efforts of which I am aware and is a tool that is
likely on its own to provide substantial value to anyone trying to come to
grips with a large legacy code base. This information will also provide
important information for any transformation project, shortening analysis time
and reducing costs. I invite anyone with these needs to contact me so that I
can help them figure out how to adapt the tools to their specific code and
how to move forward with their projects.
While this is itself an important milestone, it is only the beginning and there
will be many additional capabilities made available in the coming months.
Stay tuned at the OpenEdge Hive for developments or contact me for
anything which is of particular interest.

47

48

49

