
1

Let me begin by introducing myself. I have been a Progress Application
Partner since 1986 and for many years I was the architect and chief
developer for our ERP application. In recent years I have refocused on the
problems of transforming and modernizing legacy ABL applications. This
implies needing to understand what the existing legacy application is doing
so that we can change or replace it with confidence. Today I am going to tell
you about an open source tool I have been building.

2

Here is our agenda for today. First we are going to talk a little bit about the
background, then about what is in the current version of the tool, the future
additions to the tool, and finally the potential for analysis.

3

First, let’s talk a bit about the nature of the problem and what opportunities
there are for addressing the problem.

I’m sure that most of you who have been around for a while can identify the
problem … large legacy ABL systems, often millions of lines of code,
documentation which could be written on three napkins, and typically a
reliance on some old hand who has been around for years to help everyone
else figure out where things are and how they work … until he or she isn’t
there any more.

4

And we all know that when we make changes, we should understand what
we are doing before we start … what will be impacted by any given change.
But, without documentation, there isn’t really any way to do that and as a
result we make mistakes. Those mistakes often have a big impact, even on
running the business. Not knowing the impact, we don’t really even know
what to test — so the problem can be in some area unrelated to where we
did the work. In the worst cases, the cost impact to business operations
exceeds all of the technical expense invested in making the original change
and in repairing the damage.

5

To make changes safely we need to understand how all parts of the code
interact with other parts of the code and how all parts of the data are
impacted by all parts of the code. We don’t necessarily need to know
everything all the time, but we do need to know anything relevant to the
current project, so somewhere we need to have that knowledge. Having this
information at your fingertips is a whole different world from having to figure
it all out by reading code.

6

One of the sources of information accessible to all of us is the output of
COMPILE XREF and COMPILE LIST. Both contain useful information,
though not always in the most accessible form. And, the information is about
only one compile unit at a time. Moreover, clearly, all the information we
want is not there, so we need access to other sources. And, we need to
capture that information in a database so that we can get at any and all of it
efficiently and quickly.

7

Of course, this is not a new idea. Many vendors have built some form of
engine to capture and store XREF data, but these are proprietary systems
not accessible to the general community and are often quite tailored to the
specifics of the application for which they were defined. And, many are quite
limited in the information they gather, in part because that is all the designers
tackled and in part because some date back to the 1980’s when there was
less information available.

8

Which brings me to ABL2DB, my own offering for tackling this problem. It is
open source and has been designed to be highly modular, highly adaptable,
and easily extended. There are some components which, by necessity,
need to be tailored to the individual code base, but these have been isolated,
identified, and packaged for easy customization. As you will see, the current
version is already collecting a substantial amount of information and the
roadmap is in place for extensions soon.

9

10

So, let’s take a look at what is in the code today.

I created a set of database tables to mirror _File, _Field, etc. because those
files will have the analysis schema in our target database. The fields
provided are very complete and a program is provided to load these from a
.df. The load program doesn’t yet cover every possible option because I
don’t have a .df sample with everything to work from, but the structure is
very easily expanded to any new dump syntax.

11

DEMO: So, let’s take a quick look in Enterprise Architect at the schema of
these tables, which should be familiar to most of you from the parallel to
metaschema tables. This diagram does not show all possible fields, only
those which are the most likely to be relevant to the typical application. In
this and the following diagrams I am not going to go over all of the details
since that would be both boring and time consuming, but the details will be in
the published presentation.

In the upper right we have DB_Table which holds the information from _File.
I took the opportunity to use more modern nomenclature and make some of
the field names less cryptic. Connected to it is DB_Column in the lower left.
Then, in the upper right there is DB_Index which connects to DB_Table and
below it DB_IndexColumn which points to the columns used in the index.
Note that I am creating one additional column in every table for the RECID
so that any joins by RECID can be recorded.

Performed as a demo so that it was possible to zoom in on the individual
tables and read at least some of the text.

12

DB_Table

«column»
*PK ch_ID: character
* chTableName: character
 chTableArea: character
 chDumpName: character
 chDescription: character
 chTableLabel: character
 FK chPrimeIndexID: character

«FK»
+ FK_DB_Table_DB_Index(character)

«PK»
+ PK_DB_Table(character)

«index»
+ IXFK_DB_Table_DB_Index(character)

DB_Column

«column»
*PK chID: character
*FK chTableID: character
* chColumnName: character
* chDataType: character
 lgColumnCase: logical
 chFormat: character
 chHelp: character
 chInitial: character
 chLabel: character
 lgMandatory: integer = false
 inWidth: integer
 inOrder: integer
 inColumnPhysPos: integer
 chDescription: character
 chColumnLabel: character
 inExtent: integer

«FK»
+ FK_DB_Column_DB_Table(character)

«PK»
+ PK_DB_Column(character)

«index»
+ IXFK_DB_Column_DB_Table(character)

DB_Index

«column»
*PK ch_ID: character
*FK ch_TableID: character
* chIndexName: character
 lgUnique: logical
 chArea: character
 chDescription: character

«FK»
+ FK_DB_Index_DB_Table(character)

«PK»
+ PK_DB_Index(character)

«index»
+ IXFK_DB_Index_DB_Table(character)

DB_IndexColumn

«column»
*PK chID: clob
*FK chIndexID: character
 inIndexSeq: integer
*FK chColumnID: character
 lgIsAscending: logical

«FK»
+ FK_DB_IndexColumn_DB_Column(character)
+ FK_DB_IndexColumn_DB_Index(character)

«PK»
+ PK_DB_IndexColumn(clob)

«index»
+ IXFK_DB_IndexColumn_DB_Column(character)
+ IXFK_DB_IndexColumn_DB_Index(character)

+FK_DB_IndexColumn_DB_Column

1..*(chColumnID = chID)
«FK»

+PK_DB_Column

1

+FK_DB_Table_DB_Index

0..* (chPrimeIndexID = ch_ID)
«FK»

+PK_DB_Index

1

+FK_DB_Column_DB_Table 0..*

(chTableID = ch_ID)
«FK»

+PK_DB_Table 1

+FK_DB_IndexColumn_DB_Index 1..*

(chIndexID = ch_ID)
«FK»

+PK_DB_Index 1

+FK_DB_Index_DB_Table

0..*(ch_TableID = ch_ID)
«FK»

+PK_DB_Table

1

Second, we are capturing basic information about all source code files in the
application. Filters are provided so that you can define what is and isn’t
source in the same directory tree in case you have non-source files mixed in
with the source. It even handles old Varnet systems where there is source
with no extension.

13

DEMO: Every distinct source code file on disk is identified as a DiskFile.
This list is built after a full compile so that the test of whether a DiskFile is
compilable is whether or not there is a corresponding .r. Include files are
likewise empirically identified in a later pass. Compile units are identified as
being classes on the basis of the extension .cls.

14

DiskFile

«column»
*PK chID: character
* chName: character
* chPackage: character
* chSourceDirectory: character
 lgCompilable: logical = False
 lgIsInclude: logical = False
 inLines: integer

«PK»
+ PK_DiskFile(character)

CompileUnit

«column»
*PK chID: character
*FK chDiskFileID: character
 chDescription: character
 chRcodeName: character
 lgIsClass: logical = False

«FK»
+ FK_CompileUnit_DiskFile(character)

«PK»
+ PK_CompileUnit(character)

«unique»
+ UQ_CompileUnit_chID(character)

«index»
+ IXFK_CompileUnit_DiskFile(character)

CompileSubUnit

«column»
*PK chID: character
 FK chCompileUnitID: character
 chName: character
* chType: character
 inLines: integer
 inLineNo: integer
 lgIsPrivate: logical
 lgIsProtected: logical

«FK»
+ FK_CompileSubUnit_CompileUnit(character)

«PK»
+ PK_CompileSubUnit(character)

«unique»
+ UQ_CompileSubUnit_chID(character)

«index»
+ IXFK_CompileSubUnit_CompileUnit(character)

CU_Block

«column»
*PK chID: character
 FK chCompileUnitID: character
 chBlockType: character
 inLineStart: integer
 inLineEnd: integer
 lgIsTransaction: logical
 chBlockLabel: character

«FK»
+ FK_CU_Block_CompileUnit(character)

«PK»
+ PK_CU_Block(character)

«unique»
+ UQ_CU_Block_chID(character)

«index»
+ IXFK_CU_Block_CompileUnit(character)

IncludeUnit

«column»
*PK chID: character
 FK chDiskFileID: character
 chDescription: character

«FK»
+ FK_IncludeUnit_DiskFile(character)

«PK»
+ PK_IncludeUnit(character)

«index»
+ IXFK_IncludeUnit_DiskFile(character)

IncludeReference

«column»
*PK chID: character
*FK chCompileUnitID: character
*FK chIncludeUnitID: character
 inLineNo: integer

«FK»
+ FK_IncludeReference_CompileUnit(character)
+ FK_IncludeReference_IncludeUnit(character)

«PK»
+ PK_IncludeReference(character)

«index»
+ IXFK_IncludeReference_CompileUnit(character)
+ IXFK_IncludeReference_IncludeUnit(character)

+FK_IncludeReference_IncludeUnit 0..*

(chIncludeUnitID = chID)

«FK»

+PK_IncludeUnit 1

+FK_IncludeReference_CompileUnit

0..*(chCompileUnitID = chID)

«FK»

+PK_CompileUnit

1

+FK_CompileUnit_DiskFile 0..*

(chDiskFileID = chID)

«FK»

+PK_DiskFile 1

+FK_IncludeUnit_DiskFile

0..1(chDiskFileID = chID)
«FK»

+PK_DiskFile

1

+FK_CompileSubUnit_CompileUnit 1..*

(chCompileUnitID = chID)

«FK»

+PK_CompileUnit 1

+FK_CU_Block_CompileUnit1..*

(chCompileUnitID = chID)

«FK»

+PK_CompileUnit1

The next step breaks down Compile Units into sub components including
procedures, methods and functions. It is this pass which also creates the
links for empirical include files. For non-class Compile Units, a SubUnit
corresponding to MainBlock is also created for code not otherwise enclosed
in a SubUnit.

15

DEMO: So, here on the upper left we have the Compile Unit we identified
previously. On the right we have the CompileSubUnit which are the
procedures, functions, and methods. All are in the same table, identified by
type. Public, Private, and Protected are recognized. Then, in the lower left
is the IncludeReference which connects an IncludeUnit with each of the
CompileUnits in which it is used. Note the need for the association here
that is not needed with CompileSubUnit since those are limited to a single
CompileUnit.

16

CompileUnit

«column»
*PK chID: character
*FK chDiskFileID: character
 chDescription: character
 chRcodeName: character
 lgIsClass: logical = False

«FK»
+ FK_CompileUnit_DiskFile(character)

«PK»
+ PK_CompileUnit(character)

«unique»
+ UQ_CompileUnit_chID(character)

«index»
+ IXFK_CompileUnit_DiskFile(character)

CompileSubUnit

«column»
*PK chID: character
 FK chCompileUnitID: character
 chName: character
* chType: character
 inLines: integer
 inLineNo: integer
 lgIsPrivate: logical
 lgIsProtected: logical

«FK»
+ FK_CompileSubUnit_CompileUnit(character)

«PK»
+ PK_CompileSubUnit(character)

«unique»
+ UQ_CompileSubUnit_chID(character)

«index»
+ IXFK_CompileSubUnit_CompileUnit(character)

IncludeUnit

«column»
*PK chID: character
 FK chDiskFileID: character
 chDescription: character

«FK»
+ FK_IncludeUnit_DiskFile(character)

«PK»
+ PK_IncludeUnit(character)

«index»
+ IXFK_IncludeUnit_DiskFile(character)

IncludeReference

«column»
*PK chID: character
*FK chCompileUnitID: character
*FK chIncludeUnitID: character
 inLineNo: integer

«FK»
+ FK_IncludeReference_CompileUnit(character)
+ FK_IncludeReference_IncludeUnit(character)

«PK»
+ PK_IncludeReference(character)

«index»
+ IXFK_IncludeReference_CompileUnit(character)
+ IXFK_IncludeReference_IncludeUnit(character)

+FK_IncludeReference_CompileUnit 0..*

(chCompileUnitID = chID)

«FK»

+PK_CompileUnit 1

+FK_IncludeReference_IncludeUnit

0..*

(chIncludeUnitID = chID)
«FK»

+PK_IncludeUnit

1

+FK_CompileSubUnit_CompileUnit

1..*

(chCompileUnitID = chID)
«FK»

+PK_CompileUnit

1

In addition to the functional decomposition of Compile SubUnits, a scan is
also made to record all blocks of any type including DO, FOR, REPEAT,
PROCEDURE, FUNCTION , and METHOD. In the process, it is recorded
whether a transaction is scoped to the block and any frames and buffers
scoped to the block.

17

DEMO: In the upper left we have the CompileUnit from before. Below this
we have the block. Some of these blocks will be Compile SubUnits as well,
but many will not. These will be connected in a later analysis. When there is
a buffer scoped to the block, you can see here on the right the buffer and its
name. When the buffer is for a database table, the buffer is linked to that
table. Finally, in the lower right we have any frames scoped to the block.

18

CompileUnit

«column»
*PK chID: character
*FK chDiskFileID: character
 chDescription: character
 chRcodeName: character
 lgIsClass: logical = False

«FK»
+ FK_CompileUnit_DiskFile(character)

«PK»
+ PK_CompileUnit(character)

«unique»
+ UQ_CompileUnit_chID(character)

«index»
+ IXFK_CompileUnit_DiskFile(character)

CU_Block

«column»
*PK chID: character
 FK chCompileUnitID: character
 chBlockType: character
 inLineStart: integer
 inLineEnd: integer
 lgIsTransaction: logical
 chBlockLabel: character

«FK»
+ FK_CU_Block_CompileUnit(character)

«PK»
+ PK_CU_Block(character)

«unique»
+ UQ_CU_Block_chID(character)

«index»
+ IXFK_CU_Block_CompileUnit(character)

CU_Buffer

«column»
*PK chID: character
 FK chBlockID: character
 lgIsDBTable: logical
 chBufferName: character
 FK chTableID: character

«FK»
+ FK_CU_Buffer_CU_Block(character)
+ FK_CU_Buffer_DB_Table(character)

«PK»
+ PK_CU_Buffer(character)

«unique»
+ UQ_CU_Buffer_chID(character)

«index»
+ IXFK_CU_Buffer_CU_Block(character)
+ IXFK_CU_Buffer_DB_Table(character)

DB_Table

«column»
*PK ch_ID: character
* chTableName: character
 chTableArea: character
 chDumpName: character
 chDescription: character
 chTableLabel: character
 FK chPrimeIndexID: character

«FK»
+ FK_DB_Table_DB_Index(character)

«PK»
+ PK_DB_Table(character)

«index»
+ IXFK_DB_Table_DB_Index(character)

CU_Frame

«column»
*PK chID: character
 FK chBlockID: character
 chFrameName: character

«FK»
+ FK_CU_Frame_CU_Block(character)

«PK»
+ PK_CU_Frame(character)

«unique»
+ UQ_CU_Frame_chID(character)

«index»
+ IXFK_CU_Frame_CU_Block(character)

+FK_CU_Buffer_DB_Table 0..*

(chTableID = ch_ID)

«FK»

+PK_DB_Table 1

+FK_CU_Block_CompileUnit 1..*

(chCompileUnitID = chID)

«FK»

+PK_CompileUnit 1

+FK_CU_Frame_CU_Block

0..*

(chBlockID = chID)

«FK»

+PK_CU_Block

1

+FK_CU_Buffer_CU_Block

0..*(chBlockID = chID)
«FK»

+PK_CU_Block

1

Now that we have identified all the static components, it is time to connect
them. The first step is all the RUN relationships between pieces of the
source code. The initial pass identifies all static Compile Unit to Compile
Unit run connections. Not all can be resolved at this point because some are
dynamic such as RUN VALUE() or RUN x IN handle. These dynamic calls
will be resolved later. The data structure also provides for links between
Compile SubUnits, i.e., a call located in an Internal Procedure, Method, or
Function or a call to an Internal Procedure, Method, or Function from
another Compile Unit, e.g., such as Method calls on classes or Internal
Procedure calls to persistent procedures. Unfortunately, the information
needed to make these connections is not in the COMPILE XREF data, so
these connections will have to be identified by subsequent analysis or
adding a new tool.

19

DEMO: In the upper right we have the usual Compile Unit and to the right
Compile SubUnits. These get connected by Program Call links which
associate caller with called. There is a copy of the call for aid in later
resolution of dynamic calls and flags for Dynamic, Resolved, Persistent, and
Super.

20

CompileUnit

«column»
*PK chID: character
*FK chDiskFileID: character
 chDescription: character
 chRcodeName: character
 lgIsClass: logical() = False

«FK»
+ FK_CompileUnit_DiskFile(character)

«PK»
+ PK_CompileUnit(character)

«unique»
+ UQ_CompileUnit_chID(character)

«index»
+ IXFK_CompileUnit_DiskFile(character)

CompileSubUnit

«column»
*PK chID: character
 FK chCompileUnitID: character
 chName: character
* chType: character
 inLines: integer
 inLineNo: integer
 lgIsPrivate: logical()
 lgIsProtected: logical()

«FK»
+ FK_CompileSubUnit_CompileUnit(character)

«PK»
+ PK_CompileSubUnit(character)

«unique»
+ UQ_CompileSubUnit_chID(character)

«index»
+ IXFK_CompileSubUnit_CompileUnit(character)

ProgramCall

«column»
*PK chID: character
*FK chCallingUnitID: character
 FK chCallingSubUnitID: character
*FK chCalledUnitID: character
 FK chCalledSubUnitID: character
 chSourceLine: character
 lgDynamic: logical(0)
 lgResolved: logical(0)
 inLineNo: integer
 lgPersistent: logical(0)
 lgSuper: logical(0)

«FK»
+ FK_ProgramCall_CompileSubUnit(character)
+ FK_ProgramCall_CompileSubUnit_02(character)
+ FK_ProgramCall_CompileUnit(character)
+ FK_ProgramCall_CompileUnit_02(character)

«PK»
+ PK_ProgramCall(character)

«index»
+ IXFK_ProgramCall_CompileSubUnit(character)
+ IXFK_ProgramCall_CompileSubUnit_02(character)
+ IXFK_ProgramCall_CompileUnit(character)
+ IXFK_ProgramCall_CompileUnit_02(character)

0..*

(chCallingSubUnitID = chID)
«FK»

1

0..*

(chCalledUnitID = chID)
«FK»

1

1..*

(chCompileUnitID = chID)

«FK»1

0..*

(chCallingUnitID = chID)
«FK»

1

0..*

(chCalledSubUnitID = chID)
«FK»

1

Next, we have links between the code and the data. This includes all
references to tables and columns in all compile units. At the table level, it
also includes flags for when the record is created or deleted. At the column
level it has a flag for update, i.e., the value of the column is changed in that
unit. Any column not changed is merely accessed. Any column in the table,
but which is not referenced, has no a link.

21

DEMO: First we will look at the Table links. In the upper right we have the
Compile Unit and in the upper left the Table. Connecting these is an
association table which connects the two and has the flags for create and
delete.

22

DB_Table

«column»
*PK ch_ID: character
* chTableName: character
 chTableArea: character
 chDumpName: character
 chDescription: character
 chTableLabel: character
 FK chPrimeIndexID: character

«FK»
+ FK_DB_Table_DB_Index(character)

«PK»
+ PK_DB_Table(character)

«index»
+ IXFK_DB_Table_DB_Index(character)

CompileUnit

«column»
*PK chID: character
*FK chDiskFileID: character
 chDescription: character
 chRcodeName: character
 lgIsClass: logical() = False

«FK»
+ FK_CompileUnit_DiskFile(character)

«PK»
+ PK_CompileUnit(character)

«unique»
+ UQ_CompileUnit_chID(character)

«index»
+ IXFK_CompileUnit_DiskFile(character)

CU_TableRef

«column»
*PK chID: character
*FK chCompileUnitID: character
*FK chTableID: character
 lgCreate: logical(0)
 lgDelete: logical(0)

«FK»
+ FK_CU_TableRef_CompileUnit(character)
+ FK_CU_TableRef_DB_Table(character)

«PK»
+ PK_CU_TableRef(character)

«index»
+ IXFK_CU_TableRef_CompileUnit(character)
+ IXFK_CU_TableRef_DB_Table(character)

+FK_CU_TableRef_CompileUnit0..*

(chCompileUnitID = chID)

«FK»

+PK_CompileUnit 1

+FK_CU_TableRef_DB_Table 0..*

(chTableID = ch_ID)

«FK»

+PK_DB_Table 1

DEMO: Next we have the Compile Unit in the upper right and the Column in
the upper left. Connecting these is an association table which contains the
flag for Update.

23

DB_Column

«column»
*PK chID: character
*FK chTableID: character
* chColumnName: character
* chDataType: character
 lgColumnCase: logical()
 chFormat: character
 chHelp: character
 chInitial: character
 chLabel: character
 lgMandatory: integer = false
 inWidth: integer
 inOrder: integer
 inColumnPhysPos: integer
 chDescription: character
 chColumnLabel: character
 inExtent: integer

«FK»
+ FK_DB_Column_DB_Table(character)

«PK»
+ PK_DB_Column(character)

«index»
+ IXFK_DB_Column_DB_Table(character)

CompileUnit

«column»
*PK chID: character
*FK chDiskFileID: character
 chDescription: character
 chRcodeName: character
 lgIsClass: logical() = False

«FK»
+ FK_CompileUnit_DiskFile(character)

«PK»
+ PK_CompileUnit(character)

«unique»
+ UQ_CompileUnit_chID(character)

«index»
+ IXFK_CompileUnit_DiskFile(character)

CU_ColumnRef

«column»
*PK chID: character
*FK chCompileUnitID: character
*FK chColumnID: character
 lgUpdate: logical(0)

«FK»
+ FK_CU_ColumnRef_CompileUnit(character)
+ FK_CU_ColumnRef_DB_Column(character)

«PK»
+ PK_CU_ColumnRef(character)

«index»
+ IXFK_CU_ColumnRef_CompileUnit(character)
+ IXFK_CU_ColumnRef_DB_Column(character)

+FK_CU_ColumnRef_CompileUnit 0..*

(chCompileUnitID = chID)

«FK»

+PK_CompileUnit 1

+FK_CU_ColumnRef_DB_Column

0..*

(chColumnID = chID)
«FK»

+PK_DB_Column

1

Finally, for the current version of ABL2DB, there are two additional stages.
One loads descriptions for each disk file. Many code bases have some kind
of standard description embedded in the source file and a tool is provided for
extracting these according to the standards of the specific code base. The
other is the loading of Menus and Functional Units. Menus provide us with a
structure for the application as seem by the user, each selection of which
runs a particular Compile Unit. From that Compile Unit, there is a body of
code which can be reached including all sub programs, persistent
procedures, and include files. We call this a Functional Unit. Functional
Units may, of course, overlap.

24

DEMO: Finally, we have the AppMenu in the upper left, one entry per menu.
To its right is the AppMenuItem, i.e., one specific item on that menu. That
item can be either another menu, in which case an association is made via
the AppMenuItemSubMenu table, or it can be an executable item, in which
case association is made via the AppMenuItemFunctionalUnit table to the
corresponding Functional Unit. The Functional Unit is in turn linked to the
main Compile Unit which it runs.

25

AppMenu

«column»
*PK chID: character
 chMenuName: character
 chMenuTitle: character

«PK»
+ PK_AppMenu(character)

«unique»
+ UQ_AppMenu_chID(character)

AppMenuItem

«column»
*PK chID: character
 FK chMenuID: character
* inSeq: integer
 lgIsMenu: logical()

«FK»
+ FK_AppMenuItem_AppMenu(character)

«PK»
+ PK_AppMenuItem(character)

«index»
+ IXFK_AppMenuItem_AppMenu(character)

AppMenuItemSubMenu

«column»
*PK chID: character
 FK chMenuItemID: character
 FK chSubMenuID: character

«FK»
+ FK_AppMenuItemSubMenu_AppMenu(character)
+ FK_AppMenuItemSubMenu_AppMenuItem(character)

«PK»
+ PK_AppMenuItemSubMenu(character)

«index»
+ IXFK_AppMenuItemSubMenu_AppMenu(character)
+ IXFK_AppMenuItemSubMenu_AppMenuItem(character)

AppMenuItemFunctionalUnit

«column»
*PK chID: character
 FK chMenuItemID: character
 FK chFunctionalUnitID: character

«FK»
+ FK_AppMenuItemFunctionalUnit_AppMenuItem(character)
+ FK_AppMenuItemFunctionalUnit_FunctionalUnit(character)

«PK»
+ PK_AppMenuItemFunctionalUnit(character)

«index»
+ IXFK_AppMenuItemFunctionalUnit_AppMenuItem(character)
+ IXFK_AppMenuItemFunctionalUnit_FunctionalUnit(character)

CompileUnit

«column»
*PK chID: character
*FK chDiskFileID: character
 chDescription: character
 chRcodeName: character
 lgIsClass: logical() = False

«FK»
+ FK_CompileUnit_DiskFile(character)

«PK»
+ PK_CompileUnit(character)

«unique»
+ UQ_CompileUnit_chID(character)

«index»
+ IXFK_CompileUnit_DiskFile(character)

FunctionalUnit

«column»
*PK chID: character
 chName: character
 chDescription: character
 FK chMainCompileUnitID: character

«FK»
+ FK_FunctionalUnit_CompileUnit(character)

«PK»
+ PK_FunctionalUnit(character)

«index»
+ IXFK_FunctionalUnit_CompileUnit(character)

+FK_AppMenuItem_AppMenu

1..*
(chMenuID = chID)

«FK»

+PK_AppMenu

1

+FK_AppMenuItemFunctionalUnit_FunctionalUnit 0..1

(chFunctionalUnitID = chID)
«FK»

+PK_FunctionalUnit 1

+FK_AppMenuItemSubMenu_AppMenu 0..*

(chSubMenuID =
chID)

«FK»

+PK_AppMenu 1

+FK_AppMenuItemSubMenu_AppMenuItem0..1

(chMenuItemID = chID)

«FK»

+PK_AppMenuItem 1

+FK_FunctionalUnit_CompileUnit

1(chMainCompileUnitID = chID)

«FK»

+PK_CompileUnit

0..1

+FK_AppMenuItemFunctionalUnit_AppMenuItem 0..*

(chMenuItemID = chID)
«FK»

+PK_AppMenuItem1

The existing system was tested on my old ERP package called
Integrity/Solutions. This application suite has a Varnet base and thus has
some residual compile units with no extension. Its vintage predates OO, but
it does have some super procedures and the like. The schema has 496
tables, 6537 columns, and 907 indices. This schema includes some
metaschema tables since some of the I/S code refers to those tables.
There are 10822 distinct disk files, 4468 of which are compilable. There is a
fair bit of orphan junk in there which this tool could help identify and remove.
Altogether, it is about 1.75 million lines of ABL code.

26

These are the times for each step on my desktop. On my laptop with an
SSD disk, the times are slightly faster, but not dramatically different.

27

And, here are some of the counts of the kind of thing found during the
analysis. The sheer volume makes it clear why no one can actually hold all
of this in their head, no matter how long they have worked with the code.

28

29

That’s what we have so far, so let’s look ahead a bit.

The XREF file keeps track of Shared Variables and their use. While one
knows they shouldn’t be used any more, they can be an important part of
understanding many legacy code bases.

Block resolution will map blocks to compile sub units and create the Run and
Table links to Compile SubUnits.

Persistent Resolution refers to a limited kind of Call Graph Analysis by
identifying persistent procedures and super procedures which can be
running and which might contain an unresolved reference. Some of this
actually occurs in the existing version of ABL2DB, but it is not complete
because of the nature of the information in the XREF file.

30

We will provide an Unresolved Dynamic Call Report for identifying those
calls which cannot be automatically solved and a mechanism for manual
reconciliation of those calls in a way which can be stored and reused for
subsequent builds.

I am thinking about an Unused Code report. This would be very handy for
cleaning up the unused older portions in my current sample code base.

There is lots more potential and I am sure many things I haven’t thought of
yet. In particular, I am exploring the possible use of other tools, including the
Parser technology in the tool by Gilles Querret who is talking here at 1300
today.

31

32

Finally, let’s talk briefly about the potential for analysis.

Clearly, one of the prime uses for a code base under maintenance will be
impact analysis, i.e., identifying what code or data is impacted by a possible
change. While some of this category of question may be best addressed by
a simple custom query, there are a couple of obvious simple reports that will
fulfill many needs.

A second kind of analysis I have wanted to do for a long time is analysis of
natural groups in the code. By this I mean identifying related clusters of
code, excluding common service elements, which might be good candidates
for a new package such as one might want to create if implementing
services in a Service Oriented Architecture or simply refactoring code to
avoid duplication and fractionation of related services.

And, of course, one of the simple, but very useful reports would simply to
create a map of some Functional Unit which one was about to work on with
indications of what parts of that unit impacted other code in other Functional
Units.

33

And, of course, I plan to use ABL2DB as a new source of input to an
updated version of ABL2UML so that one can produce a UML Component
diagram of the as-built application for a visual representation.

And, all of this can be used as a tool for transformation by bringing together
information on the components of the existing system where they can be
more easily analyzed for refactoring and restructuring for a new version of
the application.

34

35

So, to summarize.

36

This initial version of ABL2DB covers a lot of information about the code and
data in an application and their relationships. It is readily available and easy
to use in building queries and reports.

We have a clear initial roadmap for adding more information and functionality
and refining the information we have.

The design of the system is very modular and easy to expand with new
functions or to expand the information currently collected.

The tool is open sourced and has been designed to make the adjustments
needed to fit it to the characteristics of the local code base.

37

Here are some links for more information.

38

39

