Tales From the Bunker Episode No. 6

Presented by: Gus Björklund, Dan Foreman, John Harlow

Bunker tests: a brief history

- The bunker tests originated several years ago in an effort to see how much performance commodity priced X86 hardware could provide.
- In the interest of security we have almost never conducted a bunker test in the same location twice.
- Most bunker tests have resulted in improvements in process and performance.

Bunker History

- Bunker #1 Florida 2002
- Bunker #2 Atlanta 2002
- Bunker #3 Nashua 2004
- Bunker #4 Florida 2005
- Bunker #5 Sept 2009 in the Cloud

Tales From The Bunker

Bunker 1-4 results

Bunker Team

 Gus Bjorklund (due to Bunker security protocols, we can't reveal his face; bodyguard in background)

Bunker Team

Dan Foreman – revealing too much

Bunker Team

John Harlow – fallen comrade

Supporting Cast

• Ty the Invisible Tech Guy

Bunker #6 Location

Bunker #6 Location

Tales From The Bunker

Actual Work Area

Virtual Work Area

Bunker Logo

Server Info

- Dell R710 (two of them: bunker64 and bunker32)
 - 16 CPUs
 - 32 GB RAM

SAN Info

- EMC CX4-120 (Dan owns stock in EMC)
- Fabric: 4GB Fiber Channel
- 14 Disks + one hot swap spare
- 300 gb disks
- 15000 RPM
- Initially configured as RAID 5 !!!!!
- Later switched to RAID 10

Software Info

- VSphere Enterprise 4.1
- Progress V10.2B SP03
 - 64-bit
 - 32-bit
- Centos 5.5 (2.6.18-194.32.1.el5, if you must know)
 - 32 bit
 - 64 bit

Additional Equipment

Test Protocols

- ATM Benchmark v 5.0
- Balanced Benchmark from BravePoint

About ATM ...

- Standard Secret Bunker Benchmark
 - baseline config always the same since Bunker#2
- Simulates ATM withdrawal transaction
- 150 concurrent users
 - execute as many transactions as possible in given time
- Highly update intensive
 - fetch 3 rows
 - update 3 rows
 - create 1 row with 1 index entry

About ATM ... database

account rows 80,000,000

teller rows 80,000

branch rows 8,000

data block size 4 k

database size ~ 12 gigabytes

maximum rows per block 64

allocation cluster size 512

data extents 6 @ 2 gigabytes

bi blocksize 16 kb

bi cluster size 16384

the "standard baseline" database setup

About ATM ... baseline config

-n 250 # maximum number of connections

-S 5108 # broker's connection port

-Ma 2 # max clients per server

-Mi 2 # min clients per server

-Mn 100 # max servers

-L 10240 # lock able entries

-Mm 16384 # max TCP message size

-maxAreas 20 # maximum storage areas

-B 64000 # primary buffer pool number of buffers

-spin 10000 # spinlock retries

-bibufs 32 # before image log buffers

About Balanced Benchmark ...

- BravePoint product
- Makes load & performance testing very easy for:
 - Servers
 - Operating systems
 - Databases
 - Applications
 - All the above

About Balanced Benchmark ...

- Easy Command & Control of a Progress Benchmark
- Can use code from various sources
 - Your application
 - Load simulation code generated by the BB based upon production DB activity
 - Custom
- Create different types of users (read/write, light/medium/ heavy, etc.)

Adding more memory to VM

- Start with 2 gb of RAM for the VM
- Double till we reach 16 gb

Adding memory to VM

TPS vs Memory

Americas

QUIZ

Why is difference between 8 and 16 gb so small?

Encryption (TDE)

- Done in 4 separate measurements
- Baseline with 8 GB of memory for VM
- Step 1: Create policy area and enable encryption "Encryption Policy Area":12,64;8.
- Step 2: Define policies for tables and indexes.
 Only changed and new data will be encrypted
- Step 3: Run utility to encrypt all remaining unencrypted data

to define encryption policies

```
for T in account branch teller history1
do
    proutil atm -C epolicy manage table encrypt ${T}
done
for I in account.account branch.branch teller.teller \
        history1.histid
do
    proutil atm -C epolicy manage index encrypt ${I}
done
```


to encrypt all unencrypted data

```
for T in account branch teller history1 do
```

proutil atm -C epolicy manage table update \${T} done

for I in account.account branch.branch teller.teller \
history1.histid

do

proutil atm -C epolicy manage index update \${I} done

encryption results

TDE TPS

Americas

client-server vs self-serving

- Client on 32-bit OpenEdge 10.2B03 on bunker32 VM
- Server on 64-bit OpenEdge 10.2B03 on bunker64 VM

client-server results

Surprises

- The default -napmax value of 5000 is too large
- More testing of this is required
- YMMV (your mileage may vary) !!!!
 - Transportation, meals, and accomodations not included

-napmax

- Upper bound on doubling sleep time when a shared-memory lock acquisition retry loop fails
- Starts at –nap milliseconds (10)
- 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120
- Default value is 5000 milliseconds
 - Hypothesis: this value might be too large

-napmax results

Other Surprises

- Adding –directio was a very good thing
 - This is contrary to older Bunker testing
 - Improved TPS (~3000 > 3700+)
 - Reduced Max Response time
 - Huge number of Buffers Flushed (see next slide) using 4 APWs & 16mb
 Cluster Size)
 - To reduce BF to a reasonable number required a 128mb BI Cluster size
 & 8 APWs

Surprises - directio

Ckpt					Database	Writes		
No.	Time	Len	Freq	Dirty	CPT Q	Scan	APW Q	Flushes
92	17:12:05	2267	0	63689	0	2217	76962	0
91	17:11:36	29	29	63138	0	0	35772	14991
90	17:11:08	28	28	63364	0	0	30548	21384
89	17:10:39	29	29	62945	0	0	35525	15534
88	17:10:11	28	28	63167	0	0	31926	19737
87	17:09:42	29	29	62835	0	0	34992	16059
86	17:09:14	28	28	62833	0	0	32153	19588
85	17:08:44	30	30	62569	0	0	35052	16061

Bunker 1-4 & 6 TPS results

Bunker 1-4 & 6 Max-R results

Surprises

No Integrity (-i) > No Improvement in Performance

No Surprise

- Converting from RAID 5 to RAID 10 improved TPS dramatically
 - John was slightly surprised by the magnitude of improvement
 - Gus was offended that we even used RAID 5 since we know it is evil
 - Best RAID 5 TPS was 1502
 - It allowed Dan to set the Bunker TPS record (3766 TPS)
- Deadline scheduler versus CFQ
 - Deadline is still slightly better for database i/o

VM Specific Stuff

- The additional complexity of adding a VM can be astronomical
- There are a huge # of buttons, knobs, and switches
- Example: Caching
 - VMware
 - SAN
 - Centos
 - Progress DB Buffers

This has nothing to do with our topic

VM Specific Stuff

- Client/Server connections between two VMs on the same box were <u>much</u> faster than a Client/Server connection between VMs on separate physical servers
- There was no benefit from changing the VM Swap location
- There was no benefit to using a Private Network
- VM Snap during a test cut TPS almost in half

VM Specific Stuff

- RAM: 2gb > 4gb > 8gb > 16gb
 - No significant change in VM overhead
- A note on this benchmark and CPU intensive tasks
 - The ATM is a database intensive task
 - It doesn't stress the CPUs the way a real world app with java servlets, web servers, file transfers, etc... do

What we didn't get to

- Auditing
- Alternate Buffer Cache (-B2)
- "Bare metal" versus VmWare
- VMotion overhead

Conclusions

- When you introduce a VM, performance troubleshooting becomes <u>exponentially</u> more difficult
- It's like introducing a whole new operating system
- More beer is required

Bunker Links

- http://www.facebook.com/pages/Progress-Bunker-6/204029846278025
- http://www.johnharlow.com/page2/page2.html
- http://www.johnharlow.com/bunkers/Bunker6.html
- Other Secret Bunkers: www.secretbunker.co.uk
- BAARF: <u>www.baarf.com</u>
 - Don't go here if you are a fan of RAID 5
- Awesome Japanese Food: www.shoyaatlanta.com
 - Endorsed by Dan who lived in Japan for 5 years

