
Let us begin by introducing ourselves.

This talk arose out of exchanges between us on the PSDN forums and in
private communications related to Julian’s exploration of simple techniques
to avoid writing routine code, particularly code which was evolving and thus
would potentially need the same change to all existing code modules of the
same type. Thomas shared his perspective based on both his current work
on model-to-code generation and on his historical work with a substantial on model to code generation and on his historical work with a substantial
ABL code generation effort. We are here today to share our … sometimes
differing … insights with you so that you can consider the role of code
generation in your own shop.

I, Thomas, began working with Progress in 1984 and I have been a Progress
Application Partner since 1986. For many years I was the architect and
chief developer for our ERP application In recent years I have refocusedchief developer for our ERP application. In recent years, I have refocused
on the problems of transforming and modernizing legacy ABL applications. I
have been working with various code generation efforts since the early
1980s and produced a tool from which over 1 million lines of production ABL
code have been created. More recently, I have been exploring model-to-
code technologies for dramatically increasing productivity in creating and
revising ABL applications.

1

I, Julian …

2

Here’s our agenda for today. First we are going to talk briefly about what
motivated each of us to explore code generation. Then, Julian will talk about
his recent work with developing code generation for some basic components
in his application. Then Thomas will talk about his historical tool,
Specification-Driven Development and what it was possible to accomplish
with that. Then Thomas will talk about his current efforts in Model-to-Code
translation. Finally, we will sum up and send you off to make your own
explorationsexplorations.

3

First, let’s each talk a bit about why each of us got interested in code
generation and what role we see it playing in overall development.

4

5

6

7

8

9

10

11

12

13

14

Thomas: For me, the rationale for code generation is closely tied to the motivation for working in a
4GL i e to spend less time in the mechanics of writing code with less susceptibility for errors from4GL, i.e., to spend less time in the mechanics of writing code with less susceptibility for errors from
hard to find details, and thus to be more productive at creating and changing code. I created my first
4GL in 1979. It compiled into AlphaBASIC, the standard language on the AlphaMicro where I was
developing a new module. It was intended just to allow a simple, short syntax to compile reliably into
a larger number of predictable commands for doing basic, repeated tasks. In the early 80s I
developed a code generation tool called the Oasis Toolkit which was more of a true program
generator to create all the predictable structure for routine parts of new applications.
In the late 80s I used a generator which came with the ABL framework I was using at the time, but it
was not very satisfactory since it was a one time generator, i.e., one fed in some parameters and out
came a code skeleton which one would then edit to produce the working code. That saved a little p g
work, but, if one changed one’s mind about what the basic pattern should be, one was stuck with
manual modification of all programs created thus far. This got me to thinking about code generation
which was regenerable, ie.., where one could change the underlying pattern and simply turn it on and
regenerate all code created thus far, preserving all the modifications. To me, this is a night and day
difference in code generation. Without it, one merely saves a little time. With it, one has a system
which one can evolve.
This lead to the development of Specification-Driven Development (SDD) in 1990 and the years
immediately following. I’m going to talk about SDD more in a little while, but let me just say that this
was a system with a couple of key design goals. One was that it be regenerable. Another is that it be
“no compromise” i e one should never compromise what one wanted the program to do in order to“no compromise”, i.e., one should never compromise what one wanted the program to do in order to
make it work under the generator. We had a good shop consciousness in which programmers would
notice when they needed something multiple times as custom code and we would then add that to the
capabilities of the generator as a standard feature so that it rapidly covered more and more
capabilities just by selecting specification options. In the end, we created over a million lines of code
with it and I would probably still be using it were I still maintaining this application. Its big limitation
relative to modern needs is that it needs a major overhaul to conform to modern architectural
standards.
In recent years I have been looking at Model-to-Code translation, called MDA or Model-Driven
Architecture in UML terminology. To me, this is the next generation beyond 4GL because it meansArchitecture in UML terminology. To me, this is the next generation beyond 4GL because it means
being able to work in the model and not write code manually at all. This may sound unlikely, but I will
explain later why it is less surprising than it might seem.

15

In this progression, there has been an evolving theme.

First, let the computer do the boring, routine parts. It is good at boring,
routine things and doing them myself means introducing errors and dulling
my mind for solving the hard problems.

Second, make whatever mechanism is used to select among alternatives
f f f fand features independent of the implementation of that feature or

characteristic. Leave room to change the implementation without having to
change the specification.

Third, make the specification as a whole abstracted from the implemented
architecture. Make the specifications about the problem space, not the
computing space. Next year I might change my mind about how to structurecomputing space. Next year I might change my mind about how to structure
the solution.

Finally, work toward a system in which I can work as much as possible with
the specification, not the code. Just like a 4GL abstracts further from the
computing details than a 3GL, I want to work to abstract as far from the
implementation as possible.

16

Let’s start with Julian’s current work.

17

18

And now a bit about Thomas’ historical SDD tool.

19

As I said previously, in the late 80s we made some use of a one-time
t i th f k f th d t lli b tgenerator in the framework of the product we were selling, but were very

dissatisfied with it because it had almost no options and the one-time
generation meant we would be doing lots of edits in the future as our
architectural model changed. Frankly, it wasn’t a whole lot better than just
copying an existing program and doing substitutions. Based on the
experience of the early 80s, I really wanted a regenerable tool so that
existing code could continue to evolve with our ideas about architecture and
I wanted something that got me much closer to a final program with lessI wanted something that got me much closer to a final program with less
manual coding.

I really wanted to write something in the ABL, but our experience at that
point was that ABL was not very fast when it came to string handling and
while it might be tolerable for generating a single program, I saw us
regenerating large numbers of programs where performance would matter.
Poking around for options, I found m4 which then and now comes with every
Unix system and was even used in a few Unix configuration tools.

m4 is a macro processor, i.e., it copies a string of text from the input, makes
substitutions, and produces an output stream of text. It includes a number of
simple and yet powerful logical and pattern facilities.

20

What quickly evolved worked as follows:

For every target program unit, we would create a “specification” file. A
specification file was a list of definitions which finished with an include of the
master template for the desired function. m4 would read the specification file
and then start reading the template. While reading the template, it would
make substitutions based on the definitions in the specification. Some of the
definitions in the specification were definitions of options, so m4 would test definitions in the specification were definitions of options, so m4 would test
whether or not an option was defined or what value it had and pick different
code to include or different structures based on that choice. The template
itself could have includes so that one could create a pretty clean structure
isolating one function per file for easy maintenance. An option might
determine whether or not an include was used or which of several includes
to use.

21

We could include custom code in the generated program by the use of
“h k ” A h i th t l t th t th ht i ht t t i l d“hooks”. Anywhere in the template that we thought we might want to include
custom code, we would include a “hook”, i.e., a macro name which would be
substituted at that point if a definition existed. By simply defining a value for
that macro name, the code provided with the definition would be included in
the generated program. For short code fragments like WHERE clauses, we
would just put the code right in the definition. For longer code blocks we
found it more readable if we put the code in an include file and made the
definition a reference to that file For the old timers in the audience this wasdefinition a reference to that file. For the old-timers in the audience, this was
similar to the practice in FastTrack of putting the form definition in a “.f” file
and then including it in the program. That was almost the only idea we took
from Fastrack….

22

The definitions, master template, any include templates, and the source
d i l d i t d t b th ifi ti th bi d b 4 i tcode includes pointed to by the specifications are then combined by m4 into

a single compile unit, i.e., a .p.

23

We also built some shell scripts to generate the basic specification files for
i f ti t E t ll h d b t 6 b i tany given function type. Eventually we had about 6 basic program types

which were covered by this system.

The shell script provided a dialog with some basic questions like file and field
names and some primary desired options and then would output the
specification files which were then edited for details. The shell script was not
a regenerable generator — it only covered the most basic issues.a regenerable generator it only covered the most basic issues.

24

We used the SDD tool fairly extensively for several years. As ABL and our
id b t hit t l d ld k th i l t ti i thideas about architecture evolved, we would rework the implementation in the
templates and then regenerate all the programs which used that template,
typically providing the change in all impacted programs in minutes. When
the change was something selective, not universal, we had to edit the
appropriate specification files to use the new feature, but this was often just
adding a single line.

We also had a good culture in the group in which programmers would
recognize that the function they were about to provide with custom code was
something that would be used many times. They would then bring this to me
and I would add the capability to the template so that functionality could be
provided by a simple definition instead of custom code in each case. Thus,
as time went on, less and less custom code was required to produce finished
programs.

25

How well did this work?
In the end, we created over 1 million lines of ABL. Probably less than 3% of
that was custom code.
We did one project creating two new modules which totaled something over
300,000 lines of ABL code. We went from my having built the schema and
written brief descriptions of the issues in each function to code ready for
integrated testing in just about 300 programmer hours … yes, 1000 lines of
ABL per programmer per hour. Integrated testing was also very fast ABL per programmer per hour. Integrated testing was also very fast
because the code was so stable.
Resulting programs were more feature rich than one would typically write by
hand, at least for the time. Expectations are higher today so one might be
forced to include more in even basic code, but using this approach allowed
“the best we could do” to be the standard for everything we did.
The code was extremely stable and uniform leading to very low support
costs Users could count on functions behaving in consistent and uniformcosts. Users could count on functions behaving in consistent and uniform
ways so they had few questions. The code just worked. And when there
was a problem, it was very easy to diagnose because 99 times out of 100
the issue would be in the hand-written code, not the generated part.
It was extremely fast and inexpensive to add new features and functions to
existing code. This meant very low costs to our customers for new features
and functionality. ROI decisions were routinely rapid because the cost was
so low How well did this work?so low. How well did this work?
In the end, over 1 million lines of ABL created.
In one project, over 300,000 lines of ABL in 300 programmer hours.
Resulting programs were more feature rich than one would typically write by
hand.
Code was extremely stable and uniform leading to very low support costs. 26

So, let’s take a look at some sample specifications, in this case customer
maintenance. Note, this architecture dates from before persistent
procedures so it is a long way from what one would do today. This is
originally a V6 architecture. The menu system runs a main control program
which does no real work except to run other programs. It runs one or more
key solicitation programs in sequence, each of which can display validation
and provide cursor pointing, inquiry, etc. When a unique record has been
identified then the control program runs a small program which obtains anidentified, then the control program runs a small program which obtains an
existing record or creates a new one and provides the before image for the
audit trail. It may also run a program to display additional information in the
header frame where the keys were solicited. It then runs one or more
programs which display current values and presents a strip menu which
allows one to navigate among the tabs of data. This supports other table
maintenance programs for sibling tables and parent child relationships for
things like bills of materials.

27

Here’s part of the specifications for the control program. This shows you the
style of the definitions. The MAND options relate to a requirement that
certain tabs must be visited to fully populate a new record. This can happen
in any order.

28

Here you see the definitions for the key, create, and some of the tab
programs, including one which is a maintenance program for a separate
sibling table which allows putting the customer in one or more customer
groups. In that case the “header” frame is actually just above the strip menu
and there is a frame above that which shows existing memberships. This
illustrates the flexibility of the templates covering very different layout
requirements.

The bottom part is the list of labels for the strip menu and a long description
which shows when that menu item is current.

29

This is the specification for the key solicition program, in this case the
customer number. Note the selection of options in the key option, each of
which triggers a whole set of code to be available in the resulting program.

The _SPECVALD definition illustrates including a small include file with
custom code.

At the bottom you see the include of the template file.

30

Here is a quick look at the specifications for one of the main tabs, showing
the form, position, and the list of fields in the frame. Note that the last one is
a field not in the customer table since addresses are stored in a separate
table in this application.

31

So, overall, for this customer maintenance function we have:
• Less than 300 short lines of specification, much of that originally generated;
• Over 2000 lines of ABL;
• 11 programs in the set; and
• A bunch of small includes for custom code, frame definitions, etc.

It is an ancient architecture, but highly functional and visually pleasing for
ChUI and very easily enhanced and maintained.

32

So, where is this tool today?
Still works.
Code is ChUI.
The architecture in the templates is from 1990.
The specification file is compact, but not very pretty.

A meaningful accomplishment for the time and one with a pretty modest
development investment, but we can do better.

33

Having looked at ancient history, let’s look where I am headed today.

34

Modern development strategies are highly diverse.

Some emphasize rapid coding and putting partial products in front of the
user as fast as possible.

Others emphasize the importance of good analysis and design.

But, everyone needs to deliver new applications quickly and respond nimbly
to changing requirements.

35

Among those emphasizing analysis and design, the strongly predominant
way of expressing that design is UML (Unified Modeling Language).

UML was created in the mid-1990s to unify a diverse set of modeling
languages which had grown up, primarily for OO development. A standards
body, the OMG or Object Management Group was created to oversee this
and other standards and UML has undergone considerable expansion and
development since the original version.

Different people use UML in different ways. Some use it simply as a
sketching tool, something to put on a white board or in a document to
facilitate discussion. Some will use it more completely to do a detailed
analysis of a system and then write code from that design. They may or y y g y y
may not keep the design in sync with the code as the system evolves,
although it is usually regrettable if they don’t. And, there are those … which
is what interests us today … who actually generate the working code directly
from the model.

36

The term used by OMG for generating code from the model is MDA, Model-
Driven Architecture. This term actually covers more than just generating
code, which I will get to in a bit. Some of us tend to refer to the concept
more as Model-to-Code Translation since historically this sort of going from
one form to another form is called Translation.

Such model-based code generation is very common in some industries.
Indeed, in order to compete there, you pretty much have to do it because
your competition is and you can’t be as productive without it. That itself is a
powerful endorsement. It is particularly common in Real Time Environments
like complex control systems. That it succeeds well there is further
testimony since these are very time critical systems where nothing but the
best code is good enough. Usage in other 3GL OO development is more
sporadic in part because the competition is more diffusesporadic, in part because the competition is more diffuse.

Some form of Model-to-Code is becoming the norm in some product types.

Savvion is an example where the process definition is done in a modeling
tool and is supplemented by a small amount of hand coding and then pp y g
executed.

Apama is another example where the definition of what to do is provided by
a tool which is more model-like than it is regular programming.

37

There are two very different approaches to completeness.

One approach is to generate what one can from the model and fill in the rest
by hand, reverse engineering the added code back into the model.

The other approach is to aim for 100% generation.

People have an easier time understanding the partial generation and reverse
engineering approach.
But, this approach is filled with hazards including the model and code
becoming out of sync and the programmer creating code which is
inconsistent with how one would like it in the model, e.g., coupled to
implementation specifics.

38

100% generation seems like an obviously desirable goal since the model
remains architecturally neutral and independent of implementation specifics.
The secret to being able to specify everything in the model is “Action
Language”.
Action Language is how one specifies algorithms and complex business
logic in the context of the model.

One might wonder why one wouldn’t use ABL as the Action Language.
Using ABL would mean hard coding current implementation requiring hand
modification to take advantage of future language improvements.
Using ABL would make it easy and tempting to embed solutions in the code
which belonged elsewhere in the model.

39

What about a non-ABL UI?
One of the pluses of good Model-to-Code should be language independence
from the target language.
Visual parts of the UI are likely to require a lot of manual tweaking, no matter
what language or technology is used.
The answer is to treat the UI as its own subsystem of “realized code”.

40

“Realized Code” and Subsystems
Good modern design implies the use of loosely coupled subsystems.
One should be able to treat a subsystem as a black box when dealing with
another subsystem.
Any given subsystem may be created by Model-to-Code or by manual
coding or a combination as works best.

41

Frameworks are another good example of a candidate for realized code.
Some or all of the framework may be created by Model-to-Code or it may be
manual – doesn’t matter to any other subsystem.
Frameworks can include both common infrastructure frameworks and
components used throughout the application like collection classes.

42

Multiple Frameworks & Implementation Approaches
The Model-to-Code engine is independent of the specific framework or
implementation approach.
Connecting the model to the framework is a question of the translation rules
used.
Switching frameworks or implementation is just a question of changing the
translationtranslation.
This reinforces not using ABL as an Action Language.

43

Model-to-Code isn’t the only translation.
Model-to-Model transformations are using during analysis and design, e.g.,
transforming domain classes to classes in the design.
Code-to-Model translations can be used to begin the transformation of
legacy systems.
Full transformation would be a cycle of Code-to-Model, Model-to-Model, and
Model-to-CodeModel to Code.
ABL2UML is an example of Code-to-Model.

44

Where are we today?y
Can’t buy it today.
The translation engine is possibly identified.
Working on interesting PSC in the project.
Looking for companies that might fund the work.
Preliminary estimate is 6 months to have fairly complete translationPreliminary estimate is 6 months to have fairly complete translation
and 12 months to initial product ready for FCS.

45

To summarize …

46

47

I have talked about two efforts:
SDD illustrates a fairly simple technology with a modest investment that can
provide a huge boost in productivity while producing highly functional,
maintainable, stable code.
Model-to-Code represents a larger investment, but one likely to yield 5-10X
improvements in productivity for creating original applications while
improving analysis and design and providing highly nimble response to
changed requirements.

48

49

Thank you.

50

And now for questions.

51

