
Let me begin by introducing myself. I began working with Progress in 1984
d I h b P A li ti P t i 1986 Fand I have been a Progress Application Partner since 1986. For many years

I was the architect and chief developer for our ERP application. In recent
years, I have refocused on the problems of transforming and modernizing
legacy ABL applications. Object Orientation is widely accepted as a
preferred paradigm for developing complex applications by much of the
programming world and now that OO features are now in ABL, I and others
have been exploring the benefits of using OO in ABL.

1

So, here’s our agenda for today. First we will set the stage about why this
presentation exists, then we will compare the building blocks of legacy ABL
applications to OO applications, then we will look a bit about how OO thinks
about the problem space vs the computational space, and then we will look a
bit at how OO applications are structured.

2

First, why did I create this presentation?

3

Those of you who have been working in ABL for a while know that the
language has evolved quite a bit over the years. Some of those transitions
have been pretty dramatic, changing not only what we were capable of
doing, but the very structure of our programs. For example, the V6 to V7
transition which not only brought us the first blush of the richness of GUI
user interfaces, it also started us on the conversion from procedural to event
driven programming. To be sure, that was a very big transition … one that
many applications still haven’t made or have made only incompletely Andmany applications still haven t made or have made only incompletely. And,
of course, the more recent addition of ABL GUI for .NET not only made for a
much, much richer user interface, but the programming for that interface was
quite different than what we were used to for even traditional ABL GUI
interfaces with these complex, external components to manage.

But while PSC themselves has emphasized the continuity and compatibilityBut, while PSC themselves has emphasized the continuity and compatibility
of the OO extensions to ABL … rightly so, perhaps, and certainly in an effort
not to scare us … I suggest that really making the transition to OO
programming involves a bigger shift in mindset than any of these historical
transitions. Yes, one can use OO constructs in legacy ABL programs without
really taking on the OO mindset, but if one does, one won’t fully benefit from
the benefits which OO programming can provide.

4

It is believed that the OO paradigm improves quality by
• encapsulating logic in easily tested units,
• promoting code re-use,
• providing a mechanism for easy and well-controlled extensibility,
• reducing production error rates by catching errors at compilation,
• creating a more maintainable system,
• reducing large problems to simpler components, and
• providing a more natural relationship between code and the real world.
I realize that sounds like a pretty extraordinary set of expectations, but it is
all achievable if one follows the best OO practice.

5

I want to be very clear that I am not discouraging anyone from using OO in a
limited way in their application if that is all that can be justified or managed
right now. It can help and provide some very nice solutions. Moreover, it
can encourage people to do more of it.

But, one shouldn’t think that just because one is using a little OO here and
there and is becoming comfortable with OO syntax, that one has achieved
an OO mindset. It is that mindset, more than the syntax, which leads to the
benefits which I have described.

6

In manuals and other presentations, there are often comparisons provided in
which a programming technique used in legacy ABL programs is compared
to a OO programming technique. That can be helpful for learning syntax and
recognizing when to use particular constructs, but it doesn’t change the way
you think about the analysis and design of programs.

Thinking OO really means understanding OOA/D, Object-Oriented Analysis
and Design. It is a way of thinking that starts with the problem space,
decomposes it into coherent units, connects those units, and from this
structure builds a computational space which mirrors the problem space.
What that means may not be very clear right now, but hopefully it will be a
little more clear in an hour. It is a very different way to think about your
programs than you have been used to in traditional ABL … or perhaps other
languages in which you have writtenlanguages in which you have written.

One of the ironies of modern computing is that most university programs
teach people programming in OO languages, but they don’t teach them
OOA/D. Consequently, there is an awful lot of bad OO code in 3GL OO
programs and systems. Yes, OO syntax and structure may help provide a
better structure at least some of the time but without a thorough OObetter structure, at least some of the time, but without a thorough OO
mindset, good results are almost accidental.

7

Before going any further, let me note that while I talk as if “Good OO” were
one set of rules about which everyone agreed, in practice there is a diversity
of opinion on a great many, if not most points. In some cases, this diversity
is even great enough to include polar opposite views. Nevertheless, there is
a lot of coherence in opinion, especially if one chooses one’s mentors
carefully, so I think it is justified to consider “Good OO” as a meaningful
reference.

Let me also note that there is a lot of variation in how well these rules are
observed. There are many people aware of these rules who somehow
“forget” to apply the rule to their own work, particularly if they are
experienced. There is some tendency to think that rules are for new people
who don’t know any better, but that those who have a track record don’t
need to keep checking their workneed to keep checking their work.

8

Let’s start our exploration of OO thinking by looking at the building blocks of
our applications.

9

What do you think about when you set about writing some new ABL function in a
legacy environment. Probably, you start either with some technical specifications
prepared by someone else or you have a vague request from a user. If the user
request, the first thing you will do is probably try to turn the user request into a
technical specification, i.e., in terms of what tables you need information from,
which ones you will post to, what algorithms are involved, etc.

Then you might start at the beginning i e defining the top level program whichThen, you might start at the beginning, i.e., defining the top level program which
you will execute to run the program. Some of you will just start writing. Others
might create a general structure first and then start creating modules to fill in that
structure. You might think about a particular computation that you need to do and
write a module for that. Perhaps you have learned good habits about isolating
interaction with each table in its own internal procedure or program to minimize
buffer scope and transaction size. Maybe you have some library components you
can use.

All of this sounds perfectly sensible … but, it is all about computation. At the
earliest possible opportunity one has translated the problem as seen by the user
into a computational solution and all of the rest of the thinking is about the structure
of that computational solution.

But, hey, one is writing a program … what else would one do except think about the
computational solution?

10

So, if the steps one would take in writing traditional ABL are sensible … what
does one do if one is doing OO … good OO.
Let’s step back a bit here from what one might do tasked with creating a
single new function because working on an single function assumes that
there is a whole lot of background already in place. Of course, in the case of
adding to a legacy application, where there is a lot of code, but little analysis
or model behind that code, there may be little context and one might need to
t t ’ l i f t h if i ki bi h hstart one’s analysis from scratch if one is making a big enough change.

In looking at a problem area, the first thing one is going to do is to identify
the “things” in that area. “Things” are the entities which are mentioned in the
problem description and the requirements. If the problem area is order entry,
the things are orders, all the possible orders that might flow through the
system. It the problem area is automotive sales then the things are cars and
customers and salespeoplecustomers and salespeople.
Some of those things or entities have the same behavior capabilities and the
same properties or data elements, i.e., one entity differs from another entity
in the values of their properties, but not in which properties they have. E.g.,
one might have Joe’s Eats, Frank’s Fine Food, and Chez Joanie. All have a
name and some characteristics relevant to the problem type like an address
or a telephone number. p
That is a class.

11

The fundamental building block in OO systems is a unit that corresponds
directly to a problem space entity, not just a computational space unit.

Every member of a class has the same behaviors and the same properties,
but different values for those properties.

We call the current value of the properties “state”We call the current value of the properties state .

12

There are times when one will look at a collection of entities and find nice
consistent classes, but ones which seem to overlap. I.e., all trucks might
share the same behavior and properties and all cars might share the same
behavior and properties, but some of the behavior and properties of trucks
and cars might overlap. Note that this overlap or lack of overlap will depend
entirely on the domain. In some domains, all of the behavior and properties
of cars and trucks might be identical. In others, they might not overlap at all.
But in some they can overlap but only partially Thus here we have someBut, in some, they can overlap, but only partially. Thus, here we have some
properties and/or behavior which are shared by all trucks, cars, and
motorcycles, some unique to trucks some unique to cars, and some unique
to motorcycles.

13

Let’s take a simple case in which we have identified a class of circles that
have position, x and y, and radius and a class of rectangles which have
position, x and y, and size a and b. Each property or property pair has a
corresponding “setter” method and both classes have the behavior of display
and remove. We could just have two separate classes here which happen to
have some properties and behavior in common, but this runs counter to the
desire in OO to have everything be in one place only. So, we define what is
called a Superclass here called GeomFigure and put the shared propertiescalled a Superclass, here called GeomFigure and put the shared properties
and behavior in it. Then, the two classes we originally identified “inherit”
from that Superclass and become what we call Subclasses. Each Subclass
has all of the properties and behavior of the Superclass plus its own
properties and behavior, but none of the properties and behavior of other
Subclasses.
We generally use the word Inheritance to describe this relationship from the g y p
top down and the world Generalization to describe it from the bottom up. Of
course, this means that Generalization fits people doing good OOA//D and
Inheritance tends to go with people who think they know how things ought to
work. ☺ One also uses the term Specialization when considering the tree
from the top down.

14

In traditional ABL, the program units are defined around the computational
space, units needed to solve the problem as it is defined in computational
terms.

In OO, the program units are defined around problem space entities,
coherent collections of behavior and properties, and the relationships among
them.

15

Let’s now look at some of the characteristics of good classes so that we
better understand what kind of units we are dealing with.

16

In the discussion which follow, I will be using a couple of familiar words that have
special meanings in OO, so perhaps we should review these first. There is a
vocabulary paper on my website which covers these and other terms.

First, there is the difference between class and object. A class is the name for a set
of entities which have common behavior and elements of knowledge. An object is
a specific instance of a class and thus has the state of a single entity that is a
member of a class. Thus, an object corresponds directly to one entity in the
problem space.p p

Responsibility is a common word in OO thinking and indicates a somewhat different
way of thinking about code than we are used to in traditional ABL. A responsibility
is an obligation to know or do something. The contract describes this obligation. In
traditional ABL we often think in terms of the implementation, i.e., we know that a
particular set of code does a certain thing. In OO, though, we very strongly want to
think only of what we are expecting that unit of code to know or do, not at all how it
does it The contract should be the minimal required for it to perform that functiondoes it. The contract should be the minimal required for it to perform that function.

We tend to talk in OO about knowledge and behavior instead of data and code.
The choice of both words reflect our focus on the responsibility for members of the
class to do something, i.e., know something or exhibit certain behavior, rather than
on how it is that they accomplish this. Often, knowledge will correspond to a simple
variable in an object, but it may be computed or derived without us knowing any
different from outside. One often distinguishes between knowledge – something
th t t ll b f l k i d t t th ti lthat one counts on all members of a class knowing – and state – the particular
value which a piece of knowledge has at a particular time in a particular object.

17

Encapsulation is an idea basic to OO thinking. Essentially, encapsulation
means that a class, i.e., a program unit, should implement a single
responsibility and it should hide the implementation of that responsibility in
the contract for the class, i.e., expose only what needs to be exposed to
fulfill the contract. A contract is simply the specification of the responsibility
which the class agrees to fulfill.

The class should include all of the knowledge and behavior needed to
implement the responsibility, but only expose what is necessary for
interaction. That which is exposed is the contract for the class.

18

Separation of Concerns, means dividing an application into components so
that components overlap in functionality as little as possible. I.e., each piece
of code has one concern or one responsibility and that responsibility is
shared with no other code. This may seem like an obvious and simple idea,
but it is central to the OO way of thinking.

I’m sure that some of you will be asking yourself, “doesn’t everyone do this?”
But, ask yourself …

• How many different places is the customer table accessed in your
application?

• If you wanted to see all of the logic which is ever applied to the data in the
customer table, how many different places would you have to look?

• Do you even know where all those places are?

In most legacy ABL applications, functionality is spread broadly instead of
being clustered in one place. Thus, not only is the functionality for a single
entity spread, but the functionality in any given program unit is often a
mixture of functionality for multiple entities. E.g., order entry code will
contain some of the logic for dealing with Customers and Items. So we have
the Order code is mixed with Customer and Item code and we have
Customer code is spread around in many different modules including order

19

Customer code is spread around in many different modules, including order
entry..

Separation of Concerns is thus very complementary to Encapsulation.

The Single Responsibility Principle can be seen as the complement of Separation of
C i th t h ibilit h ld b it l A ibilit i i fConcerns, i.e., that each responsibility should be its own class. A responsibility is an axis of
change, so if there is a change in one responsibility, it should impact only one class except
in special circumstances such a change in the public contract of a class.

This is a principle which can apply equally well to non-OO code. Sometimes, particularly
with large, complex responsibilities, one will find all the code for a particular function in one
place, referenced where it is needed. To do anything else would seem foolish. But, it is
quite common for fairly large amounts of only slightly different code to be copied here and
there in the application and it is very typical in traditional ABL applications for small bits ofthere in the application and it is very typical in traditional ABL applications for small bits of
essentially identical code to appear numerous places in an application.

Take, for example, an application where customer addresses have a 5 digit zip code. A new
need arises in one part of the application for a 9 digit zip. With an OO structure, we have
one class responsible for storage which has to be modified to accommodate the additional
data and one CustomerAddress class which handles providing that data to other
components. If we preserve the contract which supplies the 5 digit zip and add a new
contract which adds the additional four digits, then absolutely every place in the application
that used to use only the 5 digit zip can continue to do so unchanged while the one
component which needs the additional information can be modified to access the new
contract. Absolutely minimal change with complete confidence and complete independence
on how we actually store this information.

Compare that to having to review every access to customer address. Yes, we can minimize
rework by storing the two parts separately, but then we are allowing usage to dictate
storage. With the separation, storage can be whatever we choose because the contract is
preserved

20

preserved.

Contrasting with traditional ABL:
Program unit corresponds to problem space unit, not a computational unit.
Program unit contains both knowledge (data) and behavior instead of thinking about data

coming from or going to the database.
There is a strong emphasis on encapsulation and separation of coherent responsibilities

rather than division into computationally meaningful units.

21

Having talked a bit about individual units of programming in the OO mindset,
let’s look a bit at how they fit together.

22

What about complex cases where it seems initially difficult to sort out simple coherent
l ?classes?

An Order, for example, might be for internal or external customers, might be direct shipped,
drop shipped, downloaded, over the counter, among many other “flavors”. Each flavor has
its own unique knowledge and behavior while sharing a lot of knowledge and behaviors with
other Orders.

23

We talked briefly about Generalization as one way to handle cases where we could identify
lti l l ith h d d i k l d d b h i Fmultiple classes with some shared and some unique knowledge and behaviors. For many

situations, that is just the right thing.

But, for cases like the Order example, we have a problem. Thinking from the top down for a
moment, we could breakdown Orders into those for External Customers and those for
Internal Customers, each with some unique knowledge and behavior. Or, we could break
down Orders by shipping method – drop ship, direct ship, download, etc. But, in reality
Orders include both of these breakdowns Thus we might have a drop ship order for anOrders include both of these breakdowns. Thus, we might have a drop ship order for an
internal customer or a drop ship order for an external customer or a direct ship order for an
internal order, etc. This is comparable to a table with customer type on one side and
shipping method on the other side and the possible classes are all the cells. There is, of
course, no reason this has to be limited to two dimensions either, so how do we handle a
situation like this?

24

One can create actual crosstab inheritance structures but they:
• Are fragile and can require substantial rework for small changes;
• Almost invariably lead to duplicated code; and
• Are very unsatisfying in terms of correspondence with real entities in the problem space.

25

So, what do we do instead? The answer lies in another OO principle, Delegation.

Delegation is one object relying on another to implement a part of its overall functionality. A
Delegate is created as a separate object to further separation of concerns, particularly when
the main object is very complex and the Delegate has variations appropriate for
Specialization. Once separated, the Delegate and the original Object are peers, each with
their own separate sphere of Responsibility. It is important that this separation exist in the
problem space, i.e., the Delegate should be an intrinsic decomposition recognizable in the
problem space not merely an arbitrary cluster of knowledge and behaviors The containerproblem space, not merely an arbitrary cluster of knowledge and behaviors. The container
object, i.e., the one that has Delegated some of its behavior, may expose Methods by which
that Delegated behavior can be accessed so that Clients of that object need not be aware of
the Delegate.

26

How would Delegation be used in our Order problem?

First, we might define an Order Customer superclass with Internal and External subclasses
and move all responsibilities related to that area out of the Order.

Second, we might define an Order Shipping class with Drop Ship, Direct Ship, Download,
etc. subclasses and move that responsibility out.

The result is that we have one Order Class, One OrderCustomer superclass with two or
more subclasses, and one OrderShipping class with multiple subclasses and we have
eliminated any problem with crosstab structure.

27

Use of Delegation results in:
• Simpler overall structures with no crosstab.
• No duplication of code.
• Tighter, more cohesive functional units.
• Natural units in the problem space.

28

Previously we mentioned distilling a problem into “Natural Units”. “Natural Unit” depends on
th blthe problem:
• If the problem is simple, so are the units.
• If the problem is complex, it is likely that what seems like one unit in the beginning is

better represented as a structure of units so that each piece is as simple as possible.
• No decomposition is absolutely “right”, but many decompositions are clearly wrong

according to the standard of naturalness.

29

Key issues for here is that objects are structured according to the natural structures of the
bl t di t th d f th tiproblem space, not according to the needs of the computing space.

As requirements change, everything has its place and the interaction of the system is easy
to understand because the units mirror those in the problem space being modeled.

Moreover, since classes correspond to natural units in the problem space, many non-
programmers can relate to and discuss OO specifications. This allows a closer involvement p g p
of subject matter experts in the design process, enhancing the likelihood of arriving at a
correct design.

30

Having some idea of what classes should look like, let’s consider some
principles of how they should interact.

31

In traditional ABL, one is used to having one program unit know the
implementation of another program unit.
Worst case – Shared variables.
Dependencies like common temp-table definitions.
One unit depends on the implementation of another unit.
There are some exceptions like library routines.

32

A consequence of connecting classes by the minimal contract necessary to
provide for their interaction is that the farther apart two classes are, the less
likely it is that they will even know about a class’s complete contract, much
less any particulars about its implementation. Thus, classes which are in
different packages, subsystems, or layers will know very little about each
other, even possibly not knowing which class in a package will even respond
to a particular message. Thus, packages, subsystems, and layers are
typically loosely coupledtypically loosely coupled.
By comparison, since classes within a package are parts of a single
cooperating set, they are likely to be aware of larger parts of the contract of
other classes within the same package and are thus more tightly coupled.
There are a number of specific principles which echo this general idea in the
whitepaper on my web site.
Thus one might have a printing subsystem composed of multipleThus, one might have a printing subsystem composed of multiple
cooperating classes which know about each other’s contracts because they
are mutually interdependent, but another package using the printing
subsystem will be unaware of this structure and merely send print request
messages to the printing subsystem.

This is a principle which could be equally relevant to traditional ABL but is

33

This is a principle which could be equally relevant to traditional ABL, but is
rarely observed.

Just as one should separate responsibilities cleanly between classes, p p y
the whole application should be divided into clearly partitioned
subsystems. Each subsystem should be cohesive within the
subsystem and separate between subsystems in much the same way
that classes are, but at a higher level.

Normally one thinks of Separation of Concerns in a very local way i e oneNormally, one thinks of Separation of Concerns in a very local way, i.e., one
class relative to another class, but the same principle applies at the package
and application level. In particular, one should start in considering an
application or suite of applications by dividing responsibilities among
subsystems such that each subsystem is cohesive, i.e., represents a single
high level area of responsibility, and responsibilities do not bleed across
subsystems, i.e., they are cleanly separated.

While perhaps more natural to OO, this is a principle which can be applied to
design in any language.

34

Perhaps one of the more important shifts of orientation between traditional
ABL thinking and OO thinking is the move from “Do This” to “I’m Done Doing
This”. “Do This” creates a dependency of the sender on the receiver which
frequently cascades to create hierarchical structures of dependency which
are fragile, difficult to understand, and hard to modify. By having the sender
announce “I’m Done” to interested parties, no dependency is created beyond
that of simply sending and receiving the message about the event.
Everything else happens within the object i e a single area of responsibilityEverything else happens within the object, i.e., a single area of responsibility
for which that object is the implementation. The resulting systems are far
more stable and more easily modified because the scope of any change is
limited to a single responsibility contained within a single class. They are
also easier to understand because each class is a single responsibility which
can be looked at in isolation.

There is nothing to prevent applying this principle to traditional ABL and it is,
in fact, characteristic of publish and subscribe mechanisms, either locally or
across the bus.

35

In OO programming, it is common to define what are called interfaces. An interface is an
b t t d fi iti f ti l t t hi h i th i l t d b lti l labstract definition of a particular contract which is then implemented by multiple classes.

For example, one might decide that there were certain behaviors common to all wheeled
vehicles and define an interface with methods corresponding to those behaviors. This
interface could then be implemented by a number of different wheeled vehicle classes. In
programming, whenever one needs only methods in the shared contract, one can reference
any of the classes which implement this interface by referring to the interface instead of the
specific class. By programming to the interface, one programs to the contract, not the
implementation. Multiple implementations can all respond to the same contract. Any change
or addition in the implementation requires no change in the consumer.

Those of you familiar with inheritance will recognize a similar purpose. Inheritance is for
when there is actual shared behavior and knowledge while interfaces are for where there is
just shared contract, but the implementations are different. Both techniques have their place
– Inheritance when there is a specific super and sub set relationship and interfaces when
there in only a shared contract, which might apply across very different classes.

For designing, this is equivalent to the notion of Design by Contract, i.e., designing
according to the contracts which classes present without regard to their implementation.

Traditional ABL does not have interfaces per se, but the idea of designing and programming
to a defined contract is still applicable. Any time one programs with active knowledge and
use of the implementation of another component, one is violating this principle of
programming to the contract.

36

The overriding principle here is that each class or component or subsystem
should know only as much about any other class, component, or subsystem
as is necessary to use its functionality.
Expose only what is needed for the contract.
Make connections which are independent of implementation
Isolate dependence on change.

37

38

We have talked about:
Why programming in OO is not just some new syntax.
How OO code models the problem space, not the computing requirements.
Encapsulating responsibilities within a class.
Partitioning complex responsibilities using Generalization and Delegation.
Loose coupling at all levels of the application.

39

Here are some links for more information. Generally, look on OE Hive under
OOABL and look at the articles section of our website.

40

Thank you.

41

And now for questions.

42

