
OpenEdgePBX
Unified Communications with ABL

Agenda

 Dot R and Me

 PBX Past

 A Time for Change: Phases 1, 2 and 3

 How it all works today

 Demos

 OBX Future

 Questions

Dot R and Me

 Started using Progress from DLC in 1987

 Dot R created 1991

 Me created sometime in 1965, released 1966 

 Created several version control systems

 Acquired by Tarlo Lyons 1996

 Management buyout 1998, renamed to Tessera

 “Financial Management” company (aka debt collectors)

 2011 independent once more

PBX Past: 1998-2005
 Early 1998 installed BT Meridian System

 10 ISDN lines

 2 Analogue

 30 staff

 Some contention … 

 Late 1998

 Added more lines for new dialler

 Now up to 30

 Cost approx 30k for upgrade

PBX Past: 1998-2005

 Late 1998

 installed commercial predictive dialler

 Disaster

 Cost 150k + for 10 agents

 Fixed seats – not floating

 Used DDE to communicate with 4GL app

PBX Past: 1998-2005

 Other problems

 Lost inbound callerid

 Could not answer phones appropriately

 No realtime integration

 Had to manually upload / download kill lists, campaigns etc

 No call blending, could only be inbound or outbound

 Turned off 2003

A Time for Change: Plans

 August 2005

 Plans to expand to 140+ staff over next 5 years

 Needed more extensions and lines

 Needed more Meridian Kit to cope

 Extra cabinets, Extra cards, Extra cost 

 Took on another floor in the building

 Needed phone systems on both floors

A Time for Change: Plans
 £100k : Project cost for the phone updates

 Directors baulk at the cost

 Someone suggests that I can do it instead

 No idea how a PBX works

 Tight project deadlines (December 2005)

 Requirement to keep existing kit

 Start trawling around the internet for ideas

 Find Asterisk

 Open source

 Active community

 Cool stuff to play with 

Phase 1

 Extensions on the desk

 Simple requirement. Put an extension on everyone’s desk

 Mixture of Meridian (11th) and Asterisk (5th)

 Seamless integration of 11th and 5th floors

 Cabling was , well, interesting …

 Dell server (512MB, 30GB HDD) used as PBX

 Linked to meridian using PRI card

 December 19th, moving in day

 January 8th, meridian dies. Takes nearly 2 weeks to get the
spare parts shipped in

Phase 1

 2006 – June 2007

 New System features rolled out

 Voicemail

 Conferences

 Dictation

 DDI for all staff

 Still no systems integration

 Manual dialling

 Queue members manually added to config files

A Time for Change: More Plans

 May 2007

 New client reporting requirements

 How many calls

 To which type (home / mobile etc)

 How many RPC

 Outcome of call

 Obviously, not possible to manually record this information
accurately

 Need to integrate phone system with DebtNet

Phase 2

 How do we do this ?

 Need PBX to “speak” to DebtNet

 Need DebtNet to initiate calls

 What else do we want ?

 Remove need for manual editing of queues / agents

 Remove need for manual editing of phone config

 Log all phone activity for an agent

Phase 2: Communication

 #1: Read pbx logging file from debtnet

 Intensive, horrible and just plain “yukky”

 #2: Read manager commands from IP Port

 Jammed often (trying to use ABL sockets)

 #3: Use experimental new PBX feature, Jabber support

 spent many nights debugging with author

 ABL clients do all the heavy lifting (creating records,
updating etc) after receiving the message from the PBX

Phase 2: Initiate Calls

 #1: Use direct connection to manager tcp/ip port

 Up to 100 clients connecting / disconnecting caused PBX
manager a lot of problems

 #2: Use proxy server to connect clients

 Single connection then to PBX manager

 ABL client can now send commands and data directly to the
phone system

 Initiate calls

 Reload Queues

 Reload Phone Config

Phase 2: Application integration

 Use Jabber ActiveX to receive messages from PBX

 Tells DebtNet about a new call

 Gives Agent popup box containing all the information about the
call (Queue Name, number)

 Tells agent when call has ended

 Built in dialling – double-click to call number

 DebtNet now has notification of call progress

 Able to check results of call (answered / busy / ooo) etc

 So can now store call information against the account

 Start time, End time, call result, actions applied

Phase 2: Live

 Went live July 2006

 Some small improvements in productivity

 Main feature was the call life integration for reporting
purposes

Phase 3: A Dialler
 July 2007 - decision is made an automated dialler is needed

 80 agents, 140 staff

 Agent productivity low, < 8 minutes per hour on the phone

 Call throughput abysmal < 50,000 call attempts per month

 Various commercial diallers considered to integrate with our system

 £100k + : Project cost for the dialler

 Directors baulk at the cost

 Someone suggests that I can do it instead

 No idea how a Dialler works

 Tight project deadlines (October 2007)

 Requirement to keep existing kit

Phase 3: A Dialler
 Need to rewrite dialler and application telephony code

 PBX now needs to read and write DebtNet database

 Needs to find free agents

 Needs to mark agents as busy etc

 Agents need to be marked as available / busy etc

 Need to blend inbound / outbound for maximum efficiency

Phase 3: Reading / writing

 PBX needs to read & write to the DebtNet database

 Setting agent state

 Removing agents from pool

 #1 No problem ! SQL92 to the rescue

 PBX has built-in ODBC commands to read/write data

 Testing was successful

 Yippee!

Phase 3: Dialler integration

 Application enhanced for auto-dialling

 Campaigns for calls

 Teams

 Agents assigned to teams

 Teams assigned to campaigns

 All drag’n’drop

 Campaign manager runs

 Works out number of free (and potentially free) agents available

 Starts dialling …

Phase 3: Dialler integration

 Benefits of Application integration

 When calling an account, schedules all numbers for that account

 One account can have up to 10 different numbers

 If account removed from campaign, all numbers automatically
removed

 Account can be removed from a campaign for any number of
reasons, not just as a result of a call

 Kill list is automatic, and instantaneous

 Account can be added to a running campaign instantaneously

 No stopping / starting campaign

Phase 3: Live date & problems

 Live late October 2007

 Heavy usage caused serious problems

 Highlighted lack of scalability testing (how do you test for 80+
agents without actually having them in ?)

 PBX kept core dumping, nearly always when executing sql
statements

 Sometimes 5 times a day

 Not acceptable

 Could not solve the problem

 So, what can we do ?

Phase 3: Solving the problem

 Remove SQL 

 Helped write and debug a “realtime driver” for a web call

 Switched pbx to use a web call to read/write data

 Webspeed !!

 Instead of SQL statements, use ABL business logic to determine
results and data

 PBX hands off to webspeed, ABL does the business, and returns the
data back to the PBX

 Use realtime web driver

 webspeed to provide config for pbx

Phase 3: Result!

 No more core dumps

 Faster !

 Allows for much more complex processing

 For example: Inbound call details passed to webspeed, put
through to most appropriate agent

 Clear separation between PBX and application

 Can swap out either side

 No need to install progress on PBX

Phase 3: Result!
 November 2007 – Upgraded to new version

 2010: Where we are now

 Agent productivity >40 minutes per hour on the phone

 Call throughput > 250,000 call attempts per month

 Through natural wastage, down to 30 Agents

 Handling 5x as many accounts as 2007

The Bottom Line: Financial

 Savings made since 2005

 replacement phone system: £100,000

 Dialler: £120,000

 Salary savings: £2,000,000+

 Bragging rights: Priceless

The Bottom Line: Benefits
 Allowed the company to reduce commission in order to keep and

attract clients

 “Punch above our weight”

 We can supply stats and data that not many competitors can

 Online auditing, along with call listening

 Implemented automatic survey system within 2 days

 Very agile

 Systems

 Processes

 Business

Inbound call flow (DDI)

1: Call comes in

From pstn to

Queue ddi

PBX Server
DebtNet Server

PSTN

WebSpeed

2: PBX asks “for
whom the bell tolls”

3: DebtNet responds
“It tolls for thee”

4: PBX dials appropriate
extension

Inbound call flow (DDI)

 Find owner of DDI

 Find hotdesk device

 If no hotdesk, find default assigned device

 Return JabberID, device name of user

Inbound call flow (DDI)
DEF VAR TargetUser AS CLASS ValueObject.UserCode NO-UNDO.

...

WHEN "ddi" THEN

 DO:

 ASSIGN lv_DDI = webspeed#:get-field("ToDDI").

 TargetUser = UserCodeLib:Instance:FindUserByDDI(lv_DDI).

 ASSIGN lv_Data = SUBSTITUTE("&1,&2,&3,&4,&5,&6,&7",

 TargetUser:RecordCalls,

 TargetUser:JabberID,

 TargetUser:DialString,

 TargetUser:AnswerMachine:MailBox,

 IF TargetUser:AllowMonitor THEN TargetUser:UserCodeGUID ELSE "",

 TargetUser:HotDeskChannel,

 TargetUser:AnswerMachine:DivertTo).

 END.

Inbound call flow (Queue)

1: Call comes in

From pstn to

Queue ddi

PSTN

WebSpeed

2: PBX asks “for
whom the bell tolls”

3: DebtNet responds
“It tolls for thee”

4: PBX puts call in
appropriate queue

Queue

5: PBX asks for
Free agent

WebSpeed

6b: DebtNet responds
With Extension

6a: DebtNet responds
With No free agent

Inbound call flow (Queue)

 Get queue details (open / closed)

 If closed, leave voicemail

 Add call to queue, wait for free agent

 PBX calls webspeed: “hey,need an agent”

 Webspeed gives back device of free agent

Inbound call flow (Queue)
WHEN "queue" THEN

 DO:

 ASSIGN ActiveCall1:QueueGUID = webspeed#:get-field("queueguid")

 ActiveCall1:QueueName = webspeed#:get-field("queuename")

 lv_NumCallers = ENTRY(4,webspeed#:get-field("calltotals"),":").

 lib:Queue:UpdateData(ActiveCall1:QueueGUID,ActiveCall1:CallID,"numcalls").

 ASSIGN lv_Data = lib:Queue:DialPlanDetails(ActiveCall1:QueueGUID,INT(lv_NumCallers)).

 END.
/* DialPlanDetails */

ASSIGN lv_cData = SUBSTITUTE("&1,&2,&3,&4,&5,&6",

 TRIM(STRING(Answermachine1:MailBox,">999")),

 QueueMessage1:VoiceMessageShortCode,

 AgentMessage1:VoiceMessageShortCode,

 CAPS(lv_Open),

 Queue.iTimeOut,

 lv_CallState).

 RETURN lv_cData.

Outbound call flow (Manual)

1: Agent double-clicks number

PSTN

2: Data passed to proxy

3: Proxy issues manager
Command for dialling

4: PBX places call

Proxy

Outbound call flow (Manual Click)

 Log onto phone extension (set hotdesk)

 Double-click on phone number

 Call passed to proxy, onto pbx

 PBX calls agent, then calls number

Outbound call flow (manual)

DEF VAR ActiveCall1 AS CLASS ValueObject.ActiveCall NO-UNDO.

ActiveCall1 = NEW ValueObject.ActiveCall().

ASSIGN ActiveCall1:DialledNumber = p_number

 ActiveCall1:UseFootprint = p_Footprint.

ActiveCall1:AddVariable("AGENTEXTENSION",Me#:HotDeskExtension).

Lib:User:GoNotReady(Me#:usercodeGUID,"Busy",SUBSTITUTE("Calling &1",p_Number)).

Lib:call:DialExternal(ActiveCall1)

Lib:Call:DialExternal(“01702444777”,”01376529046”).

User Object (ValueObject)
USING Progress.Lang.*.

CLASS ValueObject.UserCode INHERITS ValueObject.base:

 DEF PUBLIC PROPERTY JabberID AS CHARACTER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY CallerIDNumber AS CHARACTER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY CallerIDName AS CHARACTER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY DialString AS CHARACTER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY UserCodeGUID AS CHARACTER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY AnswerMachineGUID AS CHARACTER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY Email AS CHARACTER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY Salutation AS CHARACTER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY UserCode AS CHARACTER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY DDINumber AS CHARACTER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY InterfaceName AS CHARACTER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY ReadyStatus AS CHARACTER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY HotDeskChannel AS CHARACTER NO-UNDO GET . SET.

 DEF PUBLIC PROPERTY HotDeskExtension AS CHARACTER NO-UNDO GET . SET.

 DEF PUBLIC PROPERTY ExpectedAvailability AS DATETIME NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY EmployeeID AS INTEGER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY UserGroupID AS INTEGER NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY AllowMonitor AS LOGICAL NO-UNDO GET . SET .

 DEF PUBLIC PROPERTY RecordCalls AS LOGICAL NO-UNDO GET . SET.

 DEF PUBLIC PROPERTY Phones AS CLASS ValueObject.Phone EXTENT GET . SET.

 DEF PUBLIC PROPERTY HotDeskPhone AS CLASS ValueObject.Phone GET . SET.

 DEF PUBLIC PROPERTY AnswerMachine AS CLASS ValueObject.AnswerMachine GET . SET.

DESTRUCTOR PUBLIC UserCode ():

 DEF VAR lv_i AS INT NO-UNDO.

 DO lv_i = 1 TO EXTENT(Phones):

 DELETE OBJECT THIS-OBJECT:Phones[lv_i] NO-ERROR.

 END.

 DELETE OBJECT THIS-OBJECT:HotDeskPhone NO-ERROR.

 DELETE OBJECT THIS-OBJECT:AnswerMachine NO-ERROR.

 DELETE OBJECT THIS-OBJECT:ActiveSession NO-ERROR.

END DESTRUCTOR.

END CLASS.

User Library
METHOD PUBLIC VOID GetUser(p_User AS CLASS ValueObject.UserCode):

…

Get user data, store in p_user object

…

p_User:AnswerMachine = ValueObject.AnswerMachine:Get(p_User:AnswerMachineGUID).

p_User:HotdeskPhone = lib:UserDevice:HotdeskPhone(p_User:UserCodeGUID).

p_User:Phones = lib:UserDevice:LoadPhones(p_User:UserCodeGUID).

…

Listen to recorded call

 Use ABL library method to listen to call

 Calls your extension

 Connects to pbx

 Finds appropriate recording

 Playback through the phone

 ff/rew/pause etc

Lib:call:ListenToCall(SomeCallID).

Listen to live call

 Use ABL library method to listen to live call

 Calls your extension

 Connects to pbx

 Finds appropriate channel

 Playback through the phone

 If called with optional parameter allows you to speak to the
agent without the other party hearing you

Lib:Call:ListenToLiveCall(SomeCallID[,”Whisper”]).

Call an extension

 Use ABL library method to make call

 Connects to pbx

 Dials your extension

 Dials appropriate extension

DEF VAR ActiveCall1 AS CLASS ValueObject.ActiveCall NO-UNDO.

ActiveCall1 = NEW ValueObject.ActiveCall().

ASSIGN ActiveCall1:DialledNumber = “5711”.

Lib:call:DialInternal(ActiveCall1).

Link two extensions

 Use ABL library method to join 2 extensions in a call

DEF VAR ActiveCall1 AS CLASS ValueObject.ActiveCall NO-UNDO.

ActiveCall1 = NEW ValueObject.ActiveCall().

ASSIGN ActiveCall1:DialledNumber = “5711”

 ActiveCall1:CallerID = “5710”.

Lib:call:DialInternal(ActiveCall1).

Leave automatic answer machine
Message
 Use ABL library method to leave message

 Dynamically generated using TTS for name and reference,
rest of the message is pre-packed

 “Would [Mr John Smith] please call Rockwell on 0800-
333456 quoting reference [12345]. Thank you”

 Agent can push a button if they get a call that is an
answering machine. METHOD PUBLIC VOID AutoAnswerMachine (p_Activecall AS ValueObject.ActiveCall):

 AsteriskLib#:AMIRedirect(p_ActiveCall:ExternalChannel,"leavemessage","answermachine").

 RETURN.

END METHOD

Screenshots : Agent Allocation

Screenshots : Call scoring

Some Features

Unlimited
DDI

Voicemail

Queues

Dialler

Parking &
Pickup

Blended
Calls

Conference
Calls

Skype

VOIP/ISDN

Call
Listening

Call Scoring

Whisper
Call

Recording

Music on
Hold

Hotdesk

Low cost

Monitoring

Scalable SMS

Flexible

Surveys

Auto

Attendant

Integration

TTS
Voice

recognition

PCI DSS
Compliance

Multiple
Extensions

The Future: Enhancements

 No more teams

 Uses agent tags

 No need for allocation of teams to queues / campaigns

 No more campaign building

 All items now have tags for selection by certain campaigns

 Realtime removal / addition to running campaigns

 An item can potentially be in more than one campaign at a
time

The Future: Enhancements

 Structures of campaigns, work queues and queues

 Different structures on different days

 Allows an agent to be assigned to appropriate work
automatically

 Different timings of campaigns etc for each day

 Uses Goggle Calendar

The Future: Enhancements

 LCR across Voip providers

 Based on date / time / number

 Using mobile numbers for outbound contact

 More likely to answer a phone given a mobile callerid

 Integration with GoogleVoice

 Custom Call Center

 On-Demand agent allocation

 Remote monitoring / control by client

 HTML5 / Android / iPad

The Future: Enhancements

 Remember me Queues

 If you have to go before your call is answered, when you call back,
you are put at the position you were

 Telephone-based account managenment

 Card payments, enquiries etc

 Automated reminder system

 Payments due, Reviews due etc

 Out-sourced call center

 Cloud-based dialler

 This is all for live in Q2+Q3 this year 

Questions

