
Empowering OpenEdge
development with

GitHub Copilot
Razvan

Alessandro

Virgil

ABOUT ME

• 10+ years with OpenEdge
• Driven by challenges

• Don’t like
• Cats !!!

• What scares me:
• Mega spiders

• Likes
• Walking in nature

Our Goals

Explain and generate code​
•Simple OERA structure: temp-tables, datasets, data accesses, business entities and service interfaces​

Improve code quality​
•Generate unit tests​
•Suggest corrections and simplification of code​
•Suggest easily readable and understandable code​

Accelerate development​
•Faster code completion​
•Increasing productivity​
•Less time searching and less mental effort on repetitive tasks​

Easy integration into team work​
•Team members will use GitHub Copilot in development​
•GitHub Copilot working on any repository​

Transfer knowledge (context, chat history) on other workspace / machines​
Can we train on a specific framework ?​
Which repositories are used for training ?​

Customizing LLM approaches

Retrieve-augmented generation (RAG)
In-context learning

• Prompt engineering

Fine-tuning
• Supervised learning
• Reinforcement learning from human

feedback (RLHF)

Prompt engineering

Process of creating the best instruction for guiding AI systems

Principles of prompt engineering:
• Single – a single well-defined task or question
• Specific – provide explicit and detailed instructions
• Short – conciseness while being specific
• Surround – indicate needed descriptive filenames and keeping related files open

Refinement limitations

GitHub Copilot uses the current coding
session's context, including code, comments,
and project structure, to refine suggestions.
 Accepting or rejecting responses helps it
learn preferences, but these refinements are lost
after restarting the IDE or shutting down the
machine, or even clearing the chat history.
 Preferences are also non-transferable
between developers or machines.

Refinement limitations workaround

Although each Copilot Chat
session starts fresh, without knowledge
of previous interactions, there is a
workaround: a user can export their
chat history as a JSON file, and other
developers can import it on their own
machine.
 This way, all the prompts are
analyzed and “kept in mind” by the
LLM.

Knowledge limitation

Add repositories only for enterprise plan

Context limitation

While it has already been specified that GitHub Copilot can only access
files that are currently opened in the IDE, it's important to understand the
limitations of the underlying technology. ​
 The large language model transformers (LLMs) powering Copilot are
designed to handle a limited amount of text at a time—specifically, up to
6,000 characters.

Context limitation

Therefore, the challenge is not just about opening the right files in the IDE, but
also about strategically managing the information within those files to ensure that the
most critical sections of code are within the accessible range of the AI.

Security

Copilot’s reliance on training data raises concerns about security vulnerabilities.
A recent analysis highlighted potential XSS vulnerabilities in React code generated by
Copilot.

Image showing how Cross Site Scripting works
Ref: https://snyk.io/blog/github-copilot-xss-react/

Limitations

Has no access to external code like various libraries
 Developers often need to understand invoked functions to comprehend code segments.

Limitations

It can sometimes fail to see obvious optimizations, such as the find vs can-find
situation. In that case, the developer had to specify that can-find should be used:

Limitations

When generating test classes, Copilot fails to
follow the OpenEdge unit test structure, missing
annotations like @Setup, @TearDown, and @Test.

Integration of knowledge repositories in GitHub
Copilot

Currently, GitHub Copilot can integrate specific repositories
into its knowledge base, but this feature is exclusive to the

enterprise version.

OERA project experiment

In conclusion in the previous slides, where we generated the TT, DS, DA, BE
and SI classes for the Employee table, it is clear that the acceptance rate

drops as the number of generated characters increases.

GH Copilot Chat - tt

Temp-table generation based on a .df file

GH Copilot Chat - ds

Dataset generation based on another ds definition

GH Copilot Chat - DA
Data Access class generation based on another DA class. It took

4 messages with adjustments to get it right.

GH Copilot Chat - BE

Business Entity class generation based on another BE class. It
took 4 prompts with adjustments to get it right

GH Copilot Chat - SI

Service Interface class generation based on another SI class. It
took 14 prompts with adjustments to get it right

GH Copilot vs Copilot chat

GitHub Copilot
Functionality

• Code completion suggestions
• Context-aware – contextually relevant

suggestions
• Integration with IDE

Usage
• Autocomplete
• Assistance

User integration
• Inline suggestions

GitHub Copilot Chat
Functionality

• Conversational Assistance
• Broader use cases – answers questions
about code, suggest improvements
• Contextual Understanding of conversation

Usage
• Q&A
• Interactive

User Interaction
• Chat Interface
• Conversational

Account Configurations

Plans

VS Code configs

Tool limitations

Limited knowledge based on GitHub repositories
• OpenEdge is less used on github repositories

Inline code suggestions
No eclipse IDE official plugin
No possibility to integrate knowledge repositories for code suggestions
Generated code can be vulnerable to attacks
The contextual understanding is not always the best

To Summarize

In conclusion, GitHub Copilot proves to be a valuable asset for developers, significantly
enhancing productivity across various tasks, especially repetitive ones.​

 However, it is crucial to treat Copilot as a pair programmer rather than an autopilot.
Developers must diligently review and verify all code suggestions to maintain accuracy,
quality, and security.
 By effectively integrating Copilot into the development process, teams can achieve
greater efficiency while ensuring the integrity of their codebase.​

IDE Compatibility

GitHub Copilot works best with Visual Studio Code IDE, where the official Copilot plugin
provides full features. ​

 An unofficial plugin, Copilot4Eclipse, works with Eclipse IDE but causes errors in
Developer Studio.

Security concerns

An important consideration is that if two projects are open within the IDE, GitHub Copilot
may use the context from one project to inform suggestions in the other. ​

 This could potentially raise security concerns.

Can see files that are not open ?

•GH Copilot never has all of your code but creates a vector db and snippets from that are
used in context for creating a prompt.
•"Retriever" - a precompiled index that allows quickly looking up data items relevant to a
given query
•Index consists of code snippets harvested from the repository
•Index is often built as a fast k-nearest-neighbor data structure
•A query vector results in an approximate set of closest vectors in the index

Security

The Copilot can access only the current file and​ other open files in the IDE. It cannot
view the full project. For generating prompts, code snippets are encrypted and sent

to their servers.

Context – File open in the IDE

Context – Description on top of the code file

Context – Description on top of the method

Context – Previous prompts in the session

Context

It is important to note that the context is made up of:

• Code before and after the cursor (after cursor: 10% boost in acceptance)

• File name and type

• Open tabs (increased acceptance rate by 5%)

The way it handles data

The image bellow illustrates the process of generating a suggestion

The way it works
It is based on gen Ai model developed by GitHub, OpenAI and Microsoft.

It is trained on all programming languages publicity available,
so the suggestion quality will depend on the volume of repositories in that language

Why use it?

According to one research, developers
code up to 55 percent faster while
using the tool

Source: https://github.blog/2022-09-07-research-quantifying-
github-copilots-impact-on-developer-productivity-and-
happiness/

GitHub Copilot vs Copilot Chat

GPT 3.5 Turbo
Code completion feature
Inline suggestions
Small piece of code

Copilot Copilot Chat

GPT 4
Conversational interaction
Large pieces of codes
Detailed explanations
Workspace context

GitHub Copilot features

Additionally, the chat includes shortcut commands that cover the most
common actions developers might request from copilot

GitHub Copilot features

Copilot chat: explaining selected code in a detailed manner

GitHub Copilot features
Copilot chat: Similar to any other chat bot, but present inside the IDE ready to answer

only coding related questions, have specific context

GitHub Copilot features

Inline commands: After pressing icon, a small chat box opens up, ready to take in
commands related to the selected code

GitHub Copilot features

Comment to code suggestions: after tying a comment that describes what the
following lines of code should do, the same gray suggestions appear

GitHub Copilot features

Code autocomplete suggestions: as the developer writes the code, gray
suggestions will appear with the possibility to press Tab to accept the code

What is GitHub Copilot ?

GitHub Copilot is an AI coding assistant
that offers:

• Code autocomplete suggestions
• Copilot Chat
• Comment to code suggestions

ABOUT WAYFARE
12+

YEARS EXPERIENCE

100+
 PROFESSIONALS

50+
SATISFIED CUSTOMERS

OUR EXPERTISE

PROGRESS

OpenEdge, CorticonJS, Sitefinity

WEB TECHNOLOGIES

Angular, React, Vue.JS, NodeJS, JS, TypeScript, Java, .Net

MOBILE React Native CLOUD AWS, Azure, Google Cloud Platform

LOW CODE/ NO-CODE FRAMEWORKSMANUAL AND AUTOMATION TESTING

UI/UX Figma, XD, Zeplin, IllustratorDEVOPS Docker, Kubernetes, Jenkins

10+
 YEARS

LONGEST PARTNERSHIP

We’ve supported businesses of different sizes and across multiple industries
to achieve their goals.

TOP TALENT, SHARED KNOWLEDGE, CLOSE COLLABORATION

Our cost-effective solutions and active community engagement foster
innovation and efficiency.

We offer tailored services including Modernization, New Development,
Maintenance & Support, Quality Assurance, UI/UX Design, Consultancy and
Project Delivery.

Q&A

THANK YOU
wayfare.ro

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

