The nodeCode scenario

Typescript for ABL developers

&

INtroduction i o2

e Me myselfand |
e Build.One
e \What do | want to get out of this presentation 7

&

A journey in 5 parts SUILONE

TypeScript Unveiled: A Quick Overview

The Case for TypeScript: Benefits and Opportunities
Drawing Parallels: ABL and TypeScript Compared
My Typescript Voyage

GCetting Started with TypeScript: Essential First Steps

&

Why a Typescript and ABL OO presentation ? .,i:on-

e T[ypescript classes very similar to ABL OO classes
e Helps with transition to javascript
e Opens new possibilities for the cool ABL OO developers

e Whynot?

&

Quick Poll - Who's into OO S

e Never!

e Not yet

e "‘Researching”

e Sometimes. When I'm forced to.

e Mostly

e 'm a 4GCL OO wizard. My OO foo is legendary.

&

Why OO Is advantageous (ABL & Typescript) Lucons

e Type-safe for properties/ methods
o run “GetSalesValeus” in this-procedure

e |[Nnheritance
o One level deep only. Change my mind

e Code Reusability

o Reusable components and classes reduce redundancy and promote consistency

e Enhanced Maintainability
o OO principles contribute to more maintainable and scalable codebases.

&

Hang on a minute SUILSONE

e [hought this was a nodecode scenario
o Where's the node ?

&

Part I: A Typescript history (#0 of 3) -

e [ntroduced by Microsoft in 2012

o TypeScript was created to enhance JavaScript's capabilities.

e Designed by Anders Hejlsberg
o The chief architect behind C# aimed to provide strong typing in JavaScript.

e Open-source release
o An open-source project, allowing community contributions.

e [argeting large applications
o Initially aimed at improving the maintainability of large-scale applications.

&

SUILD.ON=

Part I: A Typescript history (#1 of 3)

e [irst stable version (1.0)
o Released in 2014

e [ntegration with JavaScript

o TypeScript is a superset of JavaScript, making it easy to adopt existing JavaScript
code.

e Adoption by major frameworks
o Libraries like Angular embraced TypeScript, boosting its popularity.

e T[ypeScript 2.0 (2016)

o |Introduced features like null checking, type inference, and better support for
generics.

&

Part I: A Typescript history (#2 of 3) -

e Expanded tooling support
o Enhanced integration with IDEs (e.g., Visual Studio, VS Code)

e Crowing community and ecosystem
o Rapidly expanding community contributed to libraries and frameworks supporting
TypeScript.
e T[ypeScript 3.0 and beyond (2018)
o features like conditional types and improved type checking.
e Strong focus on developer experience
o Continuous enhancements to type definitions and error messaging.

&

Part I: A Typescript history (#3 of 3) L

e TypeScriptin the age of React

o Became a preferred choice for modern frontend development alongside React

e Continuous updates
o Regular releases and updates to improve performance and add new features.

e Vision for the future

o TypeScript aims to remain a cornerstone for scalable, maintainable JavaScript
development.

&

Part |: A History of ABL (#1 of 10) B

e Yeah, just kidding.

&

Part |I: The Case for TypeScript B

Enhanced Developer Productivity
Improved Code Quality

Seamless Integration with JavaScript
Strong Community and Ecosystem
Statistics

&

Part Il: Enhanced Developer Productivity T

e Static Typing: Catch errors during development instead of runtime,
leading to quicker debugging.

e Intelligent Code Completion: Improved auto-completion and
suggestions in IDEs streamline coding.

e Refactoring Support: Easier to make changes across large codebases
with confidence.

e Better Documentation: Type annotations serve as self-documenting
code, improving clarity.

&

SUILD.ON=

Part II: Improved Code Quality

e Type Safety: Reduces the likelihood of bugs by enforcing data types.

e Clearer APIs: Function signatures and interfaces define clear
contracts, making collaboration easier.

e Maintainability: Strong typing leads to more maintainable code over
time, especially in large teames.

e¢ Enhanced Testing: Types provide a foundation for more effective unit
tests and validations.

&

Part [I: Seamless Integration with JavaScript Luicon-

e Superset of JavaScript: All existing JavaScript code is valid TypeScript,
easing the transition.

e Gradual Adoption: Teams can adopt TypeScript incrementally in
existing projects.

e Rich Ecosystem: Compatible with popular libraries and frameworks,
ensuring versatility.

e JavaScript Compatibility: Outputs clean, standard JavaScript,
ensuring compatipbility with all browsers.

e Defect Density: Code written in TypeScript can have 15% fewer bugs
on average compared to plain JavaScript

&

Part |l: Strong Community and Ecosystem 0 T -

e Vibrant Community: A large and active community contributes to
resources, libraries, and support.

e Regular Updates: Frequent releases add new features and
Improvements based on community feedback.

e Wide Adoption: Many major companies and frameworks utilize
TypeScript, indicating its reliability.

e Educational Resources: Abundant tutorials, documentation, and
courses available to facilitate learning.

&

Part ||: Statistics L

e Most popular programming language: TypeScript ranked 5th in the
Stack Overflow 2023 Developer Survey

e Rapid growth: Usage grew from 21% in 2019 to over 34% in 2023

e GitHub repository activity: As of 2023, TypeScript has over 95,000
stars on GitHub, making it one of the top open-source projects.

e NPM downloads: TypeScript sees over 90 million downloads per week
on NPM, reflecting its wide adoption across the JavaScript ecosystem.

&

Part Ill: Drawing Parallels B

Naming conventions
File Locations
Compiling / Building
Classes Compared

&

Part IIl: Naming Conventions e

e ABL forces the source code filename to be the same as the classname
e T[ypescript class name can be anything
e Convention is class names are PascalCase

e Multiple classes per source code file

&

Part Ill: Where Is the code stored - ABL T

e Each class is defined in a single cls file
o Compilestoa .rfile

e The Folder structure is the "namespace”

o BuildOne/AutomationHub/Workflow.cls creates the class package
BuildOne.AutomationHub.Workflow

e The Using statement allows for shorthand references

2 | BuildOne.AutomationHub. *.

Workflow myWorkflow = W Workflow("ConvertDocToPdf").

&

Part [ll: Where Is the code stored - Typescript .uicon:

e One or more classes can be defined in a single file
e Classes are exported for use by other code
e Barrel files can be created to re-export

X

iinner_barrel.ts
import { Greeter, Waiter, Starter } from './pug challenge

&

Part [II: Compiling code o Z

o ABL

o Compiles using Progress compiler
o Onecls=>one.r
o Can bundle all .r into a procedure library (.pl)

e J[ypescript

“Compiles” with tsc / babel

Produces a js file for each ts

When building for production, all js files can be bundled into a single s
Tree-Shaking

©)
©)
©)
©)

&

Part Ill: Classes Compared B

Constructors
Destructors
Methods
Properties
Inheritance
Abstracts
Statics

&

Part |lI: Constructors e

e T[ypescript has a single constructor only.

e Overloading is not possible, but some workarounds

o Union parameters
o Factory methods

export class Greeter {
constructor(option: boolean | string) {
if (typeof option === 'boolean') {
} else {

export class Greeter [{
private optionl: boolean;
private option2: string;

constructor() {
| // code

}

static fromString(option: string): Greeter {
const value = new Greeter();
value.option2 = option;

return value;

}

| static fromBoolean(option: boolean): Greeter {
const value = new Greeter();
value.optionl = option;

return value;

&

Part |ll: Destructors e

e No such thing
e Nothing to see here. Move on.
e NO, there's not a finally either

e \Well, maybe there is a destructor-type thing
o Even the docs say “avoid where possible” so let's not talk about that child

exﬁbrt cl%ss Greeter {
public myLittlePony(): string {
| return 'Pinkie Pie';

}

»

<

SUILD.ON=

Part |l: Properties

e Can be defined simply as a var on the class
e Also has getters and setters

e Public, private, static, abstract

. il export class Greeter
export class Greeter { St AR Greeter { ‘
A G, fullname: string;
i l]: boolean; -

: string; :
jet fullName(): string {
return this. fullname;

t fullName(value: string) {
this. fullname = value;

&

Part Ill: Inheritance S

e Like the ABL, Typescript can extend (inherit) other classes

e Multiple levels
o One level deep only. Change my mind
o "Asa general guideline, more than 2 or 3 levels of inheritance is often seen as a red
flag in software design.”

class Animal {
name: string;
constructor(theName: string) {
| this.name = theName;
}
move(dist: number = 0) {
| console.log(moved ${dist}m’);
}
¥

class Snake extends Animal {
constructor(name: string) {
| super(name);
}
move(distance = 5) {
| super.move(distance);

}
}

class MyLittlePony extends Animal {
constructor(name: string) {
| super(name);
}
move(distance = 45) {
| super.move(distance);

}

&

SUILD.ON=

Part II]: Albstracts

Similar to the ABL
Abstract class cannot be instantiated
Needs to be inherited

All properties and methods are available to subClass

// Subclass implementing the abstract class

2P class Circle extends Shape {
abstrac

// Usage
const rectangle = new Rectangle(5, 10);

rectangle.describe(); // Outputs: "This is a shape with an area of 50 square units."

const circle = new Circle(7);
circle.describe(); // Outputs: "This is a shape with an area of 153.93804002589985 square units."

recurinn macn.ri - Lids.fadulius = Liidis.rautus,

&

Part |ll: Statics IS ON

e Properties and methods can be

e T[ypescript class itself cannot be static
o You can simulate a static class by creating a private constructor

myLittlePony(): string {
return 'Pinkie Pie';

}

console.log(Greeter.myLittlePony());
1st = new Greeter();

&

SUILD.ON=

Part Il]: Class events

e [herearentany
e Can use standard emitters which are a pub /sub
e Similar to SUBSCRIBE TO "MyEvent" ANYWHERE.

&

Part IIl: Interfaces S

e Similarto the ABL
e Specifty a set of properties and methods that a class must implement
e Build several classes that conform to a standard AP

e Each class must implement all properties and methods in the
interface

e Naming Convention is that Interfaces begin with an “I"

interface IClockInterface {
currentTime: Date;
setTime(date: Date): void;

}

class Clock implements IClockInterface {

currentTime: Date;
setTime(date: Date) {
| this.currentTime = date;

}

constructor(hours: number, minutes: number) {}

&

Part IV: My Typescript voyage =i T

e Lessons learnt moving to Typescript

&

Part |V: Javascript vs ABL B

e |IMmplicit typing

o vars are declared without specifying a type “‘yg;”"?”)
my ring =

e Dynamic typing N
. . myVariable =
o the type of a variable can change at runtime. myvariable =

o \Weak Typing

o performs implicit type conversions (type coercion). result = "S" + 1;

console.log([1, 2] == [1, 2]); // false

c Corlav LSS | I-Uv \“l 1 ’ ' riJ l-L' ‘-’ \I’ 'I’J ' LS L B etd MIVUVLT AU WY TTWw L L

&

SUILD.ON=

Part V: Disclaimer / Warnings

e Yes, yes. Disclaimers must be at the top of the presentation deck
o This *is* about Typescript ;)

e You will not be a TS wizard at the end of the presentation
e Code formatting in slides is not ... optimal ..

&

Part V. Code formatting 2

e Everyone is going to be offended
o Tough, liveitit

e There are two types of people
o Programmers will know

X = 1 X =
y = y =
f (x) { if (x) {
} }
f (y) if (y) {

13 N

class Greeter:
def public property greeting as char no-undo get . set .

constructor Greeter(msg as char):
| assign this-object:greeting = msq.
end constructor.

method public char greet():
. return "hello, " + this-object:greeting.
end method.

end class.

|
2
3
4
5
6
7
8
9

b
N = O©

class Greeter {
public greeting: string;

constructor(msg: string) {
| this.greeting = msg;

}

public greet(): string {
| return 'hello, ' + this.greeting;

}

1
2
3
4
5
6
7
8
g

&

Part V: Installing node and typescript L

#1the right way

H2 the wrong way

&

Part V. converting ABL L

Sep 18 16:20 @ ¢

EXPLORER

v OPEN EDITORS
\/ CSTRAININGDEVELOP
> .deploy
> .vscode
> .yarn
> config
> data
> logs
> node_modules
2 (d ®

v backend @

> .build

> Akic-)ma) ommands Ctrl + Shift + P

> BusinessLogic . D ,__,T..__......«m.’?

> DB 8Go to File cerll+ E Gl + E
v demo @ .

Find in Files | ctd + Shift + F

Toggle Full Screen | F11

> node_modules Show Settings Ctrl i+ ,
> sports2000trgs
5 TrainingEventHan... PROBLEMS @) OUTPUT PORTS GITLENS FIELDSEXPLORER ~ SQLCONSOLE ~ MLXPRS ~ COMMENTS ~ DEBUGCONSOLE TERMINAL +v oA X
« .gitignore r b startup: bash
= .restapplicationse... L > watch: node
{} package.json (@ TTY execution
> da | sTveecton
S ano ® gitpod /workspace/cstrainingdevelop (develop) $ tsc src/backend/demo/demo.ts
@ S rwebii ® gitpod /workspace/cstrainingdevelop (develop) $ node src/backend/demo/demo
‘ ® gitpod /workspace/cstrainingdevelop (develop) $ tsc src/backend/demo/demo.ts
—>-tma__ @ gitpod /workspace/cstrainingdevelop (develop) $ node src/backend/demo/demo
DETMEINE hello world
> QFENEDGEDOCUNENIAT O gitpod /workspace/cstrainingdevelop (develop) $ [] i

C BB &> cevelor* O B 9 Launchpad FileWatcher: configreloaded ®0A'S () Connect GitGraph 8 Server not selected > share [TRECRENGEISSEa

https://docs.google.com/file/d/1laKZlIRHs1ReVd3oYNI459JJ22IhPvel/preview

&

Part V: calling ABL S

Sep 18 18:48

> yarn
> config
> data
> logs

Vv SIc

> .vscode

> node_modules

1=

@ 0 @ © 1

“ee

v backend

> .build

> Akioma

> BusinessLogic
> DB

v demo

® Demo.cls

Js demo.js

@ Demo.r

Ts demo.ts

Js openedge.js
TS openedge.ts
= test.p

@ test.r

> node_modules
> sports2000trgs

> TrainingEventHan...

U

c

c & e &

< .gitignore

> TIMELINE

PROBLEMS . OUTPUT PORTS GITLENS FIELDS EXPLORER ~ SQL CONSOLE MLXPRS

© gitpod /workspace/cstrainingdevelop (develop) $ []

hpad FileWatcher: configreloaded ®O0A S [Connect GitGraph B Server not selectec

DEBUG CONSOLE ~ TERMINAL

r B startup: bash
L 5] watch: node

(@ TTY execution
(@ TTY execution

@ share | Circlecl: @ Not loggedin

@ v+ a0

4+ v

https://docs.google.com/file/d/1nHu0R1o_ZqL312vPWkRkX5HJpyawGuf5/preview

&

Wrapup Sulo.oNE

N this presentation we have been on a journey

e TypeScript Unveiled: A Quick Overview

e [he Case for TypeScript: Benefits and Opportunities
e Drawing Parallels: ABL and TypeScript Compared

e My Typescript Voyage

e (Cetting Started with TypeScript: Essential First Steps

&

Wrapup Sulo.oNE

Questions =uv on=

