
The nodeCode scenario

Typescript for ABL developers

Introduction

● Me, myself and I
● Build.One
● What do I want to get out of this presentation ?

A journey in 5 parts

● TypeScript Unveiled: A Quick Overview
● The Case for TypeScript: Benefits and Opportunities
● Drawing Parallels: ABL and TypeScript Compared
● My Typescript Voyage
● Getting Started with TypeScript: Essential First Steps

Why a Typescript and ABL OO presentation ?

● Typescript classes very similar to ABL OO classes

● Helps with transition to javascript

● Opens new possibilities for the cool ABL OO developers

● Why not ?

Quick Poll - Who’s into OO

● Never!

● Not yet

● “Researching”

● Sometimes. When I’m forced to.

● Mostly

● I’m a 4GL OO wizard. My OO foo is legendary.

Why OO is advantageous (ABL & Typescript)

● Type-safe for properties / methods
○ run “GetSalesValeus” in this-procedure

● Inheritance
○ One level deep only. Change my mind

● Code Reusability
○ Reusable components and classes reduce redundancy and promote consistency

● Enhanced Maintainability
○ OO principles contribute to more maintainable and scalable codebases.

Hang on a minute

● Thought this was a nodecode scenario
○ Where’s the node ?

Part I: A Typescript history (#0 of 3)

● Introduced by Microsoft in 2012
○ TypeScript was created to enhance JavaScript's capabilities.

● Designed by Anders Hejlsberg
○ The chief architect behind C# aimed to provide strong typing in JavaScript.

● Open-source release
○ An open-source project, allowing community contributions.

● Targeting large applications
○ Initially aimed at improving the maintainability of large-scale applications.

Part I: A Typescript history (#1 of 3)

● First stable version (1.0)
○ Released in 2014

● Integration with JavaScript
○ TypeScript is a superset of JavaScript, making it easy to adopt existing JavaScript

code.

● Adoption by major frameworks
○ Libraries like Angular embraced TypeScript, boosting its popularity.

● TypeScript 2.0 (2016)
○ Introduced features like null checking, type inference, and better support for

generics.

Part I: A Typescript history (#2 of 3)

● Expanded tooling support
○ Enhanced integration with IDEs (e.g., Visual Studio, VS Code)

● Growing community and ecosystem
○ Rapidly expanding community contributed to libraries and frameworks supporting

TypeScript.

● TypeScript 3.0 and beyond (2018)
○ features like conditional types and improved type checking.

● Strong focus on developer experience
○ Continuous enhancements to type definitions and error messaging.

Part I: A Typescript history (#3 of 3)

● TypeScript in the age of React
○ Became a preferred choice for modern frontend development alongside React

● Continuous updates
○ Regular releases and updates to improve performance and add new features.

● Vision for the future
○ TypeScript aims to remain a cornerstone for scalable, maintainable JavaScript

development.

Part I: A History of ABL (#1 of 10)

● Yeah, just kidding.

Part II: The Case for TypeScript

● Enhanced Developer Productivity
● Improved Code Quality
● Seamless Integration with JavaScript
● Strong Community and Ecosystem
● Statistics

● Static Typing: Catch errors during development instead of runtime,
leading to quicker debugging.

● Intelligent Code Completion: Improved auto-completion and
suggestions in IDEs streamline coding.

● Refactoring Support: Easier to make changes across large codebases
with confidence.

● Better Documentation: Type annotations serve as self-documenting
code, improving clarity.

Part II: Enhanced Developer Productivity

● Type Safety: Reduces the likelihood of bugs by enforcing data types.
● Clearer APIs: Function signatures and interfaces define clear

contracts, making collaboration easier.
● Maintainability: Strong typing leads to more maintainable code over

time, especially in large teams.
● Enhanced Testing: Types provide a foundation for more effective unit

tests and validations.

Part II: Improved Code Quality

● Superset of JavaScript: All existing JavaScript code is valid TypeScript,
easing the transition.

● Gradual Adoption: Teams can adopt TypeScript incrementally in
existing projects.

● Rich Ecosystem: Compatible with popular libraries and frameworks,
ensuring versatility.

● JavaScript Compatibility: Outputs clean, standard JavaScript,
ensuring compatibility with all browsers.

● Defect Density: Code written in TypeScript can have 15% fewer bugs
on average compared to plain JavaScript

Part II: Seamless Integration with JavaScript

● Vibrant Community: A large and active community contributes to
resources, libraries, and support.

● Regular Updates: Frequent releases add new features and
improvements based on community feedback.

● Wide Adoption: Many major companies and frameworks utilize
TypeScript, indicating its reliability.

● Educational Resources: Abundant tutorials, documentation, and
courses available to facilitate learning.

Part II: Strong Community and Ecosystem

Part II: Statistics

● Most popular programming language: TypeScript ranked 5th in the
Stack Overflow 2023 Developer Survey

● Rapid growth: Usage grew from 21% in 2019 to over 34% in 2023
● GitHub repository activity: As of 2023, TypeScript has over 95,000

stars on GitHub, making it one of the top open-source projects.
● NPM downloads: TypeScript sees over 90 million downloads per week

on NPM, reflecting its wide adoption across the JavaScript ecosystem.

Part III: Drawing Parallels

● Naming conventions
● File Locations
● Compiling / Building
● Classes Compared

Part III: Naming Conventions

● ABL forces the source code filename to be the same as the classname

● Typescript class name can be anything

● Convention is class names are PascalCase

● Multiple classes per source code file

Part III: Where is the code stored - ABL

● Each class is defined in a single .cls file
○ Compiles to a .r file

● The Folder structure is the “namespace”
○ BuildOne/AutomationHub/Workflow.cls creates the class package

BuildOne.AutomationHub.Workflow

● The Using statement allows for shorthand references

Part III: Where is the code stored - Typescript

● One or more classes can be defined in a single file
● Classes are exported for use by other code
● Barrel files can be created to re-export

Part III: Compiling code

● ABL
○ Compiles using Progress compiler
○ One cls => one .r
○ Can bundle all .r into a procedure library (.pl)

● Typescript
○ “Compiles” with tsc / babel
○ Produces a js file for each ts
○ When building for production, all .js files can be bundled into a single .js
○ Tree-Shaking

● Constructors
● Destructors
● Methods
● Properties
● Inheritance
● Abstracts
● Statics

Part III: Classes Compared

● Typescript has a single constructor only.
● Overloading is not possible, but some workarounds

○ Union parameters
○ Factory methods

Part III: Constructors

Part III: Constructor workaround

Part III: Destructors

● No such thing

● Nothing to see here. Move on.

● No, there’s not a finally either

● Well, maybe there is a destructor-type thing
○ Even the docs say “avoid where possible” so let’s not talk about that child

Part III: Methods

● Similar to the ABL
● Private, public, protected, static, abstract
● No overloading

Part III: Properties

● Can be defined simply as a var on the class

● Also has getters and setters

● Public, private, static, abstract

Part III: Inheritance

● Like the ABL, Typescript can extend (inherit) other classes

● Multiple levels
○ One level deep only. Change my mind
○ “As a general guideline, more than 2 or 3 levels of inheritance is often seen as a red

flag in software design.”

Part III: Inheritance example

Part III: Abstracts

● Similar to the ABL
● Abstract class cannot be instantiated
● Needs to be inherited
● All properties and methods are available to subClass

Part III: Abstract Classes

Part III: Statics

● Properties and methods can be
● Typescript class itself cannot be static

○ You can simulate a static class by creating a private constructor

Part III: Class events

● There aren’t any
● Can use standard emitters which are a pub / sub
● Similar to SUBSCRIBE TO "MyEvent" ANYWHERE.

Part III: Interfaces

● Similar to the ABL

● Specify a set of properties and methods that a class must implement

● Build several classes that conform to a standard API

● Each class must implement all properties and methods in the
interface

● Naming Convention is that Interfaces begin with an “I”

Part III: Interface example

Part IV: My Typescript voyage

● Lessons learnt moving to Typescript

Part IV: Javascript vs ABL

● Implicit typing
○ vars are declared without specifying a type

● Dynamic typing
○ the type of a variable can change at runtime.

● Weak Typing
○ performs implicit type conversions (type coercion).

Part IV : some Gotchas

Part V: Disclaimer / Warnings

● Yes, yes. Disclaimers must be at the top of the presentation deck
○ This *is* about Typescript ;)

● You will not be a TS wizard at the end of the presentation
● Code formatting in slides is not … optimal ..

Part V: Code formatting

● Everyone is going to be offended
○ Tough, live it it

● There are two types of people
○ Programmers will know

Part V: Show me the code (ABL) !

Part V: Show me the code (Typescript) !

Part V: Installing node and typescript

#1 the right way

#2 the wrong way

Part V: converting ABL

https://docs.google.com/file/d/1laKZlIRHs1ReVd3oYNI459JJ22IhPvel/preview

Part V: calling ABL

https://docs.google.com/file/d/1nHu0R1o_ZqL312vPWkRkX5HJpyawGuf5/preview

Wrapup

In this presentation we have been on a journey

● TypeScript Unveiled: A Quick Overview
● The Case for TypeScript: Benefits and Opportunities
● Drawing Parallels: ABL and TypeScript Compared
● My Typescript Voyage
● Getting Started with TypeScript: Essential First Steps

Wrapup

Questions

