
My Code Is Better
Than Yours

PUG Challenge 2024, Prague

Jochen Zimmerman
Lead Enterprise Architect, proALPHA

Roland de Pijper
Sr Principal Consultant, Progress Software

2© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Agenda

• History Lesson

• Who is SIG?

• Demo

• proALPHA Case Study

• Final Thoughts

3© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Your Code Over Time

Different

Frameworks

Time

Pressure

Different

Developers

Functional

Changes

Technical

Debt

https://www.progress.com/

4© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 4

Procedural code

DEFINE VARIABLE cColor AS CHARACTER INITIAL 'Golden' NO-UNDO.

DEFINE VARIABLE cFriendly AS CHARACTER INITIAL 'Very' NO-UNDO.

DEFINE VARIABLE iNumberOfLegs AS INTEGER INITIAL 4 NO-UNDO.

DEFINE VARIABLE hYara AS HANDLE NO-UNDO.

RUN goldenretriever.p(INPUT cColor,

INPUT cFriendly,

INPUT iNumberOfLegs)

PERSISTENT SET hYara.

https://www.progress.com/
https://www.progress.com/

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

State-of-the-art OO
Implementation

VAR Animal Yara =

NEW Golden_Retriever(Friendly:Very).

6© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 6

https://www.progress.com/
https://www.progress.com/

7© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 7

A benchmarked approach to reduce software risks,

costs while increasing velocity

https://www.progress.com/
https://www.progress.com/

8© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 8

SIGRIDQSM: Quality and Security Management

https://www.progress.com/
https://www.progress.com/

9© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 9

OpenEdge Application Quality and Security
Management Service (QSM)

ÇÇ

Goals

Set your goals

Security findings

Maintainability

Test code ratio

Architecture quality

ÇÇ

Maintainability

Maintainability score

compared to the

industry

Where are the risks

Where to improve

ÇÇ

Security

Automated finding of

security threats in your

codebase

Based on industry

standards (OWASP,

ISO 5055, CWE, PCI

DSS)

ÇÇ

Architecture

Shows the architecture

as it is implemented

and how it’s being

maintained

Helps you to find

opportunities on how it

can be improved

https://www.progress.com/
https://www.progress.com/

DEMO

Maintainability

12© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 1212

Volume

Having an independent system will ease

maintenance

https://www.progress.com/
https://www.progress.com/

13© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 1313

Duplication

Write code once

Duplicated code wastes time, as future changes

will need to be applied to all copies. This might

also introduce bugs if you inadvertently forget to

update one of the copies.

https://www.progress.com/
https://www.progress.com/

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Unit size

“The first rule of functions is that

they should be small.

The second rule of functions is that

they should be smaller than that.”

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Unit complexity

McCabe Cyclomatic Complexity

NUMBER_OF_BRANCHES + 1

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Unit interfacing

Keep unit interfaces small

Avoid creating procedures/methods

that take many parameters, as it

makes them inconvenient to call or

reuse.

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Module coupling

Separate concerns in modules

Separation of concerns leads to

smaller and more loosely coupled

modules (i.e. files).

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Component
independence

Couple architecture components

loosely

Separate components into an

interface, that receives incoming

communication from other

components, and an internal part.

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Component
entanglement

High entanglement indicates flaws in

your functional decomposition

Architecture

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Code breakdown

Components should be equally

divided

This will spread the need for

modifications, make it easier to have

several teams work on the same

application and spread the knowledge.

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Component coupling

Sum of incoming and outgoing

dependencies between components

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Component cohesion

Ratio between the component’s

internal and external dependencies.

Higher is better.

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Code reuse

Shows duplication within and between

components.

Adds up the number of lines that are

duplicate in total.

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Communication
centralization
Percentage of code NOT involved in

direct communication with other

components.

Higher is better.

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Bounded evolution

Measures the degree of co-evolution

of components within a system based

on the frequency of coupled code

modifications over time.

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Knowledge
distribution
Measures the degree to which

development can grow and retain

knowledge over a given system.

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Component freshness

Measures the degree to which

components are actively being kept up

to date and maintained.

Security

30© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 30

Security

https://www.progress.com/
https://www.progress.com/

31© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 31

OpenEdge specific rules

https://www.progress.com/
https://www.progress.com/

Open Source Health

33© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 33

Open Source Health

QSM scans your 3rd party libraries for

- Known vulnerabilities

- Freshness

- Activity

- Stability

- Management

- Legal licenses

https://www.progress.com/
https://www.progress.com/

proALPHA
Case Study

35© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 35

Unternehmen der proALPHA

Gruppe

Better decisions.

For a better future.

Quality & Security Management

19.09.24

https://www.progress.com/
https://www.progress.com/

36© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 36

proALPHA ERP at a Glance

36

InternationalEfficientReliable

50
Countries

~2,000
Customers

>1,200
Employees

27
Branch offices

39
Partners

>30 years
On the market

15
Localizations and

language versions

€160,8m
Revenue in FY22/23

3x
Stronger growth

€

https://www.progress.com/
https://www.progress.com/

37© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 37

ca. 9 Million Lines of ABL Code

All Generations of ABL Paradigms

• Includes

• Super-Procedures

• OOABL

Code is well organized with a very strict folder

and naming scheme

Nevertheless – Two Tier Architecture

• Business Logic in UI

• Business Logic in Triggers

proALPHA Codebase

https://www.progress.com/
https://www.progress.com/

38© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 38

proALPHA Codebase

https://www.progress.com/
https://www.progress.com/

39© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 39

proALPHA Codebase

• Code is well organized with a very strict folder and naming scheme

• First two letters are always module / submodule

• Third letter is type of program such as

• b for browser

• v for viewer

• r for super procedure

• and many more …

• Very strict formatting rules, checked automatically with static code checks …

• Our code base looks the same for all the 9 million lines of code

https://www.progress.com/
https://www.progress.com/

40© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 40

proALPHA Codebase

• With this measures (and some more) we have very good control of our code base and can

work on it with 200+ developers

• Nevertheless – we do have a noticeable increase of maintenance effort over the last couple of

years

• We were looking for ways to lower this maintenance effort again

SIG comes into the picture!

https://www.progress.com/
https://www.progress.com/

41© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 41

proALPHA and SIG

• Progress asked us if we want to do a POC with SIG in December 2022

• The POC was planned for 6 month and ended in July 2023

• After the initial POC we did not immediately sign a contract

• The reason was SIG's handling of dependencies (details to follow)

• SIG corrected all our complaints, so we use SIG since April 2024

https://www.progress.com/
https://www.progress.com/

42© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 42

SIG Rating of our Codebase

• On a first glance this looks very bad

• Maintainability is NOT Quality!!

• Our strict code organisation is reflected in good

numbers for Module Coupling and Component

independence

• Duplication, Unit Size and Unit Complexity reflects

more Progress „Specialities“ than absolute quality

• Does not change that improving this numbers

should lower maintenance efforts!!

https://www.progress.com/
https://www.progress.com/

43© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 43

Evaluation of the key figures in context of OE / pA

• Volume

• our strict naming conventions are an adequate replacement for smaller repositories

• In the foreseeable future, we will not split the proALPHA code base into smaller

repositories, so this number will not improve

https://www.progress.com/
https://www.progress.com/

44© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 44

Evaluation of the KPIs in context of OE / pA

• Duplications

• there is a lot of generated code, especially for the UI (Appbuilder) by using XFTRs

• This KPI does not show the correct value for the self-written business code

https://www.progress.com/
https://www.progress.com/

45© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 45

Evaluation of the KPIs in context of OE / pA

• Duplications

• there is a lot of generated code, especially for the

UI (Appbuilder)

• This KPI does not show the correct value for the

self-written business code

• You need to exclude these hits manually

• If any of the files are changed, the hit will

reappear

• We are negotiating with SIG to change this

https://www.progress.com/
https://www.progress.com/

46© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 46

Evaluation of the KPIs in context of OE / pA

• Code Snippet has 32 lines

• Only this isolated snippet is already high risk

• What do you really do with something like that?

https://www.progress.com/
https://www.progress.com/

47© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 47

Evaluation of the KPIs in context of OE / pA

Implication

• If you have a method with 180 LOC and split it up

in two methods with 90 LOC, you do not improve

the rating!

https://www.progress.com/
https://www.progress.com/

48© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 48

Evaluation of the KPIs in context of OE / pA

• OOABL was introduced 2004

• It is a design choice to pass the buffer or the

primitive parameters

• pA mostly pass the parameters explicitly

https://www.progress.com/
https://www.progress.com/

49© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 49

Dependency Specialties

• SIG handles OOABL and Progress as

separate technologies

• Normally there can’t be dependencies

between codebases of different technologies

• SIG corrected this for OpenEdge in

cooperation with proALPHA

https://www.progress.com/
https://www.progress.com/

50© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 50

Dependency Specialties

• Database Triggers are a very special construct

• Whenever a record is created or changed a

database trigger fires

• This creates a dependency from the class or

program to the trigger

• SIG implemented this in cooperation with

proALPHA

https://www.progress.com/
https://www.progress.com/

51© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 51

proALPHA Strategy for the near future

• Work on Duplications

• if we refactor other aspects first (for example

complexity), we remove literal code duplications

but the semantic duplication stays and is not

detected anymore

• Work on cyclic dependencies

• Cyclic dependencies prevent us from splitting the

code base into smaller pieces

https://www.progress.com/
https://www.progress.com/

52© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 52

Improvement on Duplications

DEMO

https://www.progress.com/
https://www.progress.com/

End of Case Study

54© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 5454© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Smart application optimization plan

Crypto

AnalysesCommon

Networks

Utils

Satrunner

qualitmodelservice

Certification

13264

1456 15

14

11

210

223535

3

14

1

28

1

M S A

M S A

M S A

M S A

M S A

Maintainability

Security

Architecture

Keep as is

Hotspot

optimization

options

Rebuild

Renovate

Rearchitect

Encapsulate

M S A

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

In
ve

st
m

e
n

t
in

 d
e

ve
lo

p
m

e
n

t
in

 1
M

M
 U

S$

Time in Years

Cumulative investment per scenario

Keep as is Renovate Rebuild

ROI

IDENTIFICATION BY OPENEDGE QSM EVALUATION ANALYSIS

RenovateEncapsulate

https://www.progress.com/
https://www.progress.com/
https://www.progress.com/

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Quality & Security
Management: What’s Included

License to use Analysis tool (Sigrid)

• Data-driven software intelligence platform

• Analyses Progress source code

• Derive holistic insights into

• Risks, costs, opportunities

• On multiple software quality aspects

Consultancy to run the assessment

Fully documented assessment results

Leveraging Sigrid® Platform

Analyzing source code quality and security –
multi-metrics, multi-roles, and risk-based
prioritized

Largest software

benchmark in the
world 1,000,000+
Inspections

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Why Application Quality and
Security Management?

Create awareness and insights on current

application state

Justify why modernization is needed and where

and how it will pay off most

Get fact-based insights to drive innovation, manage
risks and lower costs

Increase transparency from the development team

to boardroom to set priorities for your software

development investments

News You Can Use

	Slide 1: My Code Is Better Than Yours
	Slide 2: Agenda
	Slide 3: Your Code Over Time
	Slide 4: Procedural code
	Slide 5: State-of-the-art OO Implementation
	Slide 6
	Slide 7
	Slide 8: SIGRID
	Slide 9: OpenEdge Application Quality and Security Management Service (QSM)
	Slide 10: DEMO
	Slide 11: Maintainability
	Slide 12: Volume
	Slide 13: Duplication
	Slide 14: Unit size
	Slide 15: Unit complexity
	Slide 16: Unit interfacing
	Slide 17: Module coupling
	Slide 18: Component independence
	Slide 19: Component entanglement
	Slide 20: Architecture
	Slide 21: Code breakdown
	Slide 22: Component coupling
	Slide 23: Component cohesion
	Slide 24: Code reuse
	Slide 25: Communication centralization
	Slide 26: Bounded evolution
	Slide 27: Knowledge distribution
	Slide 28: Component freshness
	Slide 29: Security
	Slide 30: Security
	Slide 31: OpenEdge specific rules
	Slide 32: Open Source Health
	Slide 33: Open Source Health
	Slide 34: proALPHA Case Study
	Slide 35: Quality & Security Management
	Slide 36: proALPHA ERP at a Glance
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: End of Case Study
	Slide 54: Smart application optimization plan
	Slide 55: Quality & Security Management: What’s Included
	Slide 56: Why Application Quality and Security Management?
	Slide 57: News You Can Use
	Slide 58

