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Agenda

• History Lesson

• Who is SIG?

• Demo

• proALPHA Case Study

• Final Thoughts
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Procedural code

DEFINE VARIABLE cColor AS CHARACTER INITIAL 'Golden' NO-UNDO.

DEFINE VARIABLE cFriendly AS CHARACTER INITIAL 'Very' NO-UNDO.

DEFINE VARIABLE iNumberOfLegs AS INTEGER INITIAL 4 NO-UNDO.

DEFINE VARIABLE hYara AS HANDLE NO-UNDO.

RUN goldenretriever.p(INPUT cColor, 

INPUT cFriendly, 

INPUT iNumberOfLegs) 

PERSISTENT SET hYara.

https://www.progress.com/
https://www.progress.com/
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State-of-the-art OO 
Implementation

VAR Animal Yara = 

NEW Golden_Retriever(Friendly:Very).
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https://www.progress.com/
https://www.progress.com/
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A benchmarked approach to reduce software  risks, 

costs while increasing velocity

https://www.progress.com/
https://www.progress.com/
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SIGRIDQSM: Quality and Security Management

https://www.progress.com/
https://www.progress.com/
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OpenEdge Application Quality and Security 
Management Service (QSM)

ÇÇ

Goals

Set your goals

Security findings

Maintainability

Test code ratio

Architecture quality

ÇÇ

Maintainability

Maintainability score 

compared to the 

industry

Where are the risks

Where to improve

ÇÇ

Security

Automated finding of 

security threats in your 

codebase

Based on industry 

standards (OWASP, 

ISO 5055, CWE, PCI 

DSS)

ÇÇ

Architecture

Shows the architecture 

as it is implemented

and how it’s being 

maintained

Helps you to find 

opportunities on how it 

can be improved

https://www.progress.com/
https://www.progress.com/


DEMO



Maintainability
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Volume

Having an independent system will ease 

maintenance

https://www.progress.com/
https://www.progress.com/
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Duplication

Write code once

Duplicated code wastes time, as future changes 

will need to be applied to all copies. This might 

also introduce bugs if you inadvertently forget to 

update one of the copies.

https://www.progress.com/
https://www.progress.com/
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Unit size

“The first rule of functions is that 

they should be small. 

The second rule of functions is that 

they should be smaller than that.”
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Unit complexity

McCabe Cyclomatic Complexity

NUMBER_OF_BRANCHES + 1
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Unit interfacing

Keep unit interfaces small

Avoid creating procedures/methods 

that take many parameters, as it 

makes them inconvenient to call or 

reuse.
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Module coupling

Separate concerns in modules

Separation of concerns leads to 

smaller and more loosely coupled 

modules (i.e. files). 
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Component 
independence

Couple architecture components 

loosely

Separate components into an 

interface, that receives incoming 

communication from other 

components, and an internal part.
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Component 
entanglement

High entanglement indicates flaws in 

your functional decomposition



Architecture
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Code breakdown

Components should be equally 

divided 

This will spread the need for 

modifications, make it easier to have 

several teams work on the same 

application and spread the knowledge.
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Component coupling

Sum of incoming and outgoing 

dependencies between components
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Component cohesion

Ratio between the component’s 

internal and external dependencies. 

Higher is better.
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Code reuse

Shows duplication within and between 

components. 

Adds up the number of lines that are 

duplicate in total.
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Communication 
centralization
Percentage of code NOT involved in 

direct communication with other 

components.

Higher is better.
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Bounded evolution

Measures the degree of co-evolution 

of components within a system based 

on the frequency of coupled code 

modifications over time.
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Knowledge 
distribution
Measures the degree to which 

development can grow and retain 

knowledge over a given system.
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Component freshness

Measures the degree to which 

components are actively being kept up 

to date and maintained.



Security
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Security

https://www.progress.com/
https://www.progress.com/
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OpenEdge specific rules

https://www.progress.com/
https://www.progress.com/


Open Source Health
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Open Source Health

QSM scans your 3rd party libraries for

- Known vulnerabilities

- Freshness

- Activity

- Stability

- Management

- Legal licenses

https://www.progress.com/
https://www.progress.com/


proALPHA
Case Study
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Unternehmen der proALPHA

Gruppe

Better decisions. 

For a better future. 

Quality & Security Management

19.09.24

https://www.progress.com/
https://www.progress.com/
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proALPHA ERP at a Glance

36

InternationalEfficientReliable

50
Countries

~2,000
Customers

>1,200
Employees

27
Branch offices

39
Partners

>30 years
On the market

15
Localizations and 

language versions

€160,8m
Revenue in FY22/23

3x
Stronger growth

€

https://www.progress.com/
https://www.progress.com/
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ca. 9 Million Lines of ABL Code

All Generations of ABL Paradigms

• Includes

• Super-Procedures

• OOABL

Code is well organized with a very strict folder

and naming scheme

Nevertheless – Two Tier Architecture

• Business Logic in UI

• Business Logic in Triggers

proALPHA Codebase

https://www.progress.com/
https://www.progress.com/
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proALPHA Codebase

https://www.progress.com/
https://www.progress.com/
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proALPHA Codebase

• Code is well organized with a very strict folder and naming scheme

• First two letters are always module / submodule

• Third letter is type of program such as 

• b for browser

• v for viewer

• r for super procedure

• and many more …

• Very strict formatting rules, checked automatically with static code checks …

• Our code base looks the same for all the 9 million lines of code

https://www.progress.com/
https://www.progress.com/
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proALPHA Codebase

• With this measures (and some more) we have very good control of our code base and can 

work on it with 200+ developers 

• Nevertheless – we do have a noticeable increase of maintenance effort over the last couple of 

years

• We were looking for ways to lower this maintenance effort again

SIG comes into the picture!

https://www.progress.com/
https://www.progress.com/
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proALPHA and SIG

• Progress asked us if we want to do a POC with SIG in December 2022

• The POC was planned for 6 month and ended in July 2023

• After the initial POC we did not immediately sign a contract

• The reason was SIG's handling of dependencies (details to follow)

• SIG corrected all our complaints, so we use SIG since April 2024

https://www.progress.com/
https://www.progress.com/
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SIG Rating of our Codebase

• On a first glance this looks very bad

• Maintainability is NOT Quality!!

• Our strict code organisation is reflected in good 

numbers for Module Coupling and Component 

independence

• Duplication, Unit Size and Unit Complexity reflects 

more Progress „Specialities“ than absolute quality

• Does not change that improving this numbers 

should lower maintenance efforts!!

https://www.progress.com/
https://www.progress.com/
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Evaluation of the key figures in context of OE / pA

• Volume

• our strict naming conventions are an adequate replacement for smaller repositories

• In the foreseeable future, we will not split the proALPHA code base into smaller 

repositories, so this number will not improve

https://www.progress.com/
https://www.progress.com/
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Evaluation of the KPIs in context of OE / pA

• Duplications

• there is a lot of generated code, especially for the UI (Appbuilder) by using XFTRs

• This KPI does not show the correct value for the self-written business code

https://www.progress.com/
https://www.progress.com/
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Evaluation of the KPIs in context of OE / pA

• Duplications

• there is a lot of generated code, especially for the 

UI (Appbuilder)

• This KPI does not show the correct value for the 

self-written business code

• You need to exclude these hits manually

• If any of the files are changed, the hit will 

reappear

• We are negotiating with SIG to change this

https://www.progress.com/
https://www.progress.com/


46© 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 46

Evaluation of the KPIs in context of OE / pA

• Code Snippet has 32 lines

• Only this isolated snippet is already high risk

• What do you really do with something like that?

https://www.progress.com/
https://www.progress.com/
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Evaluation of the KPIs in context of OE / pA

Implication

• If you have a method with 180 LOC and split it up 

in two methods with 90 LOC, you do not improve 

the rating!

https://www.progress.com/
https://www.progress.com/
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Evaluation of the KPIs in context of OE / pA

• OOABL was introduced 2004

• It is a design choice to pass the buffer or the 

primitive parameters

• pA mostly pass the parameters explicitly

https://www.progress.com/
https://www.progress.com/
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Dependency Specialties

• SIG handles OOABL and Progress as 

separate technologies

• Normally there can’t be dependencies 

between codebases of different technologies

• SIG corrected this for OpenEdge in 

cooperation with proALPHA

https://www.progress.com/
https://www.progress.com/
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Dependency Specialties

• Database Triggers are a very special construct

• Whenever a record is created or changed a 

database trigger fires

• This creates a dependency from the class or 

program to the trigger

• SIG implemented this in cooperation with 

proALPHA

https://www.progress.com/
https://www.progress.com/
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proALPHA Strategy for the near future

• Work on Duplications

• if we refactor other aspects first (for example 

complexity), we remove literal code duplications 

but the semantic duplication stays and is not 

detected anymore

• Work on cyclic dependencies

• Cyclic dependencies prevent us from splitting the 

code base into smaller pieces

https://www.progress.com/
https://www.progress.com/
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Improvement on Duplications

DEMO

https://www.progress.com/
https://www.progress.com/


End of Case Study
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Smart application optimization plan
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https://www.progress.com/
https://www.progress.com/
https://www.progress.com/
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Quality & Security 
Management: What’s Included

License to use Analysis tool (Sigrid)

• Data-driven software intelligence platform 

• Analyses Progress source code 

• Derive holistic insights into

• Risks, costs, opportunities 

• On multiple software quality aspects

Consultancy to run the assessment

Fully documented assessment results

Leveraging Sigrid® Platform 

Analyzing source code quality and security –
multi-metrics, multi-roles, and risk-based 
prioritized

Largest software 

benchmark in the 
world 1,000,000+ 
Inspections
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Why Application Quality and 
Security Management?

Create awareness and insights on current 

application state

Justify why modernization is needed and where 

and how it will pay off most

Get fact-based insights to drive innovation, manage 
risks and lower costs

Increase transparency from the development team 

to boardroom to set priorities for your software 

development investments



News You Can Use
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