
To Test or Not To Test
Marian Edu

Boston, 2024



Testing

* noun - /ˈtestɪŋ/

the process of using or trying something to see if 
it works, is suitable, obeys the rules, etc.

* Cambridge Dictionary

To Test Or Not To Test

https://dictionary.cambridge.org/dictionary/english/process
https://dictionary.cambridge.org/dictionary/english/trying
https://dictionary.cambridge.org/dictionary/english/see
https://dictionary.cambridge.org/dictionary/english/works
https://dictionary.cambridge.org/dictionary/english/suitable
https://dictionary.cambridge.org/dictionary/english/obey
https://dictionary.cambridge.org/dictionary/english/rule


Software Testing

Software testing is the process of evaluating and verifying 
that a software product or application does what it’s 
supposed to do.

Over time several types of software testing emerged 
setting the stage for a broader view of testing, which 
encompassed a quality assurance process that became 
an integrated part of the software development lifecycle.

To Test Or Not To Test



Types of Software Testing

• Unit testing: Validating that each software unit runs as 
expected. A unit is the smallest testable component of 
an application.

• Integration testing: Ensuring that software components 
or functions operate together.

• Acceptance testing: Verifying whether the whole system 
works as intended.

To Test Or Not To Test



Types of Software Testing

• Functional testing: Checking functions by emulating 
business scenarios (black-box).

• Regression testing: Checking whether new features 
break or degrade functionality. 

• Usability testing: Validating how easy a user can 
complete a task using the application.

To Test Or Not To Test



Types of Software Testing

• Performance testing: Testing how the software runs 
under different workloads. 

• Stress testing: Testing how much strain the system can 
take before it fails.

• Security testing: Validating that your software is not 
open to hackers or other malicious types of 
vulnerabilities

To Test Or Not To Test



Software Development Lifecycle

To Test Or Not To Test

Planning

Analysis

Design

Implementation
Testing

Release

Maintenance



DevOps & Agile

• Development & Operations

• ArchOps: Software architecture artifacts – models, first-
class entities.

• Continuous Integration and Delivery (CI/CD): All about 
automation basically.

To Test Or Not To Test



Why Testing

Yes, it does take time and costs money.

Can help to:
• uncover problems before going to market
• avoid defects, even late delivery
• protect brand reputation

Software failures in the US cost the economy USD 1.1 trillion in 
assets in 2016. 
What’s more, they impacted 4.4 billion customers.

To Test Or Not To Test



Why Testing

• In April 2015, Bloomberg terminal in London crashed due to 
software glitch affected more than 300,000 traders on 
financial markets.
• Nissan cars recalled over 1 million cars from the market due 

to software failure in the airbag sensory detectors.
• In April of 1999, a software bug caused the failure of a $1.2 

billion military satellite launch, the costliest accident in 
history.
• Fujitsu software bugs “helped” send innocent postal 

employees to prison in the UK.
• Crowdstrike, a software update causing a major outage in 

July 2024 (8.5 million devices were affected).

To Test Or Not To Test



Testing Approaches
• Manual testing or ad hoc testing might be enough for small 

builds.

• Larger systems, frequently require tools used to automate 
tasks. 

• Continuous testing.
• Defect and Bug Tracking (cause)
• Configuration management (what) 
• Testing environment (where)
• Service virtualisation
• Metrics and reporting

To Test Or Not To Test



Unit Testing

• Test the smallest functional unit of code.

• Helps ensure code quality.

• It's an integral part of software development. 

• Writing software as small, functional units is considered a 
best practice – so we can write a unit test for each code unit.

• Smallest unit of code: method, function, procedure.

To Test Or Not To Test



Unit Testing

• The unit test needs to run in isolation.

• The code unit must be idempotent. 

• Use mock-up/data stubs when unit of code access 
external data.

• A code unit can have a set of unit tests – test cases. 

To Test Or Not To Test



Unit Testing Strategies

• Write unit tests as code.

• Logic check. 

• Boundary check.

• Error handling.

• State check. 

To Test Or Not To Test



Unit Testing Best Practices

• Use a unit test framework – ABL Unit, OE Unit, Pro Unit.

• Automate unit testing. 

• Assert once.

• Keep it simple.

• Implement unit testing as part of development process.

To Test Or Not To Test



ABL Unit – Test case

• Write a test case per each unit of code.

• Write separate test method for each scenario tested.

• Don’t bother to test all valid input, one will do along with 
boundaries and invalid.

• Use (some) naming convention.

To Test Or Not To Test



ABL Unit – Test Case Annotations 

• @Test [ (expected = “ExpectedErrorType”) ]

• @Before – once per class, before all tests

• @Setup – before each test

• @TearDown – after each test

• @After – once per class, after all tests

To Test Or Not To Test



ABL Unit – Test case flavours

• Test class:
• The class needs the default constructor, if defined must be 

public.
• All tests are public (void) methods with no parameters.
• Inheritance doesn’t “work”.

• Test procedure.
• All tests are (nonprivate) internal procedures with no 

parameters.
• Annotated functions are ignored.

To Test Or Not To Test



ABL Unit – Test Case Assertions 

• OpenEdge.Core.Assert

• Equals: Expected vs. Actual 

• Argument name

• OpenEdge.Core.AssertionFailedError

• Assert:RaiseError

To Test Or Not To Test



ABL Unit – Test suite

• Group related test cases.

• Test cases for unit of codes of the same object. 

• Can be ran as regression test when covered functionality 
changes.

• Order of test cases should not matter.

To Test Or Not To Test



ABL Unit – Test Suite Annotations 

• @TestSuite (classes = “TestClass (, TestClass)*”) 

• @TestSuite (procedures = “TestProcedure (, TestProcedure)*”) 

• Annotations can have both parameters set (classes & procedures).
• You can mix annotations in the same suite (classes & procedures).
• There is a limit of characters for annotation’s parameters.
• You can use multiple annotations in the same suite.

To Test Or Not To Test



ABL Unit – Test suite flavours

• Test Suite class:
• The class constructor is ignored.

• Test Suite procedure.
• Procedure main block is ignored.

• Only @TestSuite annotations are read.
• Supports both classes and procedures annotations.
• Classes, procedures not found makes the whole suite to fail.
• Classes, procedures that aren’t test cases are ignored.

To Test Or Not To Test



ABL Unit – Error Handling

• Use block-level/routine-level.

• Don’t bother to use NO-ERROR/CATCH in @Test methods.

• Catch errors in @Before (All) method.

• Errors in @Setup will mark all @Tests as error.
• Errors in @TearDown will mark all @Tests as error.
• Errors in @After will have no effect on the test result.

To Test Or Not To Test



ABL Unit – Global State

• Avoid global state in test cases - unless complex to setup.

• If you need global state only alter that in @Before, read-only 
afterwards.

• If the @Test methods do update global state, make sure it is 
restored back. 

• Do consider session global scope – session handle, statics.

To Test Or Not To Test



ABL Unit – Persistence
• Persistence (databases) are to be treated as external systems.

• When database access is required, use data stubs.

• How/when you restore back the state.

• End (clean-up) vs. Beginning (zero-trust) of the @Test.

• Using @Test scoped transactions and rollback.

• Reload/restore database.

To Test Or Not To Test



ABL Unit – External Systems

When external systems data is required, use mocks.

To Test Or Not To Test

Image source: MathWorks

https://www.mathworks.com/help/matlab/matlab_prog/create-mock-object.html


ABL Unit – Mocking

• @Setup expectations in mock
• @Test functionality
• Verify expectations 
• The state is correctly updated
• The right methods have been called in mock.

• No mocking framework for Progress/OpenEdge

To Test Or Not To Test



ABL Unit – Automation

• ABLUnit ANT task (Progress or PCT)

• Single test/batch test (include/exclude)

• haltOnFailure/haltOnError

• UI mode/Batch mode

• Jenkins/Docker

To Test Or Not To Test



Wrap up

• To Test Or Not To Test (Shakespeare’s Hamlet or 
Schrödinger's cat)
• Keep on Testing in Production – Not an option!
• The sooner you start the better.
• Start with unit testing - new code, include it in 

development/maintenance process.
• Unit testing alone will help find issues earlier.
• As with anything doesn’t have to be perfect.
• Run regression tests before rollout.

To Test Or Not To Test


