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Testing

* noun - /ˈtestɪŋ/

the process of using or trying something to see if 
it works, is suitable, obeys the rules, etc.

* Cambridge Dictionary
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https://dictionary.cambridge.org/dictionary/english/process
https://dictionary.cambridge.org/dictionary/english/trying
https://dictionary.cambridge.org/dictionary/english/see
https://dictionary.cambridge.org/dictionary/english/works
https://dictionary.cambridge.org/dictionary/english/suitable
https://dictionary.cambridge.org/dictionary/english/obey
https://dictionary.cambridge.org/dictionary/english/rule


Software Testing

Software testing is the process of evaluating and verifying 
that a software product or application does what it’s 
supposed to do.

Over time several types of software testing emerged 
setting the stage for a broader view of testing, which 
encompassed a quality assurance process that became 
an integrated part of the software development lifecycle.
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Types of Software Testing

• Unit testing: Validating that each software unit runs as 
expected. A unit is the smallest testable component of 
an application.

• Integration testing: Ensuring that software components 
or functions operate together.

• Acceptance testing: Verifying whether the whole system 
works as intended.
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Types of Software Testing

• Functional testing: Checking functions by emulating 
business scenarios (black-box).

• Regression testing: Checking whether new features 
break or degrade functionality. 

• Usability testing: Validating how easy a user can 
complete a task using the application.
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Types of Software Testing

• Performance testing: Testing how the software runs 
under different workloads. 

• Stress testing: Testing how much strain the system can 
take before it fails.

• Security testing: Validating that your software is not 
open to hackers or other malicious types of 
vulnerabilities
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Software Development Lifecycle

To Test Or Not To Test

Planning

Analysis

Design

Implementation
Testing

Release

Maintenance



DevOps & Agile

• Development & Operations

• ArchOps: Software architecture artifacts – models, first-
class entities.

• Continuous Integration and Delivery (CI/CD): All about 
automation basically.
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Why Testing

Yes, it does take time and costs money.

Can help to:
• uncover problems before going to market
• avoid defects, even late delivery
• protect brand reputation

Software failures in the US cost the economy USD 1.1 trillion in 
assets in 2016. 
What’s more, they impacted 4.4 billion customers.
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Why Testing

• In April 2015, Bloomberg terminal in London crashed due to 
software glitch affected more than 300,000 traders on 
financial markets.
• Nissan cars recalled over 1 million cars from the market due 

to software failure in the airbag sensory detectors.
• In April of 1999, a software bug caused the failure of a $1.2 

billion military satellite launch, the costliest accident in 
history.
• Fujitsu software bugs “helped” send innocent postal 

employees to prison in the UK.
• Crowdstrike, a software update causing a major outage in 

July 2024 (8.5 million devices were affected).
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Testing Approaches
• Manual testing or ad hoc testing might be enough for small 

builds.

• Larger systems, frequently require tools used to automate 
tasks. 

• Continuous testing.
• Defect and Bug Tracking (cause)
• Configuration management (what) 
• Testing environment (where)
• Service virtualisation
• Metrics and reporting
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Unit Testing

• Test the smallest functional unit of code.

• Helps ensure code quality.

• It's an integral part of software development. 

• Writing software as small, functional units is considered a 
best practice – so we can write a unit test for each code unit.

• Smallest unit of code: method, function, procedure.
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Unit Testing

• The unit test needs to run in isolation.

• The code unit must be idempotent. 

• Use mock-up/data stubs when unit of code access 
external data.

• A code unit can have a set of unit tests – test cases. 

To Test Or Not To Test



Unit Testing Strategies

• Write unit tests as code.

• Logic check. 

• Boundary check.

• Error handling.

• State check. 
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Unit Testing Best Practices

• Use a unit test framework – ABL Unit, OE Unit, Pro Unit.

• Automate unit testing. 

• Assert once.

• Keep it simple.

• Implement unit testing as part of development process.
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ABL Unit – Test case

• Write a test case per each unit of code.

• Write separate test method for each scenario tested.

• Don’t bother to test all valid input, one will do along with 
boundaries and invalid.

• Use (some) naming convention.
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ABL Unit – Test Case Annotations 

• @Test [ (expected = “ExpectedErrorType”) ]

• @Before – once per class, before all tests

• @Setup – before each test

• @TearDown – after each test

• @After – once per class, after all tests
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ABL Unit – Test case flavours

• Test class:
• The class needs the default constructor, if defined must be 

public.
• All tests are public (void) methods with no parameters.
• Inheritance doesn’t “work”.

• Test procedure.
• All tests are (nonprivate) internal procedures with no 

parameters.
• Annotated functions are ignored.
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ABL Unit – Test Case Assertions 

• OpenEdge.Core.Assert

• Equals: Expected vs. Actual 

• Argument name

• OpenEdge.Core.AssertionFailedError

• Assert:RaiseError
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ABL Unit – Test suite

• Group related test cases.

• Test cases for unit of codes of the same object. 

• Can be ran as regression test when covered functionality 
changes.

• Order of test cases should not matter.
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ABL Unit – Test Suite Annotations 

• @TestSuite (classes = “TestClass (, TestClass)*”) 

• @TestSuite (procedures = “TestProcedure (, TestProcedure)*”) 

• Annotations can have both parameters set (classes & procedures).
• You can mix annotations in the same suite (classes & procedures).
• There is a limit of characters for annotation’s parameters.
• You can use multiple annotations in the same suite.
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ABL Unit – Test suite flavours

• Test Suite class:
• The class constructor is ignored.

• Test Suite procedure.
• Procedure main block is ignored.

• Only @TestSuite annotations are read.
• Supports both classes and procedures annotations.
• Classes, procedures not found makes the whole suite to fail.
• Classes, procedures that aren’t test cases are ignored.
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ABL Unit – Error Handling

• Use block-level/routine-level.

• Don’t bother to use NO-ERROR/CATCH in @Test methods.

• Catch errors in @Before (All) method.

• Errors in @Setup will mark all @Tests as error.
• Errors in @TearDown will mark all @Tests as error.
• Errors in @After will have no effect on the test result.
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ABL Unit – Global State

• Avoid global state in test cases - unless complex to setup.

• If you need global state only alter that in @Before, read-only 
afterwards.

• If the @Test methods do update global state, make sure it is 
restored back. 

• Do consider session global scope – session handle, statics.
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ABL Unit – Persistence
• Persistence (databases) are to be treated as external systems.

• When database access is required, use data stubs.

• How/when you restore back the state.

• End (clean-up) vs. Beginning (zero-trust) of the @Test.

• Using @Test scoped transactions and rollback.

• Reload/restore database.
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ABL Unit – External Systems

When external systems data is required, use mocks.
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Image source: MathWorks

https://www.mathworks.com/help/matlab/matlab_prog/create-mock-object.html


ABL Unit – Mocking

• @Setup expectations in mock
• @Test functionality
• Verify expectations 
• The state is correctly updated
• The right methods have been called in mock.

• No mocking framework for Progress/OpenEdge
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ABL Unit – Automation

• ABLUnit ANT task (Progress or PCT)

• Single test/batch test (include/exclude)

• haltOnFailure/haltOnError

• UI mode/Batch mode

• Jenkins/Docker
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Wrap up

• To Test Or Not To Test (Shakespeare’s Hamlet or 
Schrödinger's cat)
• Keep on Testing in Production – Not an option!
• The sooner you start the better.
• Start with unit testing - new code, include it in 

development/maintenance process.
• Unit testing alone will help find issues earlier.
• As with anything doesn’t have to be perfect.
• Run regression tests before rollout.
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