
OpenEdge RDBMS
Storage Internals

Rob Fitzpatrick
Software Architect / DBA Consultant

White Star Software
rf@wss.com

1PROTOP.COM

About White Star Software 2WSS.COM

For over 30 years, we have been helping companies around
the world simplify the job of managing and monitoring the
world’s best OpenEdge applications.

Our experts, combined with ProTop, the #1 OpenEdge
monitoring and alerting tool, deliver unparalleled peace of
mind for your OpenEdge environments.

3PROTOP.COM

Agenda 4PROTOP.COM

● Introduction
● Database storage hierarchy & definitions
● History
● Block types
● Block headers
● Block contents by type

Introduction 5PROTOP.COM

● Ask questions as we go

● Please correct me if I say something wrong
● We’ll all learn together!

● Thanks to George Potemkin and Mike Furgal
for their valuable input!

Why this talk? 6PROTOP.COM

● When I started working with the OE RDBMS…
● No formal training
● Heard lots of lingo!

● Areas, extents, blocks, clusters, RPB, BPC, objects, storage
objects, recids, rowids, dbkeys, …

● No clue what any of it meant!

● As technologists, we need a common language
and some understanding of each other's
domains, to collaborate on cross-disciplinary
problems & solutions

Why this talk? 7PROTOP.COM

● Some of this material is “deep in the weeds”
● However, I strongly believe that most of it is

essential knowledge for the working DBA
● Much of it is also useful for the non-DBA

● Data-access developers
● Application schema designers
● Solution architects

Storage hierarchy: physical 8PROTOP.COM

● Storage areas consist of files called extents
● Most area types can comprise one or more

extents
● Exceptions: control area (.db), after-image areas (.an)

● An extent is a collection of blocks
● AI and BI areas each have their own block size, which

can be changed offline
● All other blocks have the database block size , which is

fixed at DB creation

● Blocks are the fundamental unit of physical I/O

Storage hierarchy: physical 9PROTOP.COM

● Each block has a block type that determines the
layout of the block’s data, e.g.:
● Index (IX) blocks store index entries from one index
● Record (RM) blocks store record fragments

● A record (logical) consists of one or more record
fragments

● A record fragment is a piece of a record that is
stored in a record block

● Each fragment has a logical address (rowid)
● A record’s rowid remains the same for its lifetime

Areas & Extents 10PROTOP.COM

● Each area has a record
in _area

● Each extent has a
record in _areaextent

● Parent-child relation
● These tables and their

indexes are in .db
(control area)

● Populated based on .st

Storage hierarchy: logical 11PROTOP.COM

● Databases consist of logical storage areas
● Storage areas have various attributes, including

area type
_area._area-type Description System / Appl. Notes

3 Before image area system Undo/redo log

4 Transaction log system Used with 2PC

6 Data area system / application Storage objects

7 After image area system Recovery log

Focus of this talk

Where are Type 1 and Type 2?

Storage hierarchy: logical 12PROTOP.COM

● Other important area attributes:
● Records per block (RPB)

● Maximum record fragments per record block
● Stored in _area._area-recbits (2 ^ _area-recbits = RPB)

● Blocks per cluster (BPC), aka cluster size
● Type 2 architecture only
● Stored in _area._area-clustersize: 8, 64, or 512
● A cluster is a logically-contiguous collection of blocks
● It is the allocation unit for storage objects in Type 2 areas

RPB

d "Data Area":10,256;8 .

BPC

Storage hierarchy: logical 13PROTOP.COM

● Each block has a logical address called the dbkey

● Block dbkey = (previous block’s dbkey) + RPB

● Logical block # in area = dbkey / RPB

● Calculate dbkey from a rowid:
● dbkey = rowid – (rowid modulo RPB)

E.g.:

RPB = 32

Rowids and dbkeys 14PROTOP.COM

Type 1 versus Type 2 15PROTOP.COM

● Strictly speaking, Type 1 and Type 2 are not area
types

● They are versions (or generations) of storage
architecture for data areas (_area-type = 6)

● There is no reason to create new Type 1 areas!
● Unless you are stuck on a pre-10.0A release. Sorry!

● Type 2 areas are superior in a variety of ways

Block headers: Type 1 and Type 2 16PROTOP.COM

● At a high level, a block looks like this:

● The format of the payload varies by block type
● The format and length of the header varies

● Type 1 vs. Type 2 vs. Type 2 extended

● Numeric content is encoded in machine order
● E.g.: little-endian on x64, big-endian on POWER

Data payload

Block header (16 bytes)

Data payload

Block header

(64 or 80 bytes)Type 1: Type 2:

Type 1 versus Type 2 17PROTOP.COM

● Type 1:
● Old architecture
● Small block headers (16 bytes)
● 32-bit addresses (dbkeys/rowids)

● Very limited maximum area size; it is a function of RPB
● Limits use of modern features
● An area is a collection of blocks (and some area meta-

data)
● Space management done at the area level
● Record blocks may contain fragments from any table

in the area

Type 1 versus Type 2 18PROTOP.COM

● Type 2:
● New architecture (OE 10+)
● Extended block headers (64+ bytes)
● Blocks are grouped into units called clusters
● Required or preferred for modern RDBMS features

● CDC, Auditing, TDE, Table Partitioning, Multi-tenant
● Superior for reliability, maintenance, performance,

scalability
● Addresses (dbkeys/rowids):

● 10.0A – 10.1A: 32-bit
● 10.1B+: 64-bit

● Max area size limited by (max. extent size * max # of extents)

Type 1 versus Type 2 19PROTOP.COM

● Type 2 (continued):
● An area is a collection of storage objects (and some

area meta-data)
● A storage object is a chain of clusters, which in turn are

chains of blocks
● A storage object is the physical storage for a schema

object: table, index, or LOB column
● Also: table instances (MT); partitions & local indexes (TP)

● Space management is done at the storage object level
● The head of the cluster chain is the object block

● Stored in _storageobject._object-block
● Also stored in area’s Object List block

Type 1 area layout 20PROTOP.COM

Addressable blocks

Type 2 area layout 21PROTOP.COM

A brief history 22PROTOP.COM

● 8.x and earlier:
● All data is in one logical container (dbname.db)

(Type 1 architecture)
● Dbkeys/rowids are unique database-wide

● 9.x:
● Multiple data areas in a database (Type 1)
● Control area, Schema area, application data areas
● Dbkeys/rowids are unique per area

● 10.0A: Type 2 data areas
● New data structures: Type 2 blocks headers; clusters
● Addresses (dbkeys/rowids) still 32-bit

A brief history 23PROTOP.COM

● 10.1B:
● Type 2 areas now have 64-bit addresses

● 11.0:
● Multi-tenancy
● MT tables have multiple table instances

● 11.4:
● Table partitioning
● ROWID() extended to include 16-bit partitionId to

ensure uniqueness within the table
● Note: recids may not be unique within a partitioned

table; avoid RECID() function for application data

Block types 24PROTOP.COM

bk_type Description

1 Master block

2 Index (IX) block

3 Record (RM) block

4 Free block

6 Sequence block

7 Empty block

9 Area block

bk_type Description

12 Object block

13 Control block

14 Object List block

15 Cluster Allocation block

16 Cluster List block

17 Object Allocation block

254 Extent Header block

Type 1 headers 25PROTOP.COM

Field name Bytes Notes

1 bk_dbkey 4 Dbkey (32-bit)

2 bk_type 1 Block type

3 bk_frchn 1 Chain type

4 bk_incr 2 DB backup counter at last block update

5 bk_nextf 4 Dbkey of the next block in the chain (if any)

6 bk_updctr 4 Block update counter (referenced in BI/AI notes)

16 bytes total:

Type 2 headers 26PROTOP.COM

● First six fields are the Type 1 header
● Type 2 extends it with more fields; 64 bytes total
● Note the duplicate dbkey and nextf fields
● First or last block in a cluster: header extends to

80 bytes total

Type 2 header fields 27PROTOP.COM

● x
Field name Bytes Notes

7 bkChecksum 2 Block checksum

8 bkHeaderSize 2 Header size (typically 64 or 80)

9 objectId 2 Table/index/field number

10 objectType 2 1=table, 2=index, 3=LOB, 8=area

11 bkObjDbkey 8 Dbkey of object’s object block

12 bkDbkey 8 Block dbkey (64-bit)

13 bkNextf 8 Dbkey of next block in chain (64-bit)

14 bkLastBiNote 8 Not populated?

15 partitionId 2 11.0+

16 bk_incr_HIGH 1 High-order byte of bk_incr (12.0+)

Type 2 header fields 28PROTOP.COM

● x
Field name Bytes Notes

17 Reserved 1

18 Reserved 4

First block in cluster:

19 transactionId 4

20 serialNumber 8

Last block in cluster:

19 nextCluster 8 Dbkey of first block in next cluster

20 prevCluster 8 Dbkey of first block in previous cluster

Block contents by block type 29PROTOP.COM

● You can look at block headers
and contents with
proutil dbname -C dbrpr

● WARNING:
In the wrong hands, this utility
can permanently damage or
destroy a database

● It is unsupported &
undocumented

● Use it on a sports db, not prod!

DATABASE REPAIR MENU

1. Database Scan Menu
2. Test One or More Indexes
3. Remove Bad Record Fragment
4. Dump Block
5. Load Block
6. Copy Bytes Between Files
7. Load RM Dump File
8. Reformat Block to a Free Block
9. Change Current Working Area

10. Display the Free Chain
11. Display the RM Chain
12. Display the Index Delete Chain
13. Display Block Contents
14. Display Record Contents
15. Display Cluster Chain (Type II
Area)
16. Scan/Fix block checksum (Type
II Area)
P. Print Info Menu

Q. Quit

Record block (3) 30PROTOP.COM

Empty 1 fragment 2 fragments

• Row directory grows down into free space
• Record fragments grow up into free space

Record block (3) – RM header 31PROTOP.COM

● Begins after the block header
● Describes the row directory and the free space
● 3 fields:

● numdir
● Highest row directory entry used
● 1 byte (0 – 255)

● freedir
● Number of available row directory entries
● 1 byte (0 – 255)

● free:
● Bytes of contiguous free space in the block
● 2 bytes

Record block (3) – row directory 32PROTOP.COM

● Serves as a mapping layer of logical addresses
(low-order bits of rowid) to physical (byte offset of
fragment in block)

● Initially empty
● Grows into free space as needed

● Up to RPB # of entries

● Each entry is 16 bits (2 bytes)
● Consists of a bitmap and a byte offset

Record block (3) - row dir entries 33PROTOP.COM

● 16 bits:
● High-order 3 bits: fragment meta-data bitmap

● Bit 1:
● 1 = “hold flag”: rowid placeholder for txn rollback

● Bit 2:
● 1 = “has a continuation fragment in another block”
● i.e. it isn’t the last fragment in the record

● Bit 3:
● 1 = “is a continuation fragment”
● i.e. it isn’t the first fragment in the record

● Low-order 13 bits:
● Byte offset from start of block to start of fragment

Record block (3) – record fragments 34PROTOP.COM

● Record numeric data is always encoded big-endian
● Makes binary dumps portable and fast (no translation required)

● Record metadata:
● Field map
● Skip table (conditional; only when 15 or more fields; 5+ bytes)
● Table schema version #
● Table number
● Table field count

Record block (3) – record fragments 35PROTOP.COM

Index block (2) 36PROTOP.COM

● An index block stores a node of the index B-tree
● Root, non-leaf, or leaf level

● A block stores index entries, sorted in key order
● An index entry consists of entry meta-data, a key

value, and one or more rowids of records with that
key value
● There can be only one rowid if the index is unique

● Hard to visualize, as data compression is used in
several ways

Index block (2) 37PROTOP.COM

● Mike Furgal’s 2018 PUG Challenge talk:
Index Internals: The Engine

https://pugchallenge.org/wp-
content/uploads/2024/04/downloads2018/Furgal_Ind
exInternals.pptx

● pugchallenge.org
• More | Archive
• PUG Challenge Americas 2018

https://pugchallenge.org/wp-content/uploads/2024/04/downloads2018/Furgal_IndexInternals.pptx
https://pugchallenge.org/wp-content/uploads/2024/04/downloads2018/Furgal_IndexInternals.pptx
https://pugchallenge.org/wp-content/uploads/2024/04/downloads2018/Furgal_IndexInternals.pptx

Object block (12) 38PROTOP.COM

● Each area contains an object block (3rd block in area)
● Type 2 storage objects begin with an object block
● Payload contains space-management fields

● Chain info
● RM / Free / Index Delete

● Total blocks
● HWM
● Table Reorg info
● Etc.

Object block (12) 39PROTOP.COM

OBJBLK:
004c totalBlocksOld: 0x00000000 0
0050 hiWaterBlockOld: 0x00000000 0
0054 chainFirst[FREECHN]: 0x0000000000000000 0
005c chainFirst[RMCHN]: 0x0000000000000c00 3072
0064 chainFirst[LOCKCHN]: 0x0000000000000000 0
006c numBlocksOnChainOld[FREECHN]: 0x00000000 0
0070 numBlocksOnChainOld[RMCHN]: 0x00000000 0
0074 numBlocksOnChainOld[LOCKCHN]: 0x00000000 0
0078 chainLast[FREECHN]: 0x0000000000000000 0
0080 chainLast[RMCHN]: 0x0000000000000f00 3840
0088 chainLast[LOCKCHN]: 0x0000000000000000 0
0090 objectId: 0x0001 1
0092 objectType: 0x0001 1
0094 serialNumber: 0x0000000000000001 1
009c firstFreeCluster: 0x0000000000000000 0
00a4 lastFreeCluster: 0x0000000000000000 0

00ac totalBlocks: 0x0000000000000008 8
00b4 hiWaterBlock: 0x000000000000000f 15
00bc numBlocksOnChain[FREECHN]: 0x0000000000000000 0
00c4 numBlockOnsChain[RMCHN]: 0x0000000000000004 4
00cc numBlocksOnChain[LOCKCHN]: 0x0000000000000000 0
00d4 partitionId: 0x0000 0
00d6 flags: 0x00 0
00d7 objSpare1: 0x00 0
00d8 objSpare2: 0x00000000 0
00dc tableReorgAnchor: 0x0000000000000000 0
00e4 tableReorgRecs: 0x0000000000000000 0
00ec tableReorgRecid: 0x0000000000000000 0
00f4 tableReorgArea: 0x00000000 0
00f8 tableReorgIndex: 0x0000 0
00fa tableReorgFlag1: 0x00 0
00fb tableReorgFlag2: 0x00 0
00fc tblReorgReserved: "" (16)

• Sample 12.8 Object block
• Layout varies by release

Master block (1) 40PROTOP.COM

● Contains a wide variety of fields related to
database configuration and state
● Varies by version

● It is the second block in the schema area
● Dbkey 64 (8 KB blocks) or 32 (other block sizes)

● Takes the place of an area block in schema area
● Selected fields:

● DB backup counter, “tainted” flag, DB time stamps,
backup time stamps, AI/BI block size, BI cluster size,
last TrID, log archiving, AI, Replication; many more!

Extent Header block (254) 41PROTOP.COM

● First block of every extent
● Dbkey is always zero (not addressable)
● Not loaded into buffer pool
● Always has a Type 1 block header
● Example data payload:

Sequence block (6) 42PROTOP.COM

● Sequence blocks are in the schema area
● The first sequence block is always 4th block

● Dbkey: 96 (4 KB blocks); 192 (8 KB blocks)

● Sequence blocks are “chained” together

● But there is no “sequence” chain type
● Sequence blocks are always in the buffer pool

Sequence block (6) 43PROTOP.COM

● Values are stored in _seq-num order
● Fixed-width integers, either 32-bit or 64-bit

● Based on feature ID 11:

● In 12.x, all sequence values are 64-bit
● Older releases limited to 2 sequence blocks

● Limits are much higher now; 32,000 sequence defn’s

Database Features
ID Feature Active Details
---- --------------------------------- ------ -------

5 Large Files Yes
9 64 Bit DBKEYS Yes
10 Large Keys Yes
11 64 Bit Sequences Yes

Sequence block (6) 44PROTOP.COM

Object List block (14) 45PROTOP.COM

● 7th block in a Type 2 area
● If it fills, more will be added and chained together

● Contains a list of the storage objects in the area
and their attributes

Free block (4) 46PROTOP.COM

● Unused blocks below the HWM
● Will be reformatted to other block types as

needed
● Contains only a block header

Empty block (7) 47PROTOP.COM

● Unused blocks above the HWM
● Will be reformatted to other block types as

needed, if the HWM is raised
● Contains no data (all zero bytes)

Questions? 48PROTOP.COM

https://xkcd.com/722

https://xkcd.com/722

Thank you!

49PROTOP.COM

	Introduction
	Slide 1: OpenEdge RDBMS Storage Internals
	Slide 2: About White Star Software
	Slide 3
	Slide 4: Agenda
	Slide 5: Introduction
	Slide 6: Why this talk?
	Slide 7: Why this talk?

	Storage hierarchy
	Slide 8: Storage hierarchy: physical
	Slide 9: Storage hierarchy: physical
	Slide 10: Areas & Extents
	Slide 11: Storage hierarchy: logical
	Slide 12: Storage hierarchy: logical
	Slide 13: Storage hierarchy: logical
	Slide 14: Rowids and dbkeys
	Slide 15: Type 1 versus Type 2
	Slide 16: Block headers: Type 1 and Type 2
	Slide 17: Type 1 versus Type 2
	Slide 18: Type 1 versus Type 2
	Slide 19: Type 1 versus Type 2
	Slide 20: Type 1 area layout
	Slide 21: Type 2 area layout

	History
	Slide 22: A brief history
	Slide 23: A brief history

	Block types
	Slide 24: Block types

	Block headers
	Slide 25: Type 1 headers
	Slide 26: Type 2 headers
	Slide 27: Type 2 header fields
	Slide 28: Type 2 header fields

	Block contents by type
	Slide 29: Block contents by block type
	Slide 30: Record block (3)
	Slide 31: Record block (3) – RM header
	Slide 32: Record block (3) – row directory
	Slide 33: Record block (3) - row dir entries
	Slide 34: Record block (3) – record fragments
	Slide 35: Record block (3) – record fragments
	Slide 36: Index block (2)
	Slide 37: Index block (2)
	Slide 38: Object block (12)
	Slide 39: Object block (12)
	Slide 40: Master block (1)
	Slide 41: Extent Header block (254)
	Slide 42: Sequence block (6)
	Slide 43: Sequence block (6)
	Slide 44: Sequence block (6)
	Slide 45: Object List block (14)
	Slide 46: Free block (4)
	Slide 47: Empty block (7)
	Slide 48: Questions?
	Slide 49: Thank you!

