
OOABL for everyday’s benefit

Peter Judge, Consultingwerk

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Peter Judge

▪ Senior Architect at Consultingwerk

▪ Writing 4GL since 1996, working on a variety

of frameworks and applications. More

recently have worked on a lot of integration-y

stuff: Authentication Gateway, HTTP Client,

Web Handlers. Dabble in PASOE migrations.

▪ Active participator in Progress communities,

PUGs and other events​

3

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk Software Services Ltd.

4

▪ Independent IT consulting organization

▪ Focusing on OpenEdge and related technology

▪ Located in Cologne, Germany, subsidiaries in UK, USA and Romania

▪ Customers in Europe, North America, Australia and South Africa

▪ Vendor of developer tools and consulting services

▪ Specialized in GUI for .NET, Angular, OO, Software Architecture,

Application Integration

▪ Experts in OpenEdge Application Modernization

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, Progress Software

▪ OpenEdge (ABL, Developer Tools, Database, PASOE, …)

▪ Telerik DevCraft (.NET, Kendo UI, Angular, …), Telerik Reporting

▪ OpenEdge UltraControls (Infragistics .NET)

▪ Telerik Sitefinity CMS (incl. integration with OpenEdge applications)

▪ Kinvey Plattform, NativeScript

▪ Corticon BRMS

▪ WhatsUp Gold infrastructure-, network- and application monitoring

▪ Kemp Loadmaster

▪ …

5

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, related products

▪ Protop Database Monitoring

▪ Combit List & Label

▪ Web frameworks, e.g. Angular

▪ .NET

▪ Java

▪ ElasticSearch, Lucene

▪ Amazon AWS, Azure

▪ DevOps, Docker, Jenkins, ANT, Gradle, JIRA, …

▪ …

6

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

▪ Intro to OOABL

▪ OOABL Concepts

▪ Patterns & practices

7

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

The Object-Oriented Extensions to the ABL

▪ First release was 10.1A in 2005

▪ Many updates and enhancements over time
Structured error handling (10.1C)

Abstract classes (10.2B)

.NET integration (10.2B)

Serialization (11.4)

Enum types (11.6)

Package protection (12.1)

Methods for callbacks (12.3, 12.4)

Property overriding (12.5)

Generic collections (12.5, 12.6, 12.7)

▪ And certainly more to come …
9

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Why use OO?

▪ Memory safety … garbage collector (GC)

▪ Objects passed by reference

▪ Compiler helps reduce programming errors through type safety

▪ Is the class I'm trying to reference found in PROPATH?

▪ Is the method I’m trying to call part of the class?

▪ Am I allowed to call the method from here?

▪ Can I pass these parameters to the method?

10

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Definitions

Types A type defines the set of requests to which it can respond; includes classes,

interfaces, enums

Strong typing Compile-time enforcement of rules

Member Stuff "inside" a type - methods, properties, variables, events etc

Access control Compile-time restriction on member visibility: public, protected, private, package-*

Class A type with executable code

Abstract class A non-instantiable (non-runnable) class that may have executable code

Static Members that are loaded once per session. think GLOBAL SHARED

Interface A type with public members without implementations

Enum(eration) A type with name int64-value pairs

Generic types A type that gets its type at runtime, rather than when it is written

Object [instance] Running class

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Type names and locations

▪ Type names contain a package and a "base" name

▪ Could have no package but should (and for any production code must)

▪ Names have tighter restrictions than procedures and functions

▪ Packages allow logical groupings of types

▪ Can be horizontal layers or vertical slices or something else, up to you

▪ Package naming

▪ First package cannot be Progress … but com.progress can be used

▪ Progress also uses OpenEdge for the ABL classes they release

▪ We recommend using the top-level / first package for a company/business

unit name, similar to a DNS entry
12

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Type names and locations

▪ A type is represented on disk by a single file with a .cls extension (only)

▪ Compiles to a .r

▪ The path of the file must be the package name

▪ For a class named Consultingwerk.OERA.BusinessEntity

▪ On disk: c:\SmartComponentLibrary\Consultingwerk\OERA\BusinessEntity.cls

▪ Only c:\SmartComponentLibrary\ is needed in PROPATH

▪ Types can be added to PL and APL archives

▪ Class names are always called with a qualified name (ie path)

▪ USING is syntactic sugar to help with long names

13

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Class definition and inheritance

▪ Inheritance allows behaviour to be included – and modified - from a

super-class (parent)

▪ All classes ultimately inherit from Progress.Lang.Object

▪ Shallow inheritance is better

14

CLASS class-type-name [INHERITS super-type-name]
[IMPLEMENTS interface-type-name [, interface-type-name] ...]
[USE-WIDGET-POOL]
[ABSTRACT | FINAL]
[SERIALIZABLE]:

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Access levels

▪ Restrict which code can access a member

▪ Enforced by the compiler

▪ Defaults vary; be explicit to avoid any confusion

▪ Variables = PRIVATE

▪ Properties = PUBLIC

▪ Methods = PUBLIC

▪ Events = PUBLIC

▪ Temp-tables = PRIVATE (cannot be PUBLIC)

▪ It's easier to make the access level less restrictive than more restrictive

▪ PROTECTED is a decent default
15

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Access mode Class Subclass Package All

PRIVATE

PACKAGE-PRIVATE

PROTECTED

PACKAGE-PROTECTED

PUBLIC

Access levels (modes)

16

https://docs.progress.com/bundle/openedge-oo-abl-guided-journey/page/Access-modes.html

https://docs.progress.com/bundle/openedge-oo-abl-guided-journey/page/Access-modes.html

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Static members (or, who took my GLOBAL SHAREDs)

▪ Static members allow access to a class without having to instantiate
(aka new or run) a class

▪ Includes constructors which run exactly once in a session

▪ Calling methods, subscribing to events, getting and setting properties
all work the same as for objects

▪ Temp-tables can also be static
but that's a whole different topic

▪ Have many valid uses … but also
candidates for abuse

▪ Aim to use as "helpers" rather than
business services

17

catch err as Progress.Lang.Error:
/* Do something */
ErrorHelper:ShowErrorMessage(err).

end catch.

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Defining an API: interfaces and abstract classes

▪ Both types are a way to define signatures (ie methods and other

members) without implementations

▪ Guarantees to a caller that a particular method with a particular signature

is available in a class

▪ Interfaces can only have public members

▪ Abstract classes can have public or protected members

▪ Interfaces allow the definition of smaller APIs that follow the separation

of concerns

▪ Use them!

18

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Collections

▪ Kinda-sorta like a strongly-typed temp-table for objects

▪ Different kinds for different use-cases …

▪ List : indexed / sorted in numerical order

▪ Set : contains unique objects, in no particular order

▪ Map / Dictionary : key-value pairs with unique keys

▪ Navigate through the collection using an iterator or enumerator

▪ Finding an object in each collection varies

19

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Procedures & Objects

▪ Procedures can call classes; classes can call procedures

▪ Pass objects to procedures as parameters

▪ Allows you to incrementally add OOABL to an application

▪ Still necessary for certain cases

▪ Callbacks (though far fewer now)

▪ AppServer event procedures (session start, stop etc)

▪ Session start (-p main.p)

▪ Shared variables

▪ "Classic" PUB/SUB

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Garbage collector

▪ Automatically deletes an instance if there are no references to it being held.
▪ Same effect as DELETE OBJECT – runs any destructor

▪ References are held by
▪ Variables, Properties, Temp-table fields

▪ Event subscriptions

▪ Progress.Lang.Object’s NEXT-SIBLING and PREV-SIBLING excluded

▪ SESSION:FIRST-OBJECT and FIRST-FORM chains excluded

▪ References are let go by
▪ Variables going out of scope

▪ ASSIGN <variable | property > = <some other value, including ?>.

▪ DELETE OBJECT

▪ DELETE temp-table record

▪ LOG-MANAGER:LOG-ENTRY-TYPE = 'DynObjects.Class' shows manual and auto-
deletion

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Demo

▪ Value / parameter objects

▪ Collections, generic and otherwise

▪ Handle wrappers: procedures, data structures

▪ Primitive datatype wrappers: memptr, longchar

▪ Static members

▪ Use with procedures

23

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Conclusion

▪ Using OOABL with procedural code is quite easy

▪ Most of the OO concepts have similarities to the procedural coding model

▪ But the compiler helps much more with OOABL

▪ OO and procedural ABL can coexist very nicely

24

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

PUG Challenge 2024

▪ Europe: September 18th – 20th in Prague, CZ

▪ Americas: 29 Sept – 2 Oct, Waltham, MA

25

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Questions

26

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

	Slide 1: OOABL for everyday’s benefit
	Slide 3: Peter Judge
	Slide 4: Consultingwerk Software Services Ltd.
	Slide 5: Services Portfolio, Progress Software
	Slide 6: Services Portfolio, related products
	Slide 7: Agenda
	Slide 9: The Object-Oriented Extensions to the ABL
	Slide 10: Why use OO?
	Slide 11: Definitions
	Slide 12: Type names and locations
	Slide 13: Type names and locations
	Slide 14: Class definition and inheritance
	Slide 15: Access levels
	Slide 16: Access levels (modes)
	Slide 17: Static members (or, who took my GLOBAL SHAREDs)
	Slide 18: Defining an API: interfaces and abstract classes
	Slide 19: Collections
	Slide 20: Procedures & Objects
	Slide 21: Garbage collector
	Slide 23: Demo
	Slide 24: Conclusion
	Slide 25: PUG Challenge 2024
	Slide 26: Questions
	Slide 27

