Using TDD

T

Introduction to TDD

History of TDD

- 1989 : *fit", one of the first testing frameworks written
- 1994 : Extreme Programming (XP) starts appearing

- 1999 : a number of books on TDD start appearing

- 2000 : junit launched

- 2004 : proUnit
(http://prounit.sourceforge.net/userguide.ntmi)

. 2010 : OEUnNIt (https://github.com/CameronWills/OEUNit)
. 2014 : initial release of ABLUNIt
. 2018 : ABLUnNIt first class citizen in PDS

UL)]

7 /
7 7/
T

Q
S
O
)
C
Q
-
O
O
QO
>
Q
Xe
©
C
O
.|m|u
qV)
—
_l

D cycle

SUILD ON=

When enough Is too much

/** A new method must, given an integer input value
of 42, return false */

method public logical myMethod(a as int):

1if a eq 42 then return false.
else return true.

end method.

UL)]

When enough is enough

/** A new method must, given an integer input value
of 42, return false */

method public logical myMethod(a as int):
return false.

end method.

Requirements are tests

- The previous example shows that there is at least one more
requirement needed

- Other numbers apart from 42

- The developer should liaise with other stakeholders
- "are you needing different results for other numbers?”

- Write new tests for new requirements

UL)]

The cost of bugs - augmentum.com

Cost of Bugs in Release Cycle

Coding

Code Complete

Cost = 5x

Abug in the code
and code fix begin
to impact other
developers and
other parts of the
system.

Feature Complete
(FC)

Cost = 10x
Abug in the code

and code fix now
begin to impact

theentire QA cycle.

Each day lost
because of the bug
starts to push the
entire schedule.

Release Candidate
(RC)

Cost = 50x

Abug in the code
and code fix clearly
jeopardizes the GA
date. Running out
of time to execute
tests neccessary to
ensure the integ-
nity of the product
after the code fix.

General Availability
(GA)

Cost = 1000X

Abug in the code
causes customer
production down.
Customer suffers
monetary damages.
Fixing code means
incurring the cost of
a patch release.

UL)]

The cost of bugs — Dilbert

OUR GOAL I5TO WRITE
BUGFREE SOFTWARE .
T'LL PAY A TEN-DOLLAR
BONUS FOR EVERY BUG
YOU FIND AND FIX,

1 HOPE T'M GONNA
THIS WRITE ME A
DRIVES NEW MINIVAN
THE RIGHT THIS AFTER-
BEHAVIOR. NOON!

|

S.AMms E-mail: SCOTTADAMSBAOL.COM
(/13 © 1995 United Faature Syndicote, Ino (NVC)

UL)]

The benefits of TDD (real world)

- Return in finally
- Doesn'’t return longchars

- Recursive delete of a directory fails
- If path contains a folder starting with *”

- Json parser hangs if data contains comments
- Static properties and method calls as part of a parameter
cause gpf

UL)]

-~
~

The benefits of TDD (real world)

722 tests passed

All files
TETE S
guards.ts
http.strategy.ts
interface
api_response.ts

Achleving good design

- Writing tests first means that you have to describe what you
want to achieve before you write the code

- INn order to keep tests understandable and maintainable,
keep them as short as possible. Long tests imply that the
unit under test is too large

- If a component requires too many dependencies, then it is
too difficult to test

UL)]

Code smell

Code refactoring — rename members

method public decimal getValue(a as int,b as int):

def var p as dec init 3.14159265359 no-undo.
return (a * a) * b * p.

end method.

UL)]

Code refactoring — rename members

method public decimal getCylinderVolume (radius as 1int, height as int):

def var Pi as dec init 3.14159265359 no-undo.
return (radius * radius) * height * Pi1.

end method.

UL)]

Code refactoring

Best Practices (1

Practices

TDD: Best Practices (3)

- Make tests readable rather than maintainable

- Enforce test isolation

- Each test should set up and clean up it's own state

- Any test should be repeatable

- Use variables instead of constants to make tests readable

UL)]

TDD: Best Practices (bad naming)

@Test.
method public void test#1():

def var lv _data as char no-undo.

assign 1lv_data = gecode:getGPS("maitland", "southend").
AssertString:IsNotNullOrEmpty(1lv_data).
end method.

UL)]

TDD: Best Practices (good naming)

@Test.
method public void getGPSCoordinatesForBuildingInTown():
def var lv_gpsCoord as char no-undo.
def var 1lv_Town as char init "southend" no-undo.

def var 1lv_Building as char init "maitland" no-undo.

assign 1lv_gpsCoord = gecode:getGPS(1lv_Building,lv _Town).

AssertString:IsNotNullOrEmpty(lv_gpsCoord).
end method.

Practices

The obligatory My Little Pony

= 0 7 0

