
Using TDD
Making code maintainable, reusable and readable by writing tests

Intro

• Julian Lyndon-Smith
• Chief Enterprise Architect, Build.One

• Using progress since v3
• Several open source projects

• Stomp : messaging for ActiveMQ
• Loki : generate openedge classes from OpenApi spec
• Maia: generate openedge classes for database access
• UIB utilities
• v8Stuff.com and v9Stuff.com

Introduction to TDD

• Test Driven Development
• Test first
• Code second

• Different from traditional development methods
• Takes buy in from all involved
• Makes you think differently
• Hard to make the switch

History of TDD

• 1989 : “fit”, one of the first testing frameworks written
• 1994 : Extreme Programming (XP) starts appearing
• 1999 : a number of books on TDD start appearing
• 2000 : jUnit launched
• 2004 : proUnit

(http://prounit.sourceforge.net/userguide.html)
• 2010 : OEUnit (https://github.com/CameronWills/OEUnit)
• 2014 : initial release of ABLUnit
• 2018 : ABLUnit first class citizen in PDS

Framework Comparisons

https://community.progress.com/community_groups/opened
ge_development/f/19/t/11095

Traditional development cycle

Write
code

Run tests deploy Fix bugs

TDD cycle

Write test

Run tests

Write
code

Run tests

Fix bugs

refactor

deploy

TDD cycle : Red, green, refactor

• Red
• Tests fail

• Green
• Tests pass

• Refactor
• Make code better to maintain and test

TDD cycle : Red

• Write a test for a class or method
• That does not exist
• A new requirement

• Test will (should) fail
• Why should we do this ?

• Makes you think of what functionality you are testing
• Makes you write the code required to pass the test only

TDD cycle : Green

• Now, write just enough code to make the test pass
• This is the difficult part !

• Take this business requirement:
• A new method must, given an integer input value of 42, return false
• What is enough code to make the test pass ?

When enough is too much

/** A new method must, given an integer input value
of 42, return false */

method public logical myMethod(a as int):

 if a eq 42 then return false.

 else return true.

end method.

WRONG…

• The requirement only stated what the method should do for
an input value of 42.

• All other values are undetermined
• No requirement .. No test

• Otherwise you are writing code that may never be used

When enough is enough

/** A new method must, given an integer input value
of 42, return false */

method public logical myMethod(a as int):

 return false.

end method.

Requirements are tests

• The previous example shows that there is at least one more
requirement needed

• Other numbers apart from 42

• The developer should liaise with other stakeholders
• “are you needing different results for other numbers?”

• Write new tests for new requirements

TDD cycle : Refactor

• Refactoring code is done to make the code
• Maintainable
• Readable
• Good code quality

• Your unit tests will help to check that you don’t break
functionality

• DRY

The benefits of TDD

• Ensures quality code from the very beginning
• Promotes loosely-coupled code
• Can provide specifications by tests
• Give you confidence that your code works

The benefits of TDD

• Keeps unused code out of your systems
• Makes you think hard about application design
• Finds bugs quickly

The cost of bugs - augmentum.com

The cost of bugs – Dilbert

The benefits of TDD

• Code coverage
• Regression testing for free
• Stops recurring bugs
• Clean API design
• Reduced debugging
• Reduced development costs

The benefits of TDD (real world)

• Development of Maia4
• Complete rewrite of Maia

• Took 3 weeks
• Including writing unit tests

• Found 4 bugs in progress …

The benefits of TDD (real world)

• Return in finally
• Doesn’t return longchars

• Recursive delete of a directory fails
• If path contains a folder starting with “.”

• Json parser hangs if data contains comments
• /* */

• Static properties and method calls as part of a parameter
cause gpf

The benefits of TDD (real world)

• Only 2 bugs in maia4 found after initial alpha release
• Extents not generated at all (missing code)
• Custom properties assigned to db

• Several bugs found in UI …
• No unit tests ☺

The benefits of TDD (real world)

• Development of Security-Hub
• NestJs/Angular app
• Server side has 700+ tests
• 100% coverage

The benefits of TDD (real world)

• Added new SAML Auth module
• Added secure token login
• Added MySecrets module

Ran test suite - fixed any bugs found
Have deployed several versions now without any regressions or known
bugs

The downsides of TDD

• Big time in investment
• Additional Complexity
• Harder than you think
• Selling to management
• Selling to developers ;)
• You lose the title of “Hacker” !

Unit tests

• What is a unit test ?
• Test of one requirement for one method

• Isolation
• other code / tests
• Other developers

• Targeted
• Repeatable
• Predictable

Achieving good design

• Writing tests first means that you have to describe what you
want to achieve before you write the code

• In order to keep tests understandable and maintainable,
keep them as short as possible. Long tests imply that the
unit under test is too large

• If a component requires too many dependencies, then it is
too difficult to test

Code design to help with TDD

• SOLID
• Code “smell”
• Refactoring

SOLID

• Single responsibility
• Each method and class should have only one responsibility
• Open / Close principle
• Open for extension, closed for modification
• Inheritance

• Liskov subsititution principle
• An object should be replaceable by the super class without breaking

the application

SOLID

• Interface segregation principle
• Must not rely on interfaces that a client does not need

• Dependency inversion
• Code should depend on abstractions, not implementation

Code smell

• Mistaks: repeated mistaks ;)
• Duplicate code
• Big classes, huge methods
• Comments

• controversial …

• Bad names
• Too many if .. Then or case statements

Code refactoring – rename members

 method public decimal getValue(a as int,b as int):

 def var p as dec init 3.14159265359 no-undo.

 return (a * a) * b * p.

 end method.

Code refactoring – rename members

 method public decimal getCylinderVolume(radius as int, height as int):

 def var Pi as dec init 3.14159265359 no-undo.

 return (radius * radius) * height * Pi.

 end method.

Code refactoring

• Extract methods
• Extract interfaces

• Multiple implementation

• Encapsulation of properties
• Get / set

• Replace conditionals with polymorphism

Achieving good design

• Code which is complicated is
• Bad design
• Hard to maintain
• Hard to test
• Expensive to fix

TDD: Testing “smells” (1)

• Writing tests after writing code
• Not writing tests !
• Duplicate logic in tests
• Code apart from asserts / setup

• logic in tests == bugs in tests (>90% likelyhood)

TDD: Testing “smells” (2)

• Remove tests
• Change tests
• Have test dependent on another test
• Have multiple asserts per test

• unless checking multiple properties per object

TDD: Best Practices (1)

• Increase code coverage
• Test reviews
• Manually introduce a bug

• if all tests pass, there’s a problem with the test

• Write tests first
• Make tests isolated

TDD: Best Practices (2)

• Ensure all unit tests pass. None should fail
• Integration tests should be in a separate project
• Test only publics (If possible)
• SOLID design
• Use Setup methods / refactor code into “helpers”

TDD: Best Practices (3)

• Make tests readable rather than maintainable
• Enforce test isolation
• Each test should set up and clean up it’s own state
• Any test should be repeatable
• Use variables instead of constants to make tests readable

TDD: Best Practices (bad naming)

 @Test.

 method public void test#1():

 def var lv_data as char no-undo.

 assign lv_data = gecode:getGPS("maitland","southend").

 AssertString:IsNotNullOrEmpty(lv_data).

 end method.

TDD: Best Practices (good naming)

 @Test.

 method public void getGPSCoordinatesForBuildingInTown():

 def var lv_gpsCoord as char no-undo.

 def var lv_Town as char init "southend" no-undo.

 def var lv_Building as char init "maitland" no-undo.

 assign lv_gpsCoord = gecode:getGPS(lv_Building,lv_Town).

 AssertString:IsNotNullOrEmpty(lv_gpsCoord).

 end method.

TDD: Best Practices (4)

• Tests should run in any order
• Name tests appropriately (divideByZeroThrowsException)
• Name variables / use pre-processor
• Start using Interfaces to facilitate tests

“mocks”

The three pillars of unit tests

maintainable

trustworthy

readable

books

• The art of unit testing (Roy Osherove)
• Second edition

• Clean Code: A Handbook of Agile Software Craftsmanship
(Robert C. Martin)

• Dependency Injection (Steven van Deursen & Mark
Seemann)

The obligatory My Little Pony

Questions

