Consultingwerk

software architecture and development

Consultingwerk

software architecture and development

Peter Judge

= Senior Architect at Consultingwerk

= Writing 4GL since 1996, working on a variety
of frameworks and applications. More
recently have worked on a lot of integration-y
stuff: Authentication Gateway, HTTP Client,
Web Handlers. Dabble in PASOE migrations.

= Active participator in Progress communities,
PUGs and other events

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 2

Consultingwerk

software architecture and development

Consultingwerk Software Services Ltd.

» Progress'Fariner

= [ndependent IT consulting organization

&0"6
&
o

= Focusing on OpenEdge and related technology _
= Located in Cologne, Germany, subsidiaries in UK, USA and Romania
= Customers in Europe, North America, Australia and South Africa

= Vendor of developer tools and consulting services

= Specialized in GUI for .NET, Angular, OO, Software Architecture,
Application Integration
= Experts in OpenEdge Application Modernization

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 3

Consultingwerk

software architecture and development

Services Portfolio, Progress Software

= OpenEdge (ABL, Developer Tools, Database, PASOE, ...)

= Telerik DevCraft (.NET, Kendo Ul, Angular, ...), Telerik Reporting

= OpenEdge UltraControls (Infragistics .NET)

= Telerik Sitefinity CMS (incl. integration with OpenEdge applications)
= Kinvey Plattform, NativeScript

= Corticon BRMS

= Whatsup Gold infrastructure-, network- and application monitoring

= Kemp Loadmaster

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 4

Consultingwerk

software architecture and development

Services Portfolio, related products

= Protop Database Monitoring

= Combit List & Label

= Web frameworks, e.g. Angular

= NET

= Java

= ElasticSearch, Lucene

= Amazon AWS, Azure

= DevOps, Docker, Jenkins, ANT, Gradle, JIRA, ...

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 5

Consultingwerk

software architecture and development

Agenda

= Software design patterns
= General

= |Inheritance gets ugly
= Decorator
= Adapter

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Example

= We want to a class to represent a House
...and want to know how much Energy it consumes over the year
= How does that change if we change something on the house?

= We want to change that at Runtime!
= Not at compile time

= Houses may have solar panels, insulation, a battery, heat pumps, etc
= Not all houses have all of these
= Some houses may have multiple
= Capabilities can be upgraded over the lifetime of a house @

© 2023 Consultingwerk Software Services Ltd. All rights reserved. u

Consultingwerk

software architecture and development

Implementation Options

class BasicHouse implements IHouse m Cha”enge IS Supporting Zero,
- . one or more of these optional
class SolarHouse inherits BasicHouse A
capabilities
class HeatPumpHouse inherits BasicHouse N capabilities — 2”

class InsulatedHouse inherits BasicHouse combinations

class BatteryBackupHouse inherits BasicHouse

= A new capability (wind?)

class SolarInsulatedHouse inherits BasicHouse Mmeans a proliferation of
class SolarHeatPumpInsulatedHouse inherits BasicHouse classes

class SolarHeatPumpInsulatedBatteryHouse inherits BasicHouse

class SolarHeatPumpBatteryHouse inherits BasicHouse
class SolarBatteryHouse inherits BasicHouse

= Potential duplication of
Implementations

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Software Design Patterns

= Well known “ways of doing” for solving common, recurring problems
= Easier to understand and maintain clean code

= Prevents reinventing the wheel and “too creative” code

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Software Design Patterns

= Popular through the GoF (Gang of Four)
= Erich Gamma (IBM/Rational/Microsoft — Developer of Eclipse, Junit and VS Code)
= Richard Helm (IBM/Boston Consulting)
= Ralph Johnson (worked on Smalltalk)
= John Vlissides (IBM)

= Examples: Factory, Builder, Singleton, Facade, Adapter, lterator, Lazy
Initialization, and many more....

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Decorator pattern

77 | In object-oriented programming, the Component
decorator pattern is a design pattern e
that allows behavior to be added to 1

an IndiVIduaI ObjeCt1 dynamica”y1 ConcreteComponent Decorator
without affecting the behavior of other [+ eerton L component 1
objects from the same class. Zﬁ

+ operation()

https://en.wikipedia.org/wiki/Decorator pattern

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

https://en.wikipedia.org/wiki/Decorator_pattern

Consultingwerk

software architecture and development

Decorator pattern

= Allows functionality to be divided by concern (Single Responsibility)

= Allows extension without modification (Open Closed Principle)
= This is the actual decoration

= Flexible, efficient way of extending an object without creating a new
object
= No Casting, Extending or Overwrites needed

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Implementing the Decorator pattern

Building blocks
1. Interface describing common functionality

2. A Decorator class, usually abstract to hold the decorated object

Component

Client - w‘ _g»:e_n.t e preciracit
3. Concrete decorator classes 5 - S S P ey

for each bit of additional =] == -
functionality i e .

Decoratorl Decorator2 , .
7

operation() operation(]
addBehavior) addBehaviorn)

:Decorator? | | :Component 1

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Abstract HouseDecorator

class HouseDecorator Class is defined as ABSTRACT

abstract
implements IHouse:

(N\

Implements the IHouse interface

- J

define variable oDecoratedHouse as IHouse no-undo.

4 N\

Private variable to hold the instance

constructor public HouseDecorator(poHouse as IHouse): being decorated. This is also an IHouse
Assert:NotNull(poHouse). > <

oDecoratedHouse = poHouse. Decorated instance set via constructor

end constructor. - g
4)

method public integer GetEndEnergyConsumption(): Decorator |H0_Use members simply call

return oDecoratedHouse:GetEndEnergyConsumption(). corresponding PUBLIC members on

end method. decorated instance
\ /

end class.
© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Concrete HouseDecorator

class HeatPumpHouse [

X . Inherits from HouseDecorator}
inherits HouseDecorator:

// Coefficient of Performance - How much energy returned for energy put in
define public property CoefficientOfPerformance as integer no-undo

get.

protected set.

constructor public HeatPumpHouse(pHouse as IHouse): :
super(pHouse). Passes the House being decorated to

the abstract parent
this-object:CoefficientOfPerformance = 4.
end constructor.

method override public integer GetEndEnergyConsumption():

return integer(super:GetEndEnergyConsumption() / CoefficientOfPerformance).

end method. (Modifies / extends standard House

end class. L behaviour

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

BU||d|ng ObJ eCtS define variable oMyHouse as IHouse no-undo.

1. Build an ObjeCt that will be /* Base house (the one to decorate) */

oMyHouse = new BasicHouse().

decorated
2. Pass that into a decorator
) /* Add Insulation */
3. Optlonally_pass the oMyHouse = new InsulatedHouse(oMyHouse).
decorator into another
decorator /* And a Heat Pump */
4. Call methods on the oMyHouse = new HeatPumpHouse(oMyHouse).
IHouse . .
.. /* It's still an IHouse 1instance */
= This is the outermost oMyHouse:GetEndEnergyConsumption(). // 5000w
decorator

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Demo — Decorators,

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Accessing other capabilities

define variable oMyHouse as IHouse no-undo.

/* Base house (the one to decorate) */
oMyHouse = new BasicHouse().

/* Add Insulation */
oMyHouse = new InsulatedHouse(oMyHouse).

/* And a Heat Pump */
oMyHouse = new HeatPumpHouse(oMyHouse).

/* It's still an IHouse instance */
oMyHouse:GetEndEnergyConsumption(). // 5006w

message cast(oMyHouse, InsulatedHouse):RValue. /* 1! RUNTIME ERROR !! */

message 'type-of IHouse? ' type-of(oMyHouse, IHouse). /* true */
message 'type-of InsulatedHouse? ' type-of(oMyHouse, InsulatedHouse). /* false */

message 'TypeName ' oMyHouse :GetClass():TypeName. /* HeatPumpHouse */

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Accessing other capabilities

define variable oMyHouse as IHouse no-undo.

/* Base house (the one to decorate) */
oMyHouse = new BasicHouse().

/* And a Heat Pump */
oMyHouse = new HeatPumpHouse(oMyHouse).

<:: /* Add Insulation */
oMyHouse = new InsulatedHouse(oMyHouse).

/* It's still an IHouse instance */
oMyHouse:GetEndEnergyConsumption(). // 5006w

message cast(oMyHouse, InsulatedHouse):RValue. /* 40 */

message 'type-of IHouse? ' type-of(oMyHouse, IHouse). /* true */
message 'type-of InsulatedHouse? ' type-of(oMyHouse, InsulatedHouse). /* true*/

message 'TypeName ' oMyHouse :GetClass():TypeName. /* InsulatedHouse */

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Using the Adapter Pattern

= Can'trely on TYPE-OF() or Progress.Lang.Class:IsA() since we
are dealing with >1 class

= TYPE-OF () will tell only us the outermost layer of the onion ... we need to
iInspect all of the layers somehow

59 \
The adapter pattern is a software design pattern (also known as wrapper, an
alternative naming shared with the decorator pattern) that allows the
Interface of an existing class to be used as another interface

https://en.wikipedia.org/wiki/Adapter pattern

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

https://en.wikipedia.org/wiki/Adapter_pattern

Consultingwerk

software architecture and development

Implement OpenEdge.Core.lAdaptable

class HouseDecorator
abstract
implements IHouse,
Openkdge.Core.IAdaptable :

method public Progress.lLang.0Object GetAdapter(pAdaptTo as Progress.lLang.Class):
/* Does the current decorator implement or inherit from the requested type? */
if this-object:GetClass():IsA(pAdaptTo) then
return this-object.

if valid-object(oDecoratedHouse) then do:
/* Does the decorated house implement or inherit the requested type? */
if oDecoratedHouse:GetClass():IsA(pAdaptTo) then
return oDecoratedHouse.

/* Is the decorated house itself an Adapter? */
if type-of(oDecoratedHouse, OpenEdge.Core.IAdaptable) then
return cast(oDecoratedHouse, OpenEdge.Core.IAdaptable):GetAdapter(pAdaptTo).
end.

return ?.
end method.

end class.

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Accessing other capabilities via an adapter

define variable oAdapter as Progress.Lang.0Object no-undo.
define variable oMyHouse as IHouse no-undo.

/* Base house (the one to decorate) */
oMyHouse = new BasicHouse().

/* Add Insulation */
oMyHouse = new InsulatedHouse(oMyHouse).

/* And a Heat Pump */
oMyHouse = new HeatPumpHouse(oMyHouse).

/* It's still an IHouse 1instance */
oMyHouse:GetEndEnergyConsumption(). // 5606w

I

message 'type-of IHouse? ' type-of(oMyHouse, IHouse). /* type-of IHouse? true */
message 'TypeName ' oMyHouse :GetClass():TypeName. /* TypeName HeatPumpHouse */

if type-of(oMyHouse, IAdaptable) then do:
oAdapter = cast(oMyHouse, IAdaptable):GetAdapter(get-class(InsulatedHouse)).
if valid-object(oAdapter) then
message cast(oAdapter, InsulatedHouse):RValue. /* works! */
end.

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Demo

= Run-adapter.p

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Conclusion

= Decorator pattern allows us to dynamically (ie at runtime) add
behaviour to objects

= Streamline complex object hierarchies when using multiple interfaces

= Construction of decorated objects can be verbose (hint: come and see the
"Factories" session

= The adapter pattern allows us to ask an object what it is capable of
doing
= ... and lets us ignore how that's implemented in the object (inheritance or
decorator or ...)

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk

software architecture and development

Additional info

= Code shown today is available at https://github.com/4qgl-fanatics/house-
energy-patterns

= The Using the Factory Pattern in OOABL: How, when and why session
IS on Tuesday, 14 Nov / 16:40. Come see how we improve building of
these decorated objects

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

https://github.com/4gl-fanatics/house-energy-patterns
https://github.com/4gl-fanatics/house-energy-patterns

P ROD UCT L|VE
PPROFESS LONAL
PROBLEMSOLVILNG
S MART
E.DUCATILON
L'E.AD | NG,
T E.C.H SAV.VY,
RE L | ABLE
I NN'OV.AT LIVE
G.E E K Y,
WORLDWI DE
PROACT I VE.
R EMARKAB.LE
K. NJOW|L E D.GA B, L E

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

27

	Slide 1: Implementing and using the Decorator pattern in ABL
	Slide 2: Peter Judge
	Slide 3: Consultingwerk Software Services Ltd.
	Slide 4: Services Portfolio, Progress Software
	Slide 5: Services Portfolio, related products
	Slide 6: Agenda
	Slide 7: Example
	Slide 8: Implementation Options
	Slide 9: Software Design Patterns
	Slide 10: Software Design Patterns
	Slide 11: Decorator pattern
	Slide 12: Decorator pattern
	Slide 13: Implementing the Decorator pattern
	Slide 14: Abstract HouseDecorator
	Slide 15: Concrete HouseDecorator
	Slide 16: Building objects
	Slide 17: Demo – Decorators,
	Slide 18: Accessing other capabilities
	Slide 19: Accessing other capabilities
	Slide 20: Using the Adapter Pattern
	Slide 21: Implement OpenEdge.Core.IAdaptable
	Slide 22: Accessing other capabilities via an adapter
	Slide 23: Demo
	Slide 24: Conclusion
	Slide 25: Additional info
	Slide 26
	Slide 27

