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Consultingwerk Software Services Ltd.
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▪ Independent IT consulting organization

▪ Focusing on OpenEdge and related technology

▪ Located in Cologne, Germany, subsidiaries in UK, USA and Romania

▪ Customers in Europe, North America, Australia and South Africa

▪ Vendor of developer tools and consulting services

▪ Specialized in GUI for .NET, Angular, OO, Software Architecture, 

Application Integration

▪ Experts in OpenEdge Application Modernization
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Services Portfolio, Progress Software

▪ OpenEdge (ABL, Developer Tools, Database, PASOE, …)

▪ Telerik DevCraft (.NET, Kendo UI, Angular, …), Telerik Reporting

▪ OpenEdge UltraControls (Infragistics .NET)

▪ Telerik Sitefinity CMS (incl. integration with OpenEdge applications)

▪ Kinvey Plattform, NativeScript

▪ Corticon BRMS

▪ WhatsUp Gold infrastructure-, network- and application monitoring

▪ Kemp Loadmaster

▪ …
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Services Portfolio, related products

▪ Protop Database Monitoring

▪ Combit List & Label

▪ Web frameworks, e.g. Angular

▪ .NET

▪ Java

▪ ElasticSearch, Lucene

▪ Amazon AWS, Azure 

▪ DevOps, Docker, Jenkins, ANT, Gradle, JIRA, …

▪ …
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Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ User interface refactoring
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Modernization drivers

▪ The obvious: a new user interface

▪ Web interface

▪ Modern desktop UI

▪ Mobile or satellite applications 

▪ Functional requirements

▪ Integration with 3rd party applications (in and out)

▪ Localization

▪ Hard to keep up with new features

▪ Redundancy kills agility
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Modernization drivers

▪ Improved code quality / maintainability

▪ Improvements to application longevity

▪ Component independency

▪ Module independence

▪ Method length

▪ Test driven development to improve quality and agility

▪ Get ready for a new generation of software developers

▪ Foreseeable retirement of key developers

▪ Need to make application attractive to young developers

▪ Enable application for distributed development
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Modernization drivers

▪ Modernization drivers need agreement between all stake-holders

▪ development team 

▪ business

▪ When time-pressure comes, goals not directly visible to end users may 

otherwise be sacrificed

▪ code-optimization 

▪ adherence to architectural standards

▪ test-driven-design

▪ technical documentation
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Know your constants

▪ I expect that OpenEdge and PASOE will still be around 10 years from 

now

▪ I expect that OpenEdge will keep fundamentally backwards compatible 

with todays source-code

▪ Majority of application functionality should be moved to PASOE

▪ I will not even try to foresee the trends in user-interface technology in 

the next few years
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Modernization Strategies

▪ Modernization of the whole application?

▪ Going from ABL GUI to GUI for .NET or Web or Mobile

▪ What is the “final” UI technology

▪ GUI for .NET as an intermediate / integration with legacy GUI while the 

backend is rearchitected

▪ Or do we (first) add a few new features?

▪ Mobile client for parts of the application

▪ REST/REST(ful) interfaces for parts of the application

▪ Reduce risk, gather first experience
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Modernization Strategies

▪ Modernizing OpenEdge GUI (or TTY) to N-Tier first

▪ Preparing the Application Backend for the Web

▪ Modernizing the whole application to the Web

▪ Driven by demands from? Users, IT organization, marketing?

▪ Definition of MVP – minimum viable product

▪ How much functionality must be delivered on the web for user acceptance

▪ Developing one or multiple “satellite” web applications 

▪ Deliver quick and with reduced risk
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Sample Migration Strategy
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Quality of the application

▪ Are parts of the application reusable?

▪ With no or little changes

▪ Are major functional changes required?

▪ Are major changes to the database structure required?

▪ Can parts of the application serve to describe the requirements

▪ Legacy code review as part of the requirements definition

▪ Is the existing source code the only (complete) description of the 

application functionality?
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Development Team Skills

▪ New development process (agile)

▪ New tools (Progress Developer Studio, SCM, Unit Tests, DevOps, 

Docker, Frontend tools) and Frameworks

▪ New architecture: Distributed

▪ New development languages

▪ OOABL

▪ HTML, JavaScript, TypeScript, rapidly changing

▪ Desktop technologies

▪ Web and Mobile frameworks
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Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ User interface refactoring
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The OpenEdge Reference Architecture (OERA)
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The OpenEdge Reference Architecture (OERA) defines 

the general functional categories of components that 

comprise an application. It can be used as a high-level 

blueprint for developing OpenEdge service-oriented 

business applications.

Each layer of the OERA consists of distinct 

components, each with specific characteristics, roles 

and responsibilities.  In addition, the OERA provides 

guidelines as to how each of the architectural 

components interacts.  The following diagram 

illustrates the component architecture and the 

relationships between each of the components. https://community.progress.com/s/question/0D54Q

0000819wkqSAA/introduction-to-the-openedge-

reference-architecture

https://community.progress.com/s/question/0D54Q0000819wkqSAA/introduction-to-the-openedge-reference-architecture
https://community.progress.com/s/question/0D54Q0000819wkqSAA/introduction-to-the-openedge-reference-architecture
https://community.progress.com/s/question/0D54Q0000819wkqSAA/introduction-to-the-openedge-reference-architecture
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The OpenEdge Reference Architecture (OERA)

▪ Focus is on high-level architecture "blueprint"

▪ OERA is not prescriptive …

▪ Choose to use procedural or OOABL code

▪ Choose to implement some or all layers

▪ Choose to keep existing code

▪ Service Interface Layer almost entirely ignored

▪ No guidance given on implementation, other than sample code
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The Consultingwerk OERA Maturity Model

▪ An opinionated attempt to give application architects and developers 

some orientation in how to implement OERA compliant ABL 

applications

▪ E.g. We don't believe a Data Source layer provides value

▪ Assumes that different developer teams have different requirements 

and expectations for the architecture and coding style of modernized 

ABL applications

▪ Builds upon the OERA and is focused on implementation, primarily 

relating to the Business Components and Data Access layers

▪ Soon on https://www.consultingwerk.com/news/blog
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The Consultingwerk OERA Maturity Model

Object model for data

Separate validation routines

Separate data access

Standard interfaces, standard service interfaces 

Business services run on an AppServer
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The Consultingwerk OERA Maturity Model
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Object model for data4

Separate validation routines3

Separate data access2

Service-specific interfaces for application services1A

Standard interfaces, standard service interfaces 1

Business services run on an AppServer0
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Consequences 

✓ More, smaller programs
▪ Programs better follow Single 

Responsibility Principle / Separation of 
Concerns

▪ Unit testing made easier

✓ OOABL strongly recommended

✓ Pattern-based development
▪ E.g. fetching data always looks the same, 

regardless of which business service's 
data is fetched

▪ Reuse of existing code typically 
reduced as a result

▪ Increasing developer 

productivity via 

✓Compiler help with OOABL

✓Standardized development 

approaches

✓Reduced merge pain

✓Smaller programs, smaller 

impact from changes

✓Fewer "God programs"
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Reduced reuse of legacy code?

▪ Implementing full separation of concerns can mean it's much harder to 

reuse existing blocks of code

▪ Reusing large parts of existing code promises faster migration process

▪ Existing unit- and system tests can continue to be used when reusing 

legacy code

▪ Find the balance between migration speed and risk reduction, 

and future-proofing and increased maintainability
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Service Interface(s)
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Service Interface(s)

▪ The Service Interface receives calls from clients or external consumers

▪ A very important and often under-appreciated component

▪ The Service Interface is responsible for Validating the request (including 

Authentication and Authorization)

▪ Ensuring the User-Session is in the correct state

▪ Allocating the service (the Application Service, Business Task or Entity)

▪ Converting the request data from an external format to internal

▪ Converting the response data from internal format to external 
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Service Interface(s)

▪ Business Logic is the most valuable piece of the application

▪ User interfaces come and go (TTY, ABL GUI, GUI for .NET, Web, 

Mobile, Chat, …)

▪ We do not want to rewrite – or even change the Business Logic for 

every new UI trend

▪ Multiple parallel used UI technologies should be using the same 

Business Logic

▪ When there are very specific requirements for a single UI (e.g. Wizard 

style vs. plain data entry, consider using Application Service for this as an 

aggregate of multiple Business Tasks or Entities) 
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Top-down code-generalization

▪ Existing code considered to be closest to an application service

▪ First step is moving code from UI into an application service

▪ Simplifies automation during code-refactoring (almost statement by 

statement replaces)

▪ Further steps will improve code-reuse and single-concern by extracting 

code from application service into domain services

▪ Code de-duplication requires more design and guidelines

▪ Into how many pieces do we cut the monolith? 
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Top-down code-generalization

28

UI Trigger Code Block
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Top-down code-generalization
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Service Interface

Application Service
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Top-down code-generalization
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Service Interface

Application Service

Business Task Business Task
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Top-down code-generalization
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Service Interface

Application Service

Business Task Business Task

Business Entity Business Entity
Business 

Entity
Business Entity Business Entity
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Application Domain (Module)

Top-down code-generalization
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Service Interface

Application Service

Business Task Business Task
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Application Domain (Module)

Top-down code-generalization
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Demo

▪ Review different stages of migrating the „ship order“ trigger code

▪ Move out of GUI - into AppServer ready code

▪ Deal with questions using „MessageInteractionService“

▪ Throw Errors as Exception

▪ Introduce PreCheck method to reduce impact of undo’ing transactions 

on pending questions
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Benefits of top-down code-generalization

▪ First introduce service-ready component based on existing business 

logic

▪ Hide implementation details behind service interface

▪ Flow of business logic remains largely the same – this will reduce 

risk

▪ Component interface will allow

▪ Use in modern user-interfaces 

▪ Implementation of unit-tests

▪ Unit tests will improve confidence when optimizing the code
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Aspects of Top-Down code generalization

▪ Business Tasks and Business Entities should 

only deal with “their concern”

▪ Use factories or service managers – never 

directly new any application or domain 

business service object

▪ Only “allow” calls from top to bottom

▪ Services within a domain may call each other

▪ Services across domain boundary should use

domain service interface
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Application Service
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Further considerations

▪ Use parameter objects

▪ Separate screen-context from request parameters

▪ Selected warehouse may be screen context (might be a screen setting)

▪ Screen-context might be modified in UI and backend

▪ Selected order may be request-context (it’s the subject of ship order)

▪ Variables defined in the “definitions section” vs. parameters to internal 

procedures
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Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ User interface refactoring
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GLOBAL SHARED or SHARED variables …

▪ GLOBAL SHARED variables are less trouble 

▪ SHARED variables should be reconsidered – many of them may be 

replaced with GLOBAL SHARED, usually a bad legacy

▪ Class based code (most new code, PASOE Web handlers) has NO 

access to any GLOBAL SHARED SHARED context
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DB Trigger relying on a GLOBAL SHARED variable
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as_activate.p Procedure has access to client-principal and global-shared 

PASOE Web Handler class

Business Entity

Database Trigger can use global-shared 
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DB Trigger relying on a SHARED variable

41

as_activate.p Procedure Is not in the stack-trace of the DB trigger – so cannot set SHARED var

PASOE Web Handler class

Business Entity

Database Trigger can use shared 

Intermediate .p Is in the stack-trace of the DB trigger – so can set NEW SHARED var
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Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ User interface refactoring
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Input blocking from the Backend

▪ Progress Application Server does not support Input Blocking on the UI

▪ Once AppServer is invoked, client waits for response

▪ Web technologies such as Socket.IO may be used to send messages 

from Backend to frontend

▪ Back not vice-versa, no WAIT-FOR 

▪ When UI can foresee that AppServer may require additional 

information when processing request, try adding this to the request

▪ However UX should not be ignored. Too many irrelevant options 

confusion / annoying to users
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Input Blocking, fat client ABL

44

Frontend Business Entity
DELETE Customer

Request

“Open Orders Exist! 

Delete Anyway?”

IF CAN-FIND (FIRST Order OF Customer WHERE ....) THEN 

MESSAGE "Open Orders Exist! Delete Anyway?"

VIEW-AS ALERT-BOX QUESTION BUTTONS YES-NO UPDATE response .
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Input Blocking, fat client ABL
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Frontend Business Entity

DELETE Customer

Request 

(DeleteOpenOrders

= TRUE)

IF CAN-FIND (FIRST Order OF Customer WHERE ....) 

AND poRequest:DeleteOpenOrders = TRUE THEN …

Delete Open Orders
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Example challenge: Interaction between 

Back and

• Assumption: Existing Business Logic in large parts suitable as 

foundation for new application (functional and structural), especially 

validation

• Validation may also provide color coding to represent field status etc. 

• Validation may have to prompt the user

• Web applications typically:

Request (from browser) – Response (from server)

• No Input-Blocking (not possible to wait for user input in Business 

Logic)
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Sample: Yes/No PROMPT in validation

▪ Demand is to keep the validation flow in major parts “as is“

▪ Validation may encounter question requiring user input: “Are you 

sure?” etc.
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Sample: Yes/No PROMPT in validation
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Sample: Yes/No PROMPT in validation

49



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Migration using MessageInteractionService API 

(SmartComponent Library framework)

▪ Backend – API maintains list of questions (unanswered and 

answered)

▪ Same API Call may ask a new question or return an existing 

answer

▪ Supports multiple questions per routine: Questions are flagged 

with e.g. a GUID identifying their location in code

▪ Support for multiple iterations (Loops, FOR EACH, …): Each 

question is also flagged with a records PUK value (GUID, 

combined key fields)
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JSON Representation of the question
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Automation

▪ Migration of MESSAGE Statements into API calls can be automated 

using Proparse based tooling
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Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ User interface refactoring
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Source code parsing using Proparse

▪ ABL syntax parser, abstract view on ABL source code, based on 

ANTLR

▪ Eliminates the need for text based source code analysis

▪ Resolves issues with line-breaks, abbreviated keywords, mixed order of 

keywords

▪ Open source

▪ github.com/oehive/proparse

▪ github.com/consultingwerk/proparse

▪ github.com/riverside-software/proparse

▪ Actively maintained in various forks, support for 11.7 ABL syntax
55
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Proparse
▪ http://www.joanju.com/analyst/javadoc/index.html?org/prorefactor/core/JPNo

de.html
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http://www.joanju.com/analyst/javadoc/index.html?org/prorefactor/core/JPNode.html
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UPDATE EDITING Blocks
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Single field validation within EDITING Block
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UPDATE EDITING Blocks

▪ Commonly used in TTY and early GUI applications

▪ Full of validation logic / Lookup functionality (locating foreign key 

descriptions)

▪ Tied to UI through “INPUT <fieldname>” references

▪ MESSAGE Statement used for error messages

▪ NEXT-PROMPT provides field that should receive input after error

▪ Record locked during duration of the UPDATE Statement
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UPDATE EDITING Blocks

▪ Iterated for every keystroke or GO-PENDING

▪ When invoked on GO-PENDING, it’s similar to a commit to a Business 

Entity

▪ Validating all fields at once

▪ Processing update when no validation error occurred

▪ Returning validation error to user (with instruction of next field)

▪ Code flow in EDITING Block very similar to typical Business Entity 

validation
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Business Entity Validation based on UPD EDITING 
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Business Entity Validation based on UPD EDITING 

▪ IF w-oldf OR GO-ENDING not required; Business Entity typically 

validates all fields at once

▪ Removing at least one level of blocks in the code

▪ “INPUT <fieldname>” replaced with temp-table field reference

▪ DISPLAY statements replaces with update of temp-table field

▪ MESSAGE/NEXT-PROMPT statements replaced with API call to return 

validation message to the consumer of the Business Entity and control 

target field
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Demo

▪ Proparse based migration of UPDATE EDITING Blocks into Business 

Entity Validation block
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Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ User interface refactoring
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ABL GUI refactoring

▪ Existing GUI (or TTY) screen layout may serve as a starting point for 

new UI’s

▪ Highly dependent on UX of new application

▪ Highly dependent on “quality” of layout of new application
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Screen layout migration

▪ Screen layout from static code can be refactored based on Proparse

▪ FRAME definitions sometimes tricky to understand 

▪ Multiple FRAME Statements for a single FRAME

▪ VIEW-AS phrase from Data Dictionary 

▪ Default properties of widgets

▪ Walking the widget tree typically simpler – however this requires 

changes to application runtime and is not trivial when building general 

purpose tools
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Abstract view on screen layout
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Abstract view on screen layout

▪ Allows generation of various UI’s 

▪ GUI for .NET

▪ Angular 

▪ Kendo UI Builder

▪ Meta-Data for UI repository database

▪ …
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GUI Trigger Code

▪ Typically used for validation or control of the UI

▪ Contains references using widget attributes (:SCREEN-VALUE or 

:SENSITIVE, etc.) or INPUT <fieldref>

▪ May contain business logic that should be moved to Business Entity 

(typically when accessing DB records), LEAVE Triggers typical 

prospect for validation
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Migrated Trigger Code
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Widget Façade classes 

allow mapping of widget 

attributes to control 

properties
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Different types of screens following different templates

▪ Different types of screen

▪ Data entry

▪ Enquiry

▪ Search screens

▪ Report screen

▪ Processing screens

▪ Factory floor screens

▪ …

▪ Might be migrated using different templates
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Questions
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