
ABL legacy code refactoring

Patterns and Strategies

Mike Fechner

mike.fechner@consultingwerk.de

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Mike Fechner

▪ Director, Lead Modernization Architect and

Product Manager, Architect of the

SmartComponent Library and WinKit

▪ Specialized on object-oriented design,

software architecture, desktop user

interfaces and web technologies

▪ 30 years of Progress experience (V5 …

OE12)

▪ Active member of the OpenEdge community

▪ Frequent speaker at OpenEdge related

conferences around the world

2

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk Software Services Ltd.

3

▪ Independent IT consulting organization

▪ Focusing on OpenEdge and related technology

▪ Located in Cologne, Germany, subsidiaries in UK, USA and Romania

▪ Customers in Europe, North America, Australia and South Africa

▪ Vendor of developer tools and consulting services

▪ Specialized in GUI for .NET, Angular, OO, Software Architecture,

Application Integration

▪ Experts in OpenEdge Application Modernization

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, Progress Software

▪ OpenEdge (ABL, Developer Tools, Database, PASOE, …)

▪ Telerik DevCraft (.NET, Kendo UI, Angular, …), Telerik Reporting

▪ OpenEdge UltraControls (Infragistics .NET)

▪ Telerik Sitefinity CMS (incl. integration with OpenEdge applications)

▪ Kinvey Plattform, NativeScript

▪ Corticon BRMS

▪ WhatsUp Gold infrastructure-, network- and application monitoring

▪ Kemp Loadmaster

▪ …

4

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, related products

▪ Protop Database Monitoring

▪ Combit List & Label

▪ Web frameworks, e.g. Angular

▪ .NET

▪ Java

▪ ElasticSearch, Lucene

▪ Amazon AWS, Azure

▪ DevOps, Docker, Jenkins, ANT, Gradle, JIRA, …

▪ …

5

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ User interface refactoring

6

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Modernization drivers

▪ The obvious: a new user interface

▪ Web interface

▪ Modern desktop UI

▪ Mobile or satellite applications

▪ Functional requirements

▪ Integration with 3rd party applications (in and out)

▪ Localization

▪ Hard to keep up with new features

▪ Redundancy kills agility
7

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Modernization drivers

▪ Improved code quality / maintainability

▪ Improvements to application longevity

▪ Component independency

▪ Module independence

▪ Method length

▪ Test driven development to improve quality and agility

▪ Get ready for a new generation of software developers

▪ Foreseeable retirement of key developers

▪ Need to make application attractive to young developers

▪ Enable application for distributed development
8

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Modernization drivers

▪ Modernization drivers need agreement between all stake-holders

▪ development team

▪ business

▪ When time-pressure comes, goals not directly visible to end users may

otherwise be sacrificed

▪ code-optimization

▪ adherence to architectural standards

▪ test-driven-design

▪ technical documentation

9

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Know your constants

▪ I expect that OpenEdge and PASOE will still be around 10 years from

now

▪ I expect that OpenEdge will keep fundamentally backwards compatible

with todays source-code

▪ Majority of application functionality should be moved to PASOE

▪ I will not even try to foresee the trends in user-interface technology in

the next few years

10

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Modernization Strategies

▪ Modernization of the whole application?

▪ Going from ABL GUI to GUI for .NET or Web or Mobile

▪ What is the “final” UI technology

▪ GUI for .NET as an intermediate / integration with legacy GUI while the

backend is rearchitected

▪ Or do we (first) add a few new features?

▪ Mobile client for parts of the application

▪ REST/REST(ful) interfaces for parts of the application

▪ Reduce risk, gather first experience
11

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Modernization Strategies

▪ Modernizing OpenEdge GUI (or TTY) to N-Tier first

▪ Preparing the Application Backend for the Web

▪ Modernizing the whole application to the Web

▪ Driven by demands from? Users, IT organization, marketing?

▪ Definition of MVP – minimum viable product

▪ How much functionality must be delivered on the web for user acceptance

▪ Developing one or multiple “satellite” web applications

▪ Deliver quick and with reduced risk

12

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Sample Migration Strategy

13

Progress OpenEdge GUI

application

Modern web application,

PASOE backend,

SmartComponent Library

Big

Bang

Modern Desktop UI,

PASOE backend,

SmartComponent Library

Successive

releases

Intermediate Solution

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Quality of the application

▪ Are parts of the application reusable?

▪ With no or little changes

▪ Are major functional changes required?

▪ Are major changes to the database structure required?

▪ Can parts of the application serve to describe the requirements

▪ Legacy code review as part of the requirements definition

▪ Is the existing source code the only (complete) description of the

application functionality?

14

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Development Team Skills

▪ New development process (agile)

▪ New tools (Progress Developer Studio, SCM, Unit Tests, DevOps,

Docker, Frontend tools) and Frameworks

▪ New architecture: Distributed

▪ New development languages

▪ OOABL

▪ HTML, JavaScript, TypeScript, rapidly changing

▪ Desktop technologies

▪ Web and Mobile frameworks

15

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ User interface refactoring

16

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

The OpenEdge Reference Architecture (OERA)

17

Presentation

Business Components

Data Access

Data Sources

C
o

m
m

o
n

 In
fra

s
tru

c
tu

re

Enterprise Services

The OpenEdge Reference Architecture (OERA) defines

the general functional categories of components that

comprise an application. It can be used as a high-level

blueprint for developing OpenEdge service-oriented

business applications.

Each layer of the OERA consists of distinct

components, each with specific characteristics, roles

and responsibilities. In addition, the OERA provides

guidelines as to how each of the architectural

components interacts. The following diagram

illustrates the component architecture and the

relationships between each of the components. https://community.progress.com/s/question/0D54Q

0000819wkqSAA/introduction-to-the-openedge-

reference-architecture

https://community.progress.com/s/question/0D54Q0000819wkqSAA/introduction-to-the-openedge-reference-architecture
https://community.progress.com/s/question/0D54Q0000819wkqSAA/introduction-to-the-openedge-reference-architecture
https://community.progress.com/s/question/0D54Q0000819wkqSAA/introduction-to-the-openedge-reference-architecture

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

The OpenEdge Reference Architecture (OERA)

▪ Focus is on high-level architecture "blueprint"

▪ OERA is not prescriptive …

▪ Choose to use procedural or OOABL code

▪ Choose to implement some or all layers

▪ Choose to keep existing code

▪ Service Interface Layer almost entirely ignored

▪ No guidance given on implementation, other than sample code

18

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

The Consultingwerk OERA Maturity Model

▪ An opinionated attempt to give application architects and developers

some orientation in how to implement OERA compliant ABL

applications

▪ E.g. We don't believe a Data Source layer provides value

▪ Assumes that different developer teams have different requirements

and expectations for the architecture and coding style of modernized

ABL applications

▪ Builds upon the OERA and is focused on implementation, primarily

relating to the Business Components and Data Access layers

▪ Soon on https://www.consultingwerk.com/news/blog

19

https://www.consultingwerk.com/news/blog

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

The Consultingwerk OERA Maturity Model

Object model for data

Separate validation routines

Separate data access

Standard interfaces, standard service interfaces

Business services run on an AppServer

20

0

1

2

3

4

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

The Consultingwerk OERA Maturity Model

21

Object model for data4

Separate validation routines3

Separate data access2

Service-specific interfaces for application services1A

Standard interfaces, standard service interfaces 1

Business services run on an AppServer0

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consequences

✓ More, smaller programs
▪ Programs better follow Single

Responsibility Principle / Separation of
Concerns

▪ Unit testing made easier

✓ OOABL strongly recommended

✓ Pattern-based development
▪ E.g. fetching data always looks the same,

regardless of which business service's
data is fetched

▪ Reuse of existing code typically
reduced as a result

▪ Increasing developer

productivity via

✓Compiler help with OOABL

✓Standardized development

approaches

✓Reduced merge pain

✓Smaller programs, smaller

impact from changes

✓Fewer "God programs"

22

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Reduced reuse of legacy code?

▪ Implementing full separation of concerns can mean it's much harder to

reuse existing blocks of code

▪ Reusing large parts of existing code promises faster migration process

▪ Existing unit- and system tests can continue to be used when reusing

legacy code

▪ Find the balance between migration speed and risk reduction,

and future-proofing and increased maintainability

23

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Service Interface(s)

24

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Service Interface(s)

▪ The Service Interface receives calls from clients or external consumers

▪ A very important and often under-appreciated component

▪ The Service Interface is responsible for Validating the request (including

Authentication and Authorization)

▪ Ensuring the User-Session is in the correct state

▪ Allocating the service (the Application Service, Business Task or Entity)

▪ Converting the request data from an external format to internal

▪ Converting the response data from internal format to external

25

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Service Interface(s)

▪ Business Logic is the most valuable piece of the application

▪ User interfaces come and go (TTY, ABL GUI, GUI for .NET, Web,

Mobile, Chat, …)

▪ We do not want to rewrite – or even change the Business Logic for

every new UI trend

▪ Multiple parallel used UI technologies should be using the same

Business Logic

▪ When there are very specific requirements for a single UI (e.g. Wizard

style vs. plain data entry, consider using Application Service for this as an

aggregate of multiple Business Tasks or Entities)

26

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Top-down code-generalization

▪ Existing code considered to be closest to an application service

▪ First step is moving code from UI into an application service

▪ Simplifies automation during code-refactoring (almost statement by

statement replaces)

▪ Further steps will improve code-reuse and single-concern by extracting

code from application service into domain services

▪ Code de-duplication requires more design and guidelines

▪ Into how many pieces do we cut the monolith?

27

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Top-down code-generalization

28

UI Trigger Code Block

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Top-down code-generalization

29

Service Interface

Application Service

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Top-down code-generalization

30

Service Interface

Application Service

Business Task Business Task

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Top-down code-generalization

31

Service Interface

Application Service

Business Task Business Task

Business Entity Business Entity
Business

Entity
Business Entity Business Entity

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Application Domain (Module)

Top-down code-generalization

32

Service Interface

Application Service

Business Task Business Task

Business Entity Business Entity
Business

Entity
Business Entity Business Entity

Business Task

Application Domain (Module)

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Application Domain (Module)

Top-down code-generalization

33

Service Interface

Application Service

Business Task Business Task

Business Entity Business Entity
Business

Entity
Business Entity Business Entity

Business Task

Application Domain (Module)

Data Access Data Access
Data

Access
Data Access Data Access

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Demo

▪ Review different stages of migrating the „ship order“ trigger code

▪ Move out of GUI - into AppServer ready code

▪ Deal with questions using „MessageInteractionService“

▪ Throw Errors as Exception

▪ Introduce PreCheck method to reduce impact of undo’ing transactions

on pending questions

34

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Benefits of top-down code-generalization

▪ First introduce service-ready component based on existing business

logic

▪ Hide implementation details behind service interface

▪ Flow of business logic remains largely the same – this will reduce

risk

▪ Component interface will allow

▪ Use in modern user-interfaces

▪ Implementation of unit-tests

▪ Unit tests will improve confidence when optimizing the code

35

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Aspects of Top-Down code generalization

▪ Business Tasks and Business Entities should

only deal with “their concern”

▪ Use factories or service managers – never

directly new any application or domain

business service object

▪ Only “allow” calls from top to bottom

▪ Services within a domain may call each other

▪ Services across domain boundary should use

domain service interface

36

Service Interface

Application Service

Business Task

Business Entity Business Entity

Business Task

Application Domain (Module)

Data Access Data Access

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Further considerations

▪ Use parameter objects

▪ Separate screen-context from request parameters

▪ Selected warehouse may be screen context (might be a screen setting)

▪ Screen-context might be modified in UI and backend

▪ Selected order may be request-context (it’s the subject of ship order)

▪ Variables defined in the “definitions section” vs. parameters to internal

procedures

37

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ User interface refactoring

38

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

GLOBAL SHARED or SHARED variables …

▪ GLOBAL SHARED variables are less trouble

▪ SHARED variables should be reconsidered – many of them may be

replaced with GLOBAL SHARED, usually a bad legacy

▪ Class based code (most new code, PASOE Web handlers) has NO

access to any GLOBAL SHARED SHARED context

39

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

DB Trigger relying on a GLOBAL SHARED variable

40

as_activate.p Procedure has access to client-principal and global-shared

PASOE Web Handler class

Business Entity

Database Trigger can use global-shared

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

DB Trigger relying on a SHARED variable

41

as_activate.p Procedure Is not in the stack-trace of the DB trigger – so cannot set SHARED var

PASOE Web Handler class

Business Entity

Database Trigger can use shared

Intermediate .p Is in the stack-trace of the DB trigger – so can set NEW SHARED var

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ User interface refactoring

42

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Input blocking from the Backend

▪ Progress Application Server does not support Input Blocking on the UI

▪ Once AppServer is invoked, client waits for response

▪ Web technologies such as Socket.IO may be used to send messages

from Backend to frontend

▪ Back not vice-versa, no WAIT-FOR

▪ When UI can foresee that AppServer may require additional

information when processing request, try adding this to the request

▪ However UX should not be ignored. Too many irrelevant options

confusion / annoying to users

43

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Input Blocking, fat client ABL

44

Frontend Business Entity
DELETE Customer

Request

“Open Orders Exist!

Delete Anyway?”

IF CAN-FIND (FIRST Order OF Customer WHERE) THEN

MESSAGE "Open Orders Exist! Delete Anyway?"

VIEW-AS ALERT-BOX QUESTION BUTTONS YES-NO UPDATE response .

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Input Blocking, fat client ABL

45

Frontend Business Entity

DELETE Customer

Request

(DeleteOpenOrders

= TRUE)

IF CAN-FIND (FIRST Order OF Customer WHERE)

AND poRequest:DeleteOpenOrders = TRUE THEN …

Delete Open Orders

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Example challenge: Interaction between

Back and

• Assumption: Existing Business Logic in large parts suitable as

foundation for new application (functional and structural), especially

validation

• Validation may also provide color coding to represent field status etc.

• Validation may have to prompt the user

• Web applications typically:

Request (from browser) – Response (from server)

• No Input-Blocking (not possible to wait for user input in Business

Logic)
46

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Sample: Yes/No PROMPT in validation

▪ Demand is to keep the validation flow in major parts “as is“

▪ Validation may encounter question requiring user input: “Are you

sure?” etc.

47

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Sample: Yes/No PROMPT in validation

48

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Sample: Yes/No PROMPT in validation

49

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Migration using MessageInteractionService API

(SmartComponent Library framework)

▪ Backend – API maintains list of questions (unanswered and

answered)

▪ Same API Call may ask a new question or return an existing

answer

▪ Supports multiple questions per routine: Questions are flagged

with e.g. a GUID identifying their location in code

▪ Support for multiple iterations (Loops, FOR EACH, …): Each

question is also flagged with a records PUK value (GUID,

combined key fields)
50

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

JSON Representation of the question

52

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Automation

▪ Migration of MESSAGE Statements into API calls can be automated

using Proparse based tooling

53

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ User interface refactoring

54

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Source code parsing using Proparse

▪ ABL syntax parser, abstract view on ABL source code, based on

ANTLR

▪ Eliminates the need for text based source code analysis

▪ Resolves issues with line-breaks, abbreviated keywords, mixed order of

keywords

▪ Open source

▪ github.com/oehive/proparse

▪ github.com/consultingwerk/proparse

▪ github.com/riverside-software/proparse

▪ Actively maintained in various forks, support for 11.7 ABL syntax
55

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Proparse
▪ http://www.joanju.com/analyst/javadoc/index.html?org/prorefactor/core/JPNo

de.html

56

http://www.joanju.com/analyst/javadoc/index.html?org/prorefactor/core/JPNode.html
http://www.joanju.com/analyst/javadoc/index.html?org/prorefactor/core/JPNode.html

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 57

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 58

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 59

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

UPDATE EDITING Blocks

60

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Single field validation within EDITING Block

61

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

UPDATE EDITING Blocks

▪ Commonly used in TTY and early GUI applications

▪ Full of validation logic / Lookup functionality (locating foreign key

descriptions)

▪ Tied to UI through “INPUT <fieldname>” references

▪ MESSAGE Statement used for error messages

▪ NEXT-PROMPT provides field that should receive input after error

▪ Record locked during duration of the UPDATE Statement

62

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

UPDATE EDITING Blocks

▪ Iterated for every keystroke or GO-PENDING

▪ When invoked on GO-PENDING, it’s similar to a commit to a Business

Entity

▪ Validating all fields at once

▪ Processing update when no validation error occurred

▪ Returning validation error to user (with instruction of next field)

▪ Code flow in EDITING Block very similar to typical Business Entity

validation

63

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Business Entity Validation based on UPD EDITING

64

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Business Entity Validation based on UPD EDITING

▪ IF w-oldf OR GO-ENDING not required; Business Entity typically

validates all fields at once

▪ Removing at least one level of blocks in the code

▪ “INPUT <fieldname>” replaced with temp-table field reference

▪ DISPLAY statements replaces with update of temp-table field

▪ MESSAGE/NEXT-PROMPT statements replaced with API call to return

validation message to the consumer of the Business Entity and control

target field

65

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Demo

▪ Proparse based migration of UPDATE EDITING Blocks into Business

Entity Validation block

66

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ User interface refactoring

67

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

ABL GUI refactoring

▪ Existing GUI (or TTY) screen layout may serve as a starting point for

new UI’s

▪ Highly dependent on UX of new application

▪ Highly dependent on “quality” of layout of new application

68

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 69

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Screen layout migration

▪ Screen layout from static code can be refactored based on Proparse

▪ FRAME definitions sometimes tricky to understand

▪ Multiple FRAME Statements for a single FRAME

▪ VIEW-AS phrase from Data Dictionary

▪ Default properties of widgets

▪ Walking the widget tree typically simpler – however this requires

changes to application runtime and is not trivial when building general

purpose tools

70

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Abstract view on screen layout

71

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Abstract view on screen layout

▪ Allows generation of various UI’s

▪ GUI for .NET

▪ Angular

▪ Kendo UI Builder

▪ Meta-Data for UI repository database

▪ …

72

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

GUI Trigger Code

▪ Typically used for validation or control of the UI

▪ Contains references using widget attributes (:SCREEN-VALUE or

:SENSITIVE, etc.) or INPUT <fieldref>

▪ May contain business logic that should be moved to Business Entity

(typically when accessing DB records), LEAVE Triggers typical

prospect for validation

73

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 74

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Migrated Trigger Code

75

Widget Façade classes

allow mapping of widget

attributes to control

properties

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Different types of screens following different templates

▪ Different types of screen

▪ Data entry

▪ Enquiry

▪ Search screens

▪ Report screen

▪ Processing screens

▪ Factory floor screens

▪ …

▪ Might be migrated using different templates

76

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Questions

77

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

	Folie 1: ABL legacy code refactoring Patterns and Strategies
	Folie 2: Mike Fechner
	Folie 3: Consultingwerk Software Services Ltd.
	Folie 4: Services Portfolio, Progress Software
	Folie 5: Services Portfolio, related products
	Folie 6: Agenda
	Folie 7: Modernization drivers
	Folie 8: Modernization drivers
	Folie 9: Modernization drivers
	Folie 10: Know your constants
	Folie 11: Modernization Strategies
	Folie 12: Modernization Strategies
	Folie 13: Sample Migration Strategy
	Folie 14: Quality of the application
	Folie 15: Development Team Skills
	Folie 16: Agenda
	Folie 17: The OpenEdge Reference Architecture (OERA)
	Folie 18: The OpenEdge Reference Architecture (OERA)
	Folie 19: The Consultingwerk OERA Maturity Model
	Folie 20: The Consultingwerk OERA Maturity Model
	Folie 21: The Consultingwerk OERA Maturity Model
	Folie 22: Consequences
	Folie 23: Reduced reuse of legacy code?
	Folie 24: Service Interface(s)
	Folie 25: Service Interface(s)
	Folie 26: Service Interface(s)
	Folie 27: Top-down code-generalization
	Folie 28: Top-down code-generalization
	Folie 29: Top-down code-generalization
	Folie 30: Top-down code-generalization
	Folie 31: Top-down code-generalization
	Folie 32: Top-down code-generalization
	Folie 33: Top-down code-generalization
	Folie 34: Demo
	Folie 35: Benefits of top-down code-generalization
	Folie 36: Aspects of Top-Down code generalization
	Folie 37: Further considerations
	Folie 38: Agenda
	Folie 39: GLOBAL SHARED or SHARED variables …
	Folie 40: DB Trigger relying on a GLOBAL SHARED variable
	Folie 41: DB Trigger relying on a SHARED variable
	Folie 42: Agenda
	Folie 43: Input blocking from the Backend
	Folie 44: Input Blocking, fat client ABL
	Folie 45: Input Blocking, fat client ABL
	Folie 46: Example challenge: Interaction between Back and
	Folie 47: Sample: Yes/No PROMPT in validation
	Folie 48: Sample: Yes/No PROMPT in validation
	Folie 49: Sample: Yes/No PROMPT in validation
	Folie 50: Migration using MessageInteractionService API (SmartComponent Library framework)
	Folie 52: JSON Representation of the question
	Folie 53: Automation
	Folie 54: Agenda
	Folie 55: Source code parsing using Proparse
	Folie 56: Proparse
	Folie 57
	Folie 58
	Folie 59
	Folie 60: UPDATE EDITING Blocks
	Folie 61: Single field validation within EDITING Block
	Folie 62: UPDATE EDITING Blocks
	Folie 63: UPDATE EDITING Blocks
	Folie 64: Business Entity Validation based on UPD EDITING
	Folie 65: Business Entity Validation based on UPD EDITING
	Folie 66: Demo
	Folie 67: Agenda
	Folie 68: ABL GUI refactoring
	Folie 69
	Folie 70: Screen layout migration
	Folie 71: Abstract view on screen layout
	Folie 72: Abstract view on screen layout
	Folie 73: GUI Trigger Code
	Folie 74
	Folie 75: Migrated Trigger Code
	Folie 76: Different types of screens following different templates
	Folie 77: Questions
	Folie 78

