
Mastering OpenEdge
Query Performance
Best Practices and Tools for Optimizing Database Queries

White Star Software

For over 30 years, we have been helping companies around the world
simplify the job of managing and maintaining the world’s best OpenEdge
applications.

Our experts, combined with ProTop, the leading OpenEdge monitoring
and alerting tool, deliver unparalleled peace of mind for your OpenEdge
environments.

info@wss.com | wss.com

mailto:info@wss.com
http://www.wss.com/

The speaker

Paul Koufalis (pk@wss.com)

●Speaker/teacher/OpenEdge DBA since 1994

mailto:pk@wss.com

Agenda

❏ First thoughts
❏ Tools to find inefficient code
❏ Improving queries
❏ Q&A

First thoughts

“The system is slow”

● We’ve all heard this from our end users
● Often code/query related. Sometimes not
● For this presentation we will assume that it is code
● …but more on this later

Second thoughts…

● There are many ways to find the bad code
● Some kind of monitoring and trending
● Hopefully you attended our session on ProTop

● We will show ProTop RT screen captures
● 100% free download

Our villains

● “churn.p”: A program that reads the very small
vacation table a very large number of times

● “paul_orders.p”: a program that reads through all
orders of all customers

● Both using a “big” sports2000 DB

● HOW DO WE FIND THEM?

Using ProTop RT

Where did these numbers come from?

● _UserIO VST

● You will probably also want to sample
_UserTablestat and _UserIndexstat VST

● Set correct -basetable, -baseindex, -tablerangesize
and -indexrangesize
● Default only capture first 50 tables and 50 indezes

What are they doing?

How did ProTop get the program name?

● Enable Client Statement Cache
● Use option “single”

● Can be enabled via promon or _connect VST

● NOTE:
● CSC only records lines of code that touch the database
● Only records new lines of code AFTER being enabled
● Will not report on already running query: use proGetStack

● CAREFUL:
● Could have performance impact, especially C/S

Tooling

Method #1: Use LOG-MANAGER

● Ex.: have an option in application to activate
tracing
● I.e. “Help - Trace App”, or a secret hotkey sequence

Output

Also cool…

Similar query…unindexed field

Tooling

Method #2: -zqil

● Unsupported/undocumented
● Do NOT use in production
● Writes query index usage information to the

database log file

● Tells you which index is used and how deep into
the index keys

-zqil

● Information is presented as upper and lower
bounds
● GT, GE are lower bounds
● LT, LE are upper bounds
● = is both an upper and lower bound

-zqil

for each customer no-lock where city = "Bellevue".

● There is no index that starts with “city”
● Hence no upper no lower bound on index #15

ABL 3: (6135) ==Compiled Query Resolution Method: Query No. 1==
ABL 3: (6157) INDEX 15 0 0
ABL 3: (6136) ==Server Query execution Method Query No. 1==
ABL 3: (6141) INDEX 15

-zqil

for each customer no-lock where country > "A":

ABL 3: (6135) ==Compiled Query Resolution Method: Query No. 1==
ABL 3: (6157) INDEX 17 1 0

for each customer no-lock where country > "A" and PostalCode >
"100":

ABL 3: (6135) ==Compiled Query Resolution Method: Query No. 1==
ABL 3: (6157) INDEX 17 1 0

for each customer no-lock where country = "AT" and PostalCode >
"100":

ABL 3: (6135) ==Compiled Query Resolution Method: Query No. 1==
ABL 3: (6157) INDEX 17 2 1

What is index 17 ?

find _file where _file-name = "customer".
find _index of _file where _idx-num = 17.
displ _index-name.

Index-Name

CountryPost

Combine QryInfo and -zqil

● QryInfo tells you how many record reads and how
many useful records

● -zqil tells you how much of the index you are
actually using!

Tooling

Method #3: COMPILE XREF

● Limited value:
● Tells you WHICH indexes are used
● Tells you if full table scan

custom.p 45 SEARCH s2k.Customer Name
custom.p 45 SEARCH s2k.Customer Salesrep

paul_orders.p 10 SEARCH s2k.Customer CustNum WHOLE-INDEX

Tooling
Method #4: Profiler

● Counts how often and how much time is spent in
each line of code

●
●

What’s next?

● You found the offending (and offensive) query
● Let’s improve it - i.e. read less records

Understanding index selection rules

● Only applies to ABL, not SQL
● Rules are applied in order, until only one index is

left
● IMPORTANT: Rules are NOT SELECTED, they are ELIMINATED

● Field match rules must be contiguous, from the
first field in the index

Index selection rules

1. Pre-select only indexes with leading components in the where clause
2. If CONTAINS use word-index
3. Unique index with all components involved in the equality matches
4. Most active equality matches

a. Sorta kinda…full matches trump partial matches
b. But only if more than 1 field (sometimes)

5. Most active range matches
6. Most active sort matches

If you still have more than one index, or zero index, select one from
1. The primary index
2. First index alphabetically by name

Example

for each order where orderNum = 12345.
for each order where orderNum = 12345 and CustNum = 5.

Tip: Use an elimination grid

Multiple index use

● Where clause includes “AND”
● ALL components of each index are involved in equality matches
● No unique indexes are involved

● Where clause includes “OR”
● Both sides of OR contain at least the lead component of an index
● Either equality or range match

● CAREFUL: return order not guaranteed

Careful…

● Expressions break bracketing

for each order no-lock where month(orderDate) = 1 ...

● BEGINS does NOT break bracketing
● Considered a range bracket

for each order no-lock where salesRep begins "D"

● Uses the order.salesRep index

● MATCHES breaks bracketing
● Temp-table rules are subtly different

Special case: OR

● Each side of an OR is its own distinct index
selection operation
● Apply the rules to each side separately
● Resulting records from both sides are then combined

Example

for each order no-lock where orderStatus = "Ordered" OR
 SalesRep = "BBB":

Example

Table scans

for each order no-lock table-scan:

● If you expect to read more than ⅓ of the table,
consider using the TABLE-SCAN option
● Does not use any index
● Returns data in “on-disk” order
● Only if table is in a type 2 storage area

Client/Server Queries

● Client-server queries are going to be slower than
shared memory queries

● Records are transported to client in “messages”
● There is an OpenEdge message buffer size AND a TCP MTU

(Maximum Transmission Unit)

● You can make it better with the following

Client/Server Queries

● Use NO-LOCK
● Anything else will result in one record per OE message

● Use field lists
● Don’t send the whole record if you only need one field

● Make the message buffer size (-Mm) bigger
● Default is 1K
● Use at least 8K or 16K

● Use -prefetch* parameters
● No use having a big message unless you can fill it !!

● Server-side joins in OE 12

SQL

● SQL uses a cost-based optimizer
● Calculate cost statistics using UPDATE STATISTICS
● Repeat periodically or when texture of data

changes
● Ex: purge or mass load

Detect and correct

issues before they affect

your critical business processes

