
Building great Interfaces

with OOABL

Mike Fechner

Director

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 2

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 3

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Consultingwerk Software Services Ltd.

4

▪ Independent IT consulting organization

▪ Focusing on OpenEdge and related technology

▪ Located in Cologne, Germany, subsidiaries in UK and Romania

▪ Customers in Europe, North America, Australia and South Africa

▪ Vendor of developer tools and consulting services

▪ Specialized in GUI for .NET, Angular, OO, Software Architecture,

Application Integration

▪ Experts in OpenEdge Application Modernization

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Mike Fechner

▪ Director, Lead Modernization Architect and

Product Manager of the SmartComponent

Library and WinKit

▪ Specialized on object oriented design,

software architecture, desktop user interfaces

and web technologies

▪ 28 years of Progress experience (V5 …

OE11)

▪ Active member of the OpenEdge community

▪ Frequent speaker at OpenEdge related

conferences around the world

5

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ Interface vs. Implementation

▪ Enums

▪ Value or Parameter Objects

▪ Fluent Interfaces

▪ Builders

▪ Strong Typed Dynamic Query Interfaces

▪ Factories

▪ Facades and Decorators

6

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Introduction

▪ Object oriented (ABL) programming is more than just a bunch of new

syntax elements

▪ It’s easy to continue producing procedural spaghetti code in classes

▪ Successful adoption of object oriented programming requires

knowledge of a few key principles and patterns

7

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Definitions

Types type defines the set of requests (e.g. method calls or properties) to which it can

respond. In the ABL, typically classes, interfaces, enums

Strong typing compile-time enforcement of rules

Member stuff "inside" a type - methods, properties, events, variables, etc

Access control compile-time restriction on member visibility: public, protected, private

Class type with executable code; implementation of a type

Abstract class non-instantiable (non-runnable) class that may have executable code

Static members loaded once per session. think GLOBAL SHARED

Interface type with public members without implementations

Enum strongly-typed name int64-value pairs

Object running classes, aka instance

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Common terms

Software Design Patterns:

general reusable solution to a

commonly occurring problem

within a given context

▪ Parameter value

▪ Fluent Interfaces

▪ Factory method

▪ Singleton

SOLID principles

S ingle responsibility

Open-closed

L iskov substitution

I nterface segregation

Dependency inversion

http://en.wikipedia.org/wiki/Software_design_pattern

http://en.wikipedia.org/wiki/Software_design_pattern

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Software goals

▪ Flexibility

▪ Allow implementations to be swapped without changes to the

calling/consuming code

▪ Make testing (mocking) easier

▪ Modularity & extensibility

▪ Allow independent (teams / companies) to develop frameworks and

components or modules

▪ Allow later / third-party extension of components without changing initial /

core components

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ Interface vs. Implementation

▪ Enums

▪ Value or Parameter Objects

▪ Fluent Interfaces

▪ Builders

▪ Strong Typed Dynamic Query Interfaces

▪ Factories

▪ Facades and Decorators

11

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Implementation

▪ The implementation of a class consists of any executable code

▪ Code in constructors, methods, properties GET and SET, destructors

▪ PRIVATE, PROTECTED an PUBLIC method declarations

▪ Coding standards promarily impact implementation of a class

(e.g. size of methods)

▪ Developer should be able to alter implementation (optimization, bug

fixing) of a class without impacting consuming code

▪ “Implementation details” should only concern developer of a class, not

the developer of code consuming that class

12

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Interface of a class

▪ Outside view on a class

▪ Set of all PUBLIC members (constructors, methods, properties, events,

variables)

▪ Parameters of those members

▪ PRIVATE or PROTECTED Temp-Table and ProDataset’s when used

as parameters

▪ Interface of a class should not be changed (at least no breaking

changes) as this might impact consuming code

▪ Only make those members public that need to be invoked by other

classes or procedures – once it’s public colleagues will use it!
13

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Interface types

▪ Classes with no implementation, no executable code

▪ Part of a programming contract (in the sense of contractual design)

▪ Only PUBLIC members allowed, compiler enforced

▪ Interfaces define a set of members a class needs to provide so that the

class becomes compatible to the Interfaces type, compiler enforced

▪ Classes can implement multiple interfaces

▪ Interface types make different implementations exchangeable

▪ Constructors not part of Interface types

▪ Interfaces should be small, only few methods

14

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Interface vs. Implementation

▪ Prefer Interface types for parameters and return value definitions

▪ Foundation for mocking (Unit Testing)

▪ Foundation for customization through configuration

▪ Interfaces define common type without requiring to inherit from a

common base class

▪ Inheritance should be an implementation detail

▪ Interface may however be inherited by base class

15

CLASS Demo.CustomerBusinessEntity
INHERITS Consultingwerk.OERA.BusinessEntity
IMPLEMENTS Consultingwerk.OERA.IBusinessEntity:

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Naming standards

▪ Pick one … and live with that – as it must be clear to the whole team

▪ .NET: Interface names starting with a capital I, followed by another

capital letter: IBusinessEntity, default implementation (if exists):

BusinessEntity

▪ Java: Interface names with no prefix, default implementation

sometimes suffixed with “Impl”: BusinessEntity and BusinessEntityImpl

16

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ Interface vs. Implementation

▪ Enums

▪ Value or Parameter Objects

▪ Fluent Interfaces

▪ Builders

▪ Strong Typed Dynamic Query Interfaces

▪ Factories

▪ Facades and Decorators

17

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Enums

An enumerated type (also called

enumeration, enum[…] is a data type consisting

of a set of named values called elements,

members, enumeral, or enumerators of the type.

The enumerator names are usually identifiers that

behave as constants in the language

https://en.wikipedia.org/wiki/Enumerated_type

https://en.wikipedia.org/wiki/Enumerated_type

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Why use enums

// Consider this pseudo code – ignoring the need to release locks!

PROCEDURE SetOrderStatus (INPUT pOrderNum AS INTEGER,
INPUT pStatus AS INTEGER):

OpenEdge.Core.Assert:IsPositive(pStatus, 'Order status').

FIND Order WHERE Order.OrderNum EQ pOrderNum EXCLUSIVE-LOCK.
ASSIGN Order.OrderStatus = pStatus.
// what happens when the integer isn't a valid status? How do we know ?

END PROCEDURE.

RUN SetOrderStatus (12345, 0). // this throws an error via the Assert
RUN SetOrderStatus (12345, 1). // what is this status?
RUN SetOrderStatus (12345, 2).

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Defining enums

// enum type
ENUM Services.Orders.OrderStatusEnum: //implicitly FINAL so cannot be extended
// enum member
DEFINE ENUM Shipped = 1 // default start at 0

Backordered // = 2 . Values incremented in def order
Ordered
Open
Cancelled = -1 // historical set of bad values
UnderReview = -2
Default = Ordered. // = 3

// enum members are the only members allowed
// enum members can only be used in enum types

END ENUM.

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Using enums

// Consider this pseudo code – ignoring the need to release locks!

PROCEDURE SetOrderStatus (INPUT pOrderNum AS INTEGER,
INPUT pStatus AS Services.Orders.OrderStatusEnum):

//ensures that we have a known, good status
OpenEdge.Core.Assert:NotNull(pStatus, 'Order status').

FIND Order WHERE Order.OrderNum EQ pOrderNum EXCLUSIVE-LOCK.

ASSIGN Order.OrderStatus = pStatus:GetValue().
//Alternative way of getting the value
ASSIGN Order.OrderStatus = INTEGER(pStatus).

END PROCEDURE.

RUN SetOrderStatus (12345, OrderStatusEnum:None). // COMPILE ERROR
RUN SetOrderStatus (12345, OrderStatusEnum:Backordered).
RUN SetOrderStatus (12345, OrderStatusEnum:Ordered).

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Storing Enum Values in the Database

22

DEFINE VARIABLE cValue AS CHARACTER NO-UNDO .
DEFINE VARIABLE iValue AS INTEGER NO-UNDO .
DEFINE VARIABLE oEnum AS WeekdayEnum NO-UNDO .

/* Get Enum value as INTEGER or CHARACTER value */
ASSIGN cValue = STRING (WeekdayEnum:Thursday)

iValue = INTEGER (WeekdayEnum:Thursday) .

/* Specific Enum */
oEnum = WeekdayEnum:GetEnum(cValue) .
oEnum = WeekdayEnum:GetEnum(4) .

/* More generic */
oEnum = CAST (Progress.Lang.Enum:ToObject

("Demo.OoInterfaces.WeekdayEnum":U, cValue),
Demo.OoInterfaces.WeekdayEnum).

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Enums vs. System/Master Tables

▪ Enums provide a fixed set of values determined at compile time

▪ Enums cannot be extended by end users without altering source code

and recompiling

▪ Enums may be accompanied by a System Table defining further

details, such as opening times, # of days in a given year

▪ Weekday, Month are good examples for Enums

▪ Color usually doesn’t work well as an Enum (unless you’re Henry Ford)

▪ OrderStatus may or may not be a good Enum

▪ Is there a fixed set of order statuses

▪ Can (super-)users define order statuses and their workflow dynamically
23

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Enums and Translation

▪ An Enum maps an INT64 value to a Character name

▪ Character name must follow rules of ABL identifiers

▪ Cannot contain space or similar white spaces, comma, (semi)colon, etc.

▪ Cannot start with a number

▪ Is not translatable (also not with Translation Manager)

▪ Character name of an Enum member usually not suited for interaction

with users

▪ Enums require custom solution (application or framework) to provide

human-friendly representation including translation

24

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ Interface vs. Implementation

▪ Enums

▪ Value or Parameter Objects

▪ Fluent Interfaces

▪ Builders

▪ Strong Typed Dynamic Query Interfaces

▪ Factories

▪ Facades and Decorators

25

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Value objects

A value object is a small object that

represents a simple entity whose equality is not

based on identity: i.e. two value objects are equal

when they have the same value, not necessarily

being the same object.

Value objects should be immutable.

https://en.wikipedia.org/wiki/Value_object

https://en.wikipedia.org/wiki/Value_object

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Value objects

▪ Class with typically no or very little executable code

▪ Foundation structure of DDD (Domain Driven Design)

▪ The Primitive Types of an application

▪ Single record temp-table

▪ With inheritance and Interface implementation supported

▪ Temp-Tables not really an OO construct in the ABL

27

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Customer value object

28

CLASS Demo.Customer:

DEFINE PUBLIC PROPERTY CustNum AS INTEGER NO-UNDO
GET.
PRIVATE SET.

DEFINE PUBLIC PROPERTY Name AS CHARACTER NO-UNDO
GET.
PRIVATE SET.

DEFINE PUBLIC PROPERTY City AS CHARACTER NO-UNDO
GET.
PRIVATE SET.

DEFINE PUBLIC PROPERTY PostalCode AS CHARACTER NO-UNDO
GET.
PRIVATE SET.

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Customer constructor

29

CONSTRUCTOR PUBLIC Customer (pCustNum AS INTEGER,
pName AS CHARACTER,
pCity AS CHARACTER,
pPostalCode AS CHARACTER):

ASSIGN THIS-OBJECT:CustNum = pCustNum
THIS-OBJECT:Name = pName
THIS-OBJECT:City = pCity
THIS-OBJECT:PostalCode = pPostalCode
.

END CONSTRUCTOR.

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Simplify Logging and Debugging

▪ The ToString() method of Progress.Lang.Object is overriable

30

METHOD PUBLIC OVERRIDE CHARACTER ToString():

RETURN SUBSTITUTE ("CustNum: &1, Name: &2, City: &3":U,
THIS-OBJECT:CustNum,
THIS-OBJECT:Name,
THIS-OBJECT:City) .

END METHOD.

oCustomer = NEW Customer (42, "Lift Line Sking", "Dublin", "12345") .

MESSAGE oCustomer SKIP
STRING (oCustomer) SKIP
oCustomer:ToString ()

VIEW-AS ALERT-BOX.

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Equality checks

▪ The Equals() method of Progress.Lang.Object is overriable

▪ Equals() needs to be invoked, it’s not overriding the = or EQ operator

31

METHOD PUBLIC OVERRIDE LOGICAL Equals (objectRef AS Object):

IF objectRef = THIS-OBJECT THEN RETURN TRUE .
IF NOT TYPE-OF (objectRef, Customer) THEN RETURN FALSE .

IF CAST (objectRef, Customer):CustNum = THIS-OBJECT:CustNum AND
CAST (objectRef, Customer):Name = THIS-OBJECT:Name AND
CAST (objectRef, Customer):City = THIS-OBJECT:City AND
CAST (objectRef, Customer):PostalCode = THIS-OBJECT:PostalCode THEN
RETURN TRUE .

RETURN FALSE .
END METHOD.

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Equality checks

32

DEFINE VARIABLE oCustomer1 AS Customer NO-UNDO .
DEFINE VARIABLE oCustomer2 AS Customer NO-UNDO .

oCustomer1 = NEW Customer (42, "Lift Line Sking", "Dublin", "12345") .
oCustomer2 = NEW Customer (42, "Lift Line Sking", "Dublin", "12345") .

MESSAGE "= / EQ" oCustomer1 = oCustomer2 SKIP
"Equals()" oCustomer1:Equals (oCustomer2)

VIEW-AS ALERT-BOX.

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Parameter Objects

▪ Parameter Objects are Value Objects

▪ Purpose is to serve as a (single) parameter to a method requiring a

complex parameter

▪ Simplify adding additional parameters by just adding properties to the

parameter object

▪ Parameter Objects can (and should) be used with procedural code

33

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Simplified object creation using CLI Interface

▪ Command line interfaces trendy in web development

34

> scl-gen Parameter Customer CustNum:integer Name City PostalCode

DLC: C:\Progress\OpenEdge117_64
Buildfile: c:\Work_STREAM\SmartComponentLibrary\Develop\ABL\Consultingwerk\Studio\Scaffolding\scl-gen.xml

generate:
[scl-gen] Script Directory: c:\Work_STREAM\SmartComponentLibrary\Develop\ABL\Consultingwerk\Studio\Scaffolding\
[scl-gen] Current Directory: C:\Work_STREAM\SmartComponentLibrary\Develop\ABL\demo
[scl-gen] Template: Parameter
[scl-gen] TemplateParameter: CustNum:integer Name City PostalCode
[scl-gen] Name: Customer
[scl-gen] PROPATH: c:\Work_STREAM\SmartComponentLibrary\Develop\ABL
[scl-gen]
[scl-gen] SmartComponent Library code generator.
[scl-gen] Consultingwerk Internal Development / 117_64
[scl-gen] (c)2008-2018 Consultingwerk Ltd. - All rights reserved.
[scl-gen]
[scl-gen] Writing to: C:\Work_STREAM\SmartComponentLibrary\Develop\ABL\demo\Customer.cls

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Interfaces for Value Objects?

▪ Not always a requirement - but a good habit in my opinion

▪ It’s not a frequent requirement to swap the implementation

▪ Typically no executable code, so the demand for mocking (Unit Tests) or

customization is generally low

▪ However you might have a Supplier type and a Customer type

▪ Customer and Supplier both have Address fields

▪ Address can define a super-type for Customer and Supplier through

▪ Inheritance

▪ Implementing IAddress

35

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ Interface vs. Implementation

▪ Enums

▪ Value or Parameter Objects

▪ Fluent Interfaces

▪ Builders

▪ Strong Typed Dynamic Query Interfaces

▪ Factories

▪ Facades and Decorators

36

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Fluent Interfaces

In software engineering, a fluent interface ..

is a method for designing object oriented APIs

based extensively on method chaining with the

goal of making the readability of the source code

close to that of ordinary written prose, essentially

creating a domain-specific language within the

interface.

https://en.wikipedia.org/wiki/Fluent_interface

https://en.wikipedia.org/wiki/Fluent_interface

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Fluent Interfaces

▪ Useful when typically a sequence of calls into an object is required

▪ Order of those calls typically not relevant

▪ Might be used to initialize (parameter) objects

▪ Typically more verbose than a number of parameters, makes

understanding of code by other developers trivial

▪ But – usually confusing to developers that haven’t seen this before

38

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Example

39

DEFINE VARIABLE oParameter AS FluentParameterSample NO-UNDO .

/* Constructor with parameters */
oParameter = NEW FluentParameterSample (11, 42, 1/1/2018, 12/31/2018) .

/* Fluent Interface in a single line */
oParameter = (NEW FluentParameterSample()):CustomerNumber(11):ItemNumber(42):
StartDate (1/1/2018):EndDate (12/31/2018) .

/* Block formatting of Fluent Interface */
oParameter = (NEW FluentParameterSample())

:CustomerNumber (11)
:ItemNumber (42)
:StartDate (1/1/2018)
:EndDate (12/31/2018) .

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Implementation of Example

▪ VOID methods simply return THIS-OBJECT instead

▪ Use methods as alternative PROPERTY SET

40

METHOD PUBLIC FluentParameterSample ItemNumber (piItemNumber AS INTEGER):

ASSIGN THIS-OBJECT:ItemNumber = piItemNumber .
RETURN THIS-OBJECT .

END METHOD.

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ Interface vs. Implementation

▪ Enums

▪ Value or Parameter Objects

▪ Fluent Interfaces

▪ Builders

▪ Strong Typed Dynamic Query Interfaces

▪ Factories

▪ Facades and Decorators

41

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Builders

42

The Builder is a design pattern designed to

provide a flexible solution to various object

creation problems in object-oriented

programming. The intent of the Builder design

pattern is to separate the construction of a

complex object from its representation. It is one of

the Gang of Four design patterns.

https://en.wikipedia.org/wiki/Builder_pattern

https://en.wikipedia.org/wiki/Builder_pattern

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

OpenEdge HTTP Client

▪ Extensive ABL implementation of the HTTP protocol

▪ GET/POST/PUT/PATCH/DELETE to HTTP servers, REST services,

SOAP, …

▪ Object model similar to the Web Handlers (HTTP service

implementation)

▪ OpenEdge 11.6 + (available but unsupported in 11.5)

▪ Many parameters ….

▪ Basic syntax on next slide

43

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 44

DEFINE VARIABLE oLibrary AS IHttpClientLibrary NO-UNDO .
DEFINE VARIABLE oClient AS IHttpClient NO-UNDO .
DEFINE VARIABLE oRequest AS IHttpRequest NO-UNDO .
DEFINE VARIABLE oResponse AS IHttpResponse NO-UNDO .
DEFINE VARIABLE oRequestBuilder AS RequestBuilder NO-UNDO .
DEFINE VARIABLE cUri AS CHARACTER NO-UNDO .

oLibrary = ClientLibraryBuilder:Build():Library.
oClient = ClientBuilder:Build():UsingLibrary(oLibrary):Client .

ASSIGN cUri = SUBSTITUTE ("http://data.fixer.io/api/latest?access_key=&1&&base=&2&&symbols=&3":U,
FIXER_API_KEY, pcFromSymbol, pcToSymbol) .

oRequestBuilder = RequestBuilder:Get(cURI):AcceptJson() .
oRequest = oRequestBuilder:Request.
oResponse = oClient:Execute (oRequest).

RETURN CAST (oResponse:Entity, JsonObject):GetJsonObject ("rates":U):GetDecimal (pcToSymbol) .

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Demo

▪ Using the HTTP Client to retrieve currency rates

45

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

A closer look

▪ RequestBuilder – static reference to the RequestBuilder class

▪ Each method returns an instance of the RequestBuilder

▪ Request property returns reference to the IHttpRequest instance that

was built

▪ We don’t know, we don’t need to know the class implementing

IHttpRequest – that’s if at all a concern of the RequestBuilder class

46

DEFINE VARIABLE oRequest AS IHttpRequest NO-UNDO .
DEFINE VARIABLE oRequestBuilder AS RequestBuilder NO-UNDO .

oRequestBuilder = RequestBuilder:Get(cURI):AcceptJson() .
oRequest = oRequestBuilder:Request.

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

A simplification

▪ In many cases we don’t require the reference to the RequestBuilder

47

DEFINE VARIABLE oRequest AS IHttpRequest NO-UNDO .

oRequest = RequestBuilder:Get(cURI):AcceptJson():Request.

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 48

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Fluent Builder Interface

▪ Builder may use Fluent Interfaces (previous section) to allow for

method chaining

49

oRequest = RequestBuilder:Get(cURI)
:AddHeader ("some-name", "42")
:SupportsProxy()
:AcceptJson()
:Request .

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ Interface vs. Implementation

▪ Enums

▪ Value or Parameter Objects

▪ Fluent Interfaces

▪ Builders

▪ Strong Typed Dynamic Query Interfaces

▪ Factories

▪ Facades and Decorators

50

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Dynamic Queries

▪ Dynamic Queries are great - Dynamic Queries are bad

▪ Dynamic Queries are required for layered architectures

▪ Dynamic Queries are required for flexible filtering by users or

consumers

▪ Dynamic Queries are hard to debug

▪ Typos in Dynamic Queries will bite you only during runtime – both for

field names and syntax or argument data types

▪ Debugging in production not really the best method

51

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Strong Typed Query Interface

▪ Generated for Business Entities

▪ Compliant with the CCS-BE Structured Query specification

▪ Support standard ABL query operators for fields based on Data-Type

▪ Support additional operators based on Data-Type like InRange or InList

▪ Query defined as list of object describing each individual criteria

▪ Simplifies Query manipulation, validation and optimization

▪ Our implementation uses Fluent Interface – but no Builder

▪ Using the builder seemed too much code generation

52

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

OrderQuery sample

53

DEFINE VARIABLE oQuery AS OrderQuery NO-UNDO .

oQuery = NEW OrderQuery () .

oQuery:CustNum:Eq(42)
:Carrier:Eq("UPS") .

MESSAGE oQuery:ToQueryString (TRUE)
VIEW-AS ALERT-BOX.

oQuery = NEW OrderQuery (42) . /* select by OrderNum */

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

OrderQuery sample

54

oQuery = NEW OrderQuery () . /* select by OrderNum */

oQuery:CustNum:Eq(42):And ((NEW OrderQuery()):OrderStatus:Eq("Shipped")
:Or:OrderStatus:Eq("Ordered"))

:And:Carrier:Eq("UPS") .

DEFINE VARIABLE cOrderStatus AS CHARACTER NO-UNDO EXTENT
INITIAL ["Shipped", "Ordered"].

oQuery = NEW OrderQuery () . /* select by OrderNum */

oQuery:CustNum:Eq(42)
:OrderStatus:InList (cOrderStatus)
:Carrier:Eq("UPS") .

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Demo

▪ Strong Typed but Dynamic Queries

55

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ Interface vs. Implementation

▪ Enums

▪ Value or Parameter Objects

▪ Fluent Interfaces

▪ Builders

▪ Strong Typed Dynamic Query Interfaces

▪ Factories

▪ Facades and Decorators

56

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Factories

▪ Factories have the sole responsibility of creating object instances

▪ They can/should be the only place knowing requirements to create

object instances

▪ Separate the concern of creating an Object instance from using it

▪ May be based on configuration

▪ May support Unit Testing and Mocking

57

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Different Implementations

▪ Factory Service: CreateObject (Type) – Type is typically an Interface or

Enum etc.

▪ Factory Methods

▪ Abstract Factories

▪ Avoid direct usage of NEW on unrelated type in your code

58

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Agenda

▪ Introduction

▪ Interface vs. Implementation

▪ Enums

▪ Value or Parameter Objects

▪ Fluent Interfaces

▪ Builders

▪ Strong Typed Dynamic Query Interfaces

▪ Factories

▪ Facades and Decorators

59

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Facades

60

The facade pattern (also spelled façade) is
a software-design pattern commonly used
with object-oriented programming. Analogous to
a facade in architecture, a facade is an object that
serves as a front-facing interface masking more
complex underlying or structural code.

A facade can improve the readability and usability
of a software library by masking interaction with
more complex components behind a single API

https://en.wikipedia.org/wiki/Facade_pattern

https://en.wikipedia.org/wiki/Facade_pattern

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

The OO Spaghetti Monster

OOABL / Business Entity Best Practices

61

Customer

Sales Rep

Order / Order

Line

Item

Invoice

Employee

Inventory

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Start ordering your objects in packages / modules

OOABL / Business Entity Best Practices

62

Customer

Sales Rep

Order / Order

Line

Item

Invoice

Employee

Inventory

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Divide and conquer – Modules as sub-systems

OOABL / Business Entity Best Practices

63

Customer

Sales Rep

Order / Order

Line
Item

Invoice

Employee

Inventory

CRM-Module Order Processing-Module Factory/Warehouse-Module HR-Module

Module-Facade Module-Facade Module-Facade Module-Facade

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Open/Close Principle

▪ Design as open for enhancement – while closed for modifications

▪ Design to a contract (Interface) on the sub-system level, not just a

single class

▪ Modules manage complexity and impact of change

▪ A change in functionality in one module does not require changes to

other modules

▪ Simplifies testing. Allows mocking of a whole sub-system

OOABL / Business Entity Best Practices

64

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Open/Close Principle

▪ Business Requirement: Confirming an order needs to commit

inventory/stock allocation

▪ If Order Business Entity would directly call into the Inventory/Stock

Business Entity this would create a direct dependency between the two

Business Entities

▪ Change in the implementation of the Inventory/Stock Business Entity

might affect the Order Business Entity

▪ If the Order Business Entity however, would publish a message using a

Message Publisher infrastructure, the Inventory/Stock Domain may –

or may not at it’s own responsibility perform required action

OOABL / Business Entity Best Practices

65

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Decorators

66

In object-oriented programming,
the decorator pattern is a design pattern that
allows behavior to be added to an
individual object, dynamically, without affecting
the behavior of other objects from the
same class. The decorator pattern is often useful
for adhering to the Single Responsibility Principle,
as it allows functionality to be divided between
classes with unique areas of concern.

https://en.wikipedia.org/wiki/Decorator_pattern

https://en.wikipedia.org/wiki/Decorator_pattern

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Decorator Pattern

▪ Allows extension of an object instance through another object instance

▪ Requires objects to implement the same Interface

▪ Decorated object implementing with standard functionality

▪ Decorator implementing behavior by calling into methods of the decorated

object plus X

▪ Decorator can replace or extend the original implementation

▪ Multiple decorators may be applied to one object

▪ Configuration/factory used to abstract the creation of decorator or base

object

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Decorator Example

68

CLASS Demo.OoInterfaces.Decorator.PriceCalculatorDiscountDecorator
IMPLEMENTS IPriceCalculator:

DEFINE PRIVATE VARIABLE oDecorated AS IPriceCalculator NO-UNDO .

CONSTRUCTOR PUBLIC PriceCalculatorDiscountDecorator (poDecorated AS IPriceCalculator):
ASSIGN oDecorated = poDecorated .

END CONSTRUCTOR.

METHOD PUBLIC DECIMAL CalculateSalesPrice (poParameter AS IPriceCalculationParameter):
DEFINE VARIABLE deResult AS DECIMAL NO-UNDO.

deResult = oDecorated:CalculateSalesPrice (poParameter) .

FIND Customer WHERE Customer.CustNum = poParameter:CustomerNumber .

RETURN deResult * (1 - Customer.Discount / 100) .
END METHOD.

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Decorator vs. Inheritance

▪ Inheritance is static – adding a decorator is more dynamic

▪ Decorator can be added to an existing object instance at runtime

▪ Decorator references decorated object, implements all methods,

typically calling the method of the decorated object

▪ Decorator pattern may serve as method to achieve multiple inheritance

▪ Decorator is not the same instance/reference – whereas when using

inheritance there’s only a single instance made from the base and child

class

69

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Decorator sample

https://en.wikipedia.org/wiki/Decorator_pattern

70

https://en.wikipedia.org/wiki/Decorator_pattern

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved.

Questions

71

Übersicht

© 2018 Consultingwerk Ltd. All rights reserved. 72

