
Future of OpenEdge build 
process

a.k.a. Why Ant/PCT should die

Gilles QUERRET ● Riverside Software
Peter JUDGE ● Progress Software



History

▪ PCT was born in 2003

▪ Consistent builds across OpenEdge versions, operating systems, DB types, …

▪ No Jenkins at this time

▪ Soon adopted by many companies, and got improvement requests and patches 
from multiple vendors



What’s wrong

▪ XML syntax is quite cumbersome

▪ Conditional behavior is hard to write and maintain (additional libraries required)

▪ Specific to a directory structure



What happened in the Java world ?

▪ Initial release of Maven in 2004

▪ Quickly became the de facto build standard for open source Java projects

▪ And widely used in commercial projects, in-house development…

▪ Brought two key features :

▪ Convention over configuration

▪ Dependency management



Convention over configuration

▪ The directory structure is imposed by the Maven builder

▪ Java source code stored in src/main/java

▪ Unit tests stored in src/test/java

▪ Web application stored in src/main/web

▪ As long as you follow the conventions, Maven will be able to build your project

▪ You only have to describe exceptions

▪ « Maven turn complex things easy, but easy things can become a nightmare »



Dependency management

▪ Use public and/or private repositories

▪ A project only needs to declare its main dependencies

▪ Dependency on commons-fileutils 1.0.1 and slf4j 2.6

▪ Which are downloaded during the build

▪ Hierarchy generated on the fly



From Eclipse

▪ Maven projects are configured on the fly

▪ Classpath is set up automatically

▪ Source and test entries automatically added

▪ Initial Maven build is executed

▪ Dependency management done on the fly



Summary



With OpenEdge

▪ Huge monolithic projects are the norm rather than the exception

▪ Long build times

▪ Large build scripts – Reusability is quite limited

▪ No code convention

▪ Developer Studio setup is long

▪ No dependencies



What could we do ?


