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 Independent IT consulting organization
 Focusing on OpenEdge and related technology
 Located in Cologne, Germany, subsidiary in UK
 Customers in Europe, North America, Australia 

and South Africa
 Vendor of tools and consulting services
 27 years of Progress experience (V5 … OE11)
 Specialized in GUI for .NET, Angular, OO, 

Software Architecture, Application Integration



Sample code download

 https://github.com/mikefechner/proparse-samples

 Most sample code has no dependencies 

 Some samples rely on commercial code from 
Consultingwerk
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Why Source Code Analysis?

 Quality Assurance, Linting of Code

 Refactoring, Foundation for converting code 
form one form to another
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Linting

 Linting is the process of flagging suspicions 
code within a programming language 

 Linting requires understanding of source code

 Extension to syntax checks
 Code may compile, but still be wrong

– DEFINE VARIABLE without NO-UNDO
– FIND with no NO-ERROR 
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Refactoring, Code conversion

 Refactoring is the process of restructuring 
computer code without changing its external 
behavior 

 Refactoring requires understanding of code
 Identifying and locating relevant pieces of code
 Ignoring less relevant bits
 Provide ability to change or extract code
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ABL Built in Source Code Analysis 

 Compiler Output
– Cross Reference (XREF, XML-XREF)
– LISTING (Buffer and Transaction Scope)
– PREPROCESS/DEBUG-LISTING

 Profiler Output
– Tracing of executed lines of code + 

performance
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Proparse

 Proparse is a utility to return an abstract syntax 
tree for ABL code (AST)

 Static code analysis
 Interpreting the grammar of the ABL
 Knowledge about keywords and their valid 

combinations
 Should understand any piece of ABL code that 

compiles
 Providing a structured view on source code
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Why an abstract syntax tree?

 ABL syntax “flexible”:
– Formatting
– Large number of keywords
– Abbreviated keywords
– Keyword order in statements
– Uppercasing, lower casing, many keywords 

may be used as identifiers
– Single / Double Quotes
– Comments
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Why use an abstract syntax tree

 Because analyzing ABL source code as a text 
file is hard!
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That‘s why: 
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Proparse

 Original Author: John Green / Joanju
 http://www.joanju.com/proparse/
 http://www.oehive.org/proparse
 Eclipse public license
 Extracts the Abstract Syntax Tree from a 

compilation unit (procedure or class)
 Is NOT a compiler, nor a Syntax Checker

– similar requirements as the compiler to understand 
source code

 Based on ANTLR, quite an ancient version - 2.7
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ANTLR

 “Another Tool for Language Recognition”
 Toolkit for building language parses
 Java based
 Generated parsers are Java code
 A lot more tooling available in more recent 

versions of ANTLR

 If you’re not maintaining Proparse, you don’t 
need to use any of that tooling

Analyzing ABL with Proparse 17



Proparse JavaDoc

 http://www.joanju.com/analyst/javadoc/index.htm
l

 Look for
– org.prorefactor.core.JPNode
– org.prorefactor.treeparser.ParseUnit
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Proparse

 Multiple public repositories
– OE Hive SVN
– github.com/oehive/proparse
– github.com/consultingwerk/proparse
– github.com/riverside-software/proparse

 After a dormant phase a few years back, it’s 
actively maintained again

 Support for full OpenEdge 11.7 syntax available
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Utilities based on Proparse

 Prolint
 SonarSource plug-ins for OpenEdge
 SmartComponent Library
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Prolint

 http://www.oehive.org/prolint
 Tool for automated source code review of 

Progress 4GL code
 Reads one or more source files and examines 

them for bad programming practice
 Mostly procedural syntax support
 Active times around V9 and V10 …
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SonarQube by SonarSource

 Commonly used open source Lint Tool
 Support for various programming languages via 

plug-ins, Java, JavaScript, C#, HTML, XML, …
 OpenEdge plug-in developed by Riverside 

Software (Gilles Querret)
– engine open source
– rules commercial

 Available since 2016, permanently new features 
added
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SonarQube by SonarSource

 Locates problems or potential bugs 
 Violation of coding-standards
 Code duplication detection
 Unit-Test coverage

 Web-Dashboard
 CLI Utility (HTML or XML Reports)
 Eclipse Integration
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SonarLint for Eclipse Demo

 Integration into Progress Developer Studio
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SmartComponent Library based Tools

 Commercial ABL developer framework by 
Consultingwerk

 Business Entity Designer round trip development 
is based on Proparse

 Legacy code modernization utilities uses 
Proparse for analyzing legacy code

Analyzing ABL with Proparse 27



Demo

 Business Entity Designer round trip
Development
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Proparse.NET

 Proparse is written in Java

 ABL has no built in bridge to Java

 ABL has a bridge to .NET

 .NET saves the day – actually, 
the Mono Project 
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IKVM.NET

 Part of the Mono Project – Open Source 
implementation of the .NET framework

 Java VM implemented in .NET
 Java Byte Code embedded in .NET Assembly 

(.dll file)
 Allows execution of Java code from .NET 

applications
 Since ABL can use (most) .NET Assemblies, 

ABL can use Proparse via IKVM.NET
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Integrating Proparse.NET into OpenEdge 

 Get familiar with the GUI for .NET Programming
guide!!! 

 -assemblies startup parameter
 assemblies.xml file
 Proparse.NET Assemblies available at 

https://github.com/consultingwerk/proparse

 Think of –assemblies like a PROPATH definition 
for .NET classes
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assemblies.xml
<?xml version="1.0" encoding="UTF-8" 
standalone="no"?>

<references>

<assembly name="IKVM.OpenJDK.Core, 
Version=7.2.4630.5, Culture=neutral, 
PublicKeyToken=13235d27fcbfff58"/>

<assembly name="IKVM.Runtime, Version=7.2.4630.5, 
Culture=neutral, 
PublicKeyToken=13235d27fcbfff58"/>

<assembly name="proparse.net, Version=4.0.1.1166,
Culture=neutral, 
PublicKeyToken=cda1b098b1034b24"/>

</references>
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Codepage used by Proparse.NET

 Option in prowin32.exe.config / 
prowin.exe.config

 http://www.oehive.org/proparse#comment-2118
 Add ikvm:file.encoding property to the .config 

file
 File is dependent on the OpenEdge version –

don’t break it! That file is important!
 Refer to the .NET framework documentation for 

details
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Using Proparse from the ABL

1. Setting up environment 

2. Invoking the parser 

3. Iterating the AST

4. Understanding your code
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Setting up the environment for Proparse

 Similar requirements as an ABL compile time 
session

 PROPATH
 Database connections and schema
 SESSION settings like OPSYS, PROVERSION 

and WINDOW-SYSTEM that might be used in 
&IF
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Initializing the Proparse environment
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Session Settings
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Exporting Database Schema
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Initialize the Proparse Session
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Invoke the Parser 
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Walk the Parse Unit

 Proparse represents ABL source as a tree
 Single root
 Every node may have children and siblings –

depending on allowed syntax
 Class: org.prorefactor.core.JPNode
 http://www.joanju.com/analyst/javadoc/index.htm

l?org/prorefactor/core/JPNode.html
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Walk the Parse Unit

 Starting from pu:getTopNode() // Program_Root
 Process that JPNode instance
 Start from :firstChild(), iterate while :nextSibling()

is valid
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JPNode properties (Java style)

 getType() – the actual type of the node, 
representing a keyword, block structure or identifier 
NodeTypes:getTypeName(oNode:getType())

 getText() – the node’s piece of ABL source code

 getColumn(), getLine(), getFileName()

 firstChild(), nextSibling() – similar to the ABL 
widget trees
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Demo

 Parsing the simple-3.p
 Review recursive loop
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JPNode child types

 Some JPNode’s provide very specific additional 
information, which is implemented through child 
types of JPNode

 BlockNode, FieldRefNode, RecordNameNode, …
 Requires CAST from JPNode reference
 Provides direct properties and references to 

additional types
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Demo

 Parsing the customer-tt.p
 Review recursive loop including 

RecordNameNode handling
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Demo

 Parsing temp-table-sample.p
 Extract TEMP-TABLE fields from ABL source 

into XML file
 Review ProparseHelper methods
 Review TempTableParser methods
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Demo

Analyzing ABL with Proparse 50



Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

51



Maintaining Proparse

 ABL Syntax is evolving, new keywords added in 
almost every release. 
– 11.7 added SERIALIZABLE options for class 

members
– Proparse requires knowledge of keywords 

and syntax
 Some “odd” syntax constructs may cause 

parsing issues (e.g. parenthesis in unexpected 
locations)
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DEF VAR VAR i AS INTEGER NO-UNDO . 

 Error message refers to file, line number and 
column of the token causing the issue.
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Keeping Proparse up to date
 ANTLR grammars need to be extended with new 

syntax constructs
 KEYWORDS need to be added to vocabulary 

(“importVocab”)
 Built-in functions need to be added to “builtinfunc” 

rule
 Almost everything needs to be added to 

“NodeTypes” (keyword, reserved, function, system 
handle, etc…)

 Extended parser (“treeparser01”) – add some scope 
detection and references support

 Parser for preprocessor code evaluation (“proeval”)



Tooling

 Ecliplse, JDT based
 ANTLR IDE doesn't support ANTLR version 2.x 
 Old Eclipse plugin works with Eclipse Mars (4.5.2) 

- http://antlreclipse.sourceforge.net
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Build new version

 Add new keywords to vocabulary –
BaseTokenTypes.txt

 Update grammar file - proparse.g
 ”Compile” grammar file
 Compilation “translate” the grammar file to two Java 

classes that implements the parser: ProParser.java
and ProParserTokenTypes.java

 Add new entries on NodeTypes.java
 Run Unit Test scripts, add new one as needed or 

simply add new syntax samples to be validated



Building Proparse.NET

 Build proparse.jar from Java binaries
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Building Proparse .NET

 Build proparse.net.dll from proparse.jar

 ANT script contained in Github repo
 Requires IKVM.NET tools
 Compare .dll size before and after
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Future tasks

 Reduce redundancy in code caused by legacy
– Proparse
– Prorefactor

 Upgrade to more recent ANTLR
 Keep up with new ABL syntax
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Questions
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