
Mike Fechner, Consultingwerk Ltd.
mike.fechner@consultingwerk.de

Analyzing ABL Source Code with
Proparse



http://www.consultingwerk.de/ 2



Consultingwerk Ltd.

http://www.consultingwerk.de/ 3

 Independent IT consulting organization
 Focusing on OpenEdge and related technology
 Located in Cologne, Germany, subsidiary in UK
 Customers in Europe, North America, Australia 

and South Africa
 Vendor of tools and consulting services
 27 years of Progress experience (V5 … OE11)
 Specialized in GUI for .NET, Angular, OO, 

Software Architecture, Application Integration



Sample code download

 https://github.com/mikefechner/proparse-samples

 Most sample code has no dependencies 

 Some samples rely on commercial code from 
Consultingwerk

Analyzing ABL with Proparse 4

https://github.com/mikefechner/proparse-samples


Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

5



Why Source Code Analysis?

 Quality Assurance, Linting of Code

 Refactoring, Foundation for converting code 
form one form to another

Analyzing ABL with Proparse 6



Linting

 Linting is the process of flagging suspicions 
code within a programming language 

 Linting requires understanding of source code

 Extension to syntax checks
 Code may compile, but still be wrong

– DEFINE VARIABLE without NO-UNDO
– FIND with no NO-ERROR 

Analyzing ABL with Proparse 7



Refactoring, Code conversion

 Refactoring is the process of restructuring 
computer code without changing its external 
behavior 

 Refactoring requires understanding of code
 Identifying and locating relevant pieces of code
 Ignoring less relevant bits
 Provide ability to change or extract code

Analyzing ABL with Proparse 8



ABL Built in Source Code Analysis 

 Compiler Output
– Cross Reference (XREF, XML-XREF)
– LISTING (Buffer and Transaction Scope)
– PREPROCESS/DEBUG-LISTING

 Profiler Output
– Tracing of executed lines of code + 

performance

Analyzing ABL with Proparse 9



Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

10



Proparse

 Proparse is a utility to return an abstract syntax 
tree for ABL code (AST)

 Static code analysis
 Interpreting the grammar of the ABL
 Knowledge about keywords and their valid 

combinations
 Should understand any piece of ABL code that 

compiles
 Providing a structured view on source code

Analyzing ABL with Proparse 11



Why an abstract syntax tree?

 ABL syntax “flexible”:
– Formatting
– Large number of keywords
– Abbreviated keywords
– Keyword order in statements
– Uppercasing, lower casing, many keywords 

may be used as identifiers
– Single / Double Quotes
– Comments

Analyzing ABL with Proparse 12



Why use an abstract syntax tree

 Because analyzing ABL source code as a text 
file is hard!

Analyzing ABL with Proparse 13



That‘s why: 

Analyzing ABL with Proparse 14



Analyzing ABL with Proparse 15



Proparse

 Original Author: John Green / Joanju
 http://www.joanju.com/proparse/
 http://www.oehive.org/proparse
 Eclipse public license
 Extracts the Abstract Syntax Tree from a 

compilation unit (procedure or class)
 Is NOT a compiler, nor a Syntax Checker

– similar requirements as the compiler to understand 
source code

 Based on ANTLR, quite an ancient version - 2.7
Analyzing ABL with Proparse 16

http://www.joanju.com/proparse/
http://www.oehive.org/proparse


ANTLR

 “Another Tool for Language Recognition”
 Toolkit for building language parses
 Java based
 Generated parsers are Java code
 A lot more tooling available in more recent 

versions of ANTLR

 If you’re not maintaining Proparse, you don’t 
need to use any of that tooling

Analyzing ABL with Proparse 17



Proparse JavaDoc

 http://www.joanju.com/analyst/javadoc/index.htm
l

 Look for
– org.prorefactor.core.JPNode
– org.prorefactor.treeparser.ParseUnit

Analyzing ABL with Proparse 18

http://www.joanju.com/analyst/javadoc/index.html


Proparse

 Multiple public repositories
– OE Hive SVN
– github.com/oehive/proparse
– github.com/consultingwerk/proparse
– github.com/riverside-software/proparse

 After a dormant phase a few years back, it’s 
actively maintained again

 Support for full OpenEdge 11.7 syntax available

Analyzing ABL with Proparse 19



Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

20



Utilities based on Proparse

 Prolint
 SonarSource plug-ins for OpenEdge
 SmartComponent Library

Analyzing ABL with Proparse 21



Prolint

 http://www.oehive.org/prolint
 Tool for automated source code review of 

Progress 4GL code
 Reads one or more source files and examines 

them for bad programming practice
 Mostly procedural syntax support
 Active times around V9 and V10 …

Analyzing ABL with Proparse 22

http://www.oehive.org/prolint


SonarQube by SonarSource

 Commonly used open source Lint Tool
 Support for various programming languages via 

plug-ins, Java, JavaScript, C#, HTML, XML, …
 OpenEdge plug-in developed by Riverside 

Software (Gilles Querret)
– engine open source
– rules commercial

 Available since 2016, permanently new features 
added

Consultingwerk Toolstack 23



SonarQube by SonarSource

 Locates problems or potential bugs 
 Violation of coding-standards
 Code duplication detection
 Unit-Test coverage

 Web-Dashboard
 CLI Utility (HTML or XML Reports)
 Eclipse Integration

Consultingwerk Toolstack 24



Consultingwerk Toolstack 25



SonarLint for Eclipse Demo

 Integration into Progress Developer Studio

Consultingwerk Toolstack 26



SmartComponent Library based Tools

 Commercial ABL developer framework by 
Consultingwerk

 Business Entity Designer round trip development 
is based on Proparse

 Legacy code modernization utilities uses 
Proparse for analyzing legacy code

Analyzing ABL with Proparse 27



Demo

 Business Entity Designer round trip
Development

Analyzing ABL with Proparse 28



Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

29



Proparse.NET

 Proparse is written in Java

 ABL has no built in bridge to Java

 ABL has a bridge to .NET

 .NET saves the day – actually, 
the Mono Project 

Analyzing ABL with Proparse 30



IKVM.NET

 Part of the Mono Project – Open Source 
implementation of the .NET framework

 Java VM implemented in .NET
 Java Byte Code embedded in .NET Assembly 

(.dll file)
 Allows execution of Java code from .NET 

applications
 Since ABL can use (most) .NET Assemblies, 

ABL can use Proparse via IKVM.NET

Analyzing ABL with Proparse 31



Integrating Proparse.NET into OpenEdge 

 Get familiar with the GUI for .NET Programming
guide!!! 

 -assemblies startup parameter
 assemblies.xml file
 Proparse.NET Assemblies available at 

https://github.com/consultingwerk/proparse

 Think of –assemblies like a PROPATH definition 
for .NET classes

Analyzing ABL with Proparse 32

https://github.com/consultingwerk/proparse


assemblies.xml
<?xml version="1.0" encoding="UTF-8" 
standalone="no"?>

<references>

<assembly name="IKVM.OpenJDK.Core, 
Version=7.2.4630.5, Culture=neutral, 
PublicKeyToken=13235d27fcbfff58"/>

<assembly name="IKVM.Runtime, Version=7.2.4630.5, 
Culture=neutral, 
PublicKeyToken=13235d27fcbfff58"/>

<assembly name="proparse.net, Version=4.0.1.1166,
Culture=neutral, 
PublicKeyToken=cda1b098b1034b24"/>

</references>

Analyzing ABL with Proparse 33



Codepage used by Proparse.NET

 Option in prowin32.exe.config / 
prowin.exe.config

 http://www.oehive.org/proparse#comment-2118
 Add ikvm:file.encoding property to the .config 

file
 File is dependent on the OpenEdge version –

don’t break it! That file is important!
 Refer to the .NET framework documentation for 

details

Analyzing ABL with Proparse 34

http://www.oehive.org/proparse#comment-2118


Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

35



Using Proparse from the ABL

1. Setting up environment 

2. Invoking the parser 

3. Iterating the AST

4. Understanding your code
Analyzing ABL with Proparse 36



Setting up the environment for Proparse

 Similar requirements as an ABL compile time 
session

 PROPATH
 Database connections and schema
 SESSION settings like OPSYS, PROVERSION 

and WINDOW-SYSTEM that might be used in 
&IF

Analyzing ABL with Proparse 37



Initializing the Proparse environment

Analyzing ABL with Proparse 38



Session Settings

Analyzing ABL with Proparse 39



Exporting Database Schema

Analyzing ABL with Proparse 40



Initialize the Proparse Session

Analyzing ABL with Proparse 41



Invoke the Parser 

Analyzing ABL with Proparse 42



Walk the Parse Unit

 Proparse represents ABL source as a tree
 Single root
 Every node may have children and siblings –

depending on allowed syntax
 Class: org.prorefactor.core.JPNode
 http://www.joanju.com/analyst/javadoc/index.htm

l?org/prorefactor/core/JPNode.html

Analyzing ABL with Proparse 43

http://www.joanju.com/analyst/javadoc/index.html?org/prorefactor/core/JPNode.html


Walk the Parse Unit

 Starting from pu:getTopNode() // Program_Root
 Process that JPNode instance
 Start from :firstChild(), iterate while :nextSibling()

is valid

Analyzing ABL with Proparse 44



JPNode properties (Java style)

 getType() – the actual type of the node, 
representing a keyword, block structure or identifier 
NodeTypes:getTypeName(oNode:getType())

 getText() – the node’s piece of ABL source code

 getColumn(), getLine(), getFileName()

 firstChild(), nextSibling() – similar to the ABL 
widget trees

Analyzing ABL with Proparse 45



Demo

 Parsing the simple-3.p
 Review recursive loop

Analyzing ABL with Proparse 46



JPNode child types

 Some JPNode’s provide very specific additional 
information, which is implemented through child 
types of JPNode

 BlockNode, FieldRefNode, RecordNameNode, …
 Requires CAST from JPNode reference
 Provides direct properties and references to 

additional types

Analyzing ABL with Proparse 47



Demo

 Parsing the customer-tt.p
 Review recursive loop including 

RecordNameNode handling

Analyzing ABL with Proparse 48



Demo

 Parsing temp-table-sample.p
 Extract TEMP-TABLE fields from ABL source 

into XML file
 Review ProparseHelper methods
 Review TempTableParser methods

Analyzing ABL with Proparse 49



Demo

Analyzing ABL with Proparse 50



Agenda

 Why Source Code Analysis
 Proparse
 Utilities based on Proparse
 Proparse.NET
 Using Proparse from ABL 
 Building and enhancing Proparse

51



Maintaining Proparse

 ABL Syntax is evolving, new keywords added in 
almost every release. 
– 11.7 added SERIALIZABLE options for class 

members
– Proparse requires knowledge of keywords 

and syntax
 Some “odd” syntax constructs may cause 

parsing issues (e.g. parenthesis in unexpected 
locations)

Analyzing ABL with Proparse 52



DEF VAR VAR i AS INTEGER NO-UNDO . 

 Error message refers to file, line number and 
column of the token causing the issue.

Analyzing ABL with Proparse 53



Keeping Proparse up to date
 ANTLR grammars need to be extended with new 

syntax constructs
 KEYWORDS need to be added to vocabulary 

(“importVocab”)
 Built-in functions need to be added to “builtinfunc” 

rule
 Almost everything needs to be added to 

“NodeTypes” (keyword, reserved, function, system 
handle, etc…)

 Extended parser (“treeparser01”) – add some scope 
detection and references support

 Parser for preprocessor code evaluation (“proeval”)



Tooling

 Ecliplse, JDT based
 ANTLR IDE doesn't support ANTLR version 2.x 
 Old Eclipse plugin works with Eclipse Mars (4.5.2) 

- http://antlreclipse.sourceforge.net

Analyzing ABL with Proparse 55

http://antlreclipse.sourceforge.net/


Build new version

 Add new keywords to vocabulary –
BaseTokenTypes.txt

 Update grammar file - proparse.g
 ”Compile” grammar file
 Compilation “translate” the grammar file to two Java 

classes that implements the parser: ProParser.java
and ProParserTokenTypes.java

 Add new entries on NodeTypes.java
 Run Unit Test scripts, add new one as needed or 

simply add new syntax samples to be validated



Building Proparse.NET

 Build proparse.jar from Java binaries

Analyzing ABL with Proparse 57



Building Proparse .NET

 Build proparse.net.dll from proparse.jar

 ANT script contained in Github repo
 Requires IKVM.NET tools
 Compare .dll size before and after
Analyzing ABL with Proparse 58



Future tasks

 Reduce redundancy in code caused by legacy
– Proparse
– Prorefactor

 Upgrade to more recent ANTLR
 Keep up with new ABL syntax

Analyzing ABL with Proparse 59



Questions

60http://www.consultingwerk.de/


	Foliennummer 1
	Foliennummer 2
	Consultingwerk Ltd.
	Sample code download
	Agenda
	Why Source Code Analysis?
	Linting
	Refactoring, Code conversion
	ABL Built in Source Code Analysis 
	Agenda
	Proparse
	Why an abstract syntax tree?
	Why use an abstract syntax tree
	That‘s why: 
	Foliennummer 15
	Proparse
	ANTLR
	Proparse JavaDoc
	Proparse
	Agenda
	Utilities based on Proparse
	Prolint
	SonarQube by SonarSource
	SonarQube by SonarSource
	Foliennummer 25
	SonarLint for Eclipse Demo
	SmartComponent Library based Tools
	Demo
	Agenda
	Proparse.NET
	IKVM.NET
	Integrating Proparse.NET into OpenEdge 
	assemblies.xml
	Codepage used by Proparse.NET
	Agenda
	Using Proparse from the ABL
	Setting up the environment for Proparse
	Initializing the Proparse environment
	Session Settings
	Exporting Database Schema
	Initialize the Proparse Session
	Invoke the Parser 
	Walk the Parse Unit
	Walk the Parse Unit
	JPNode properties (Java style)
	Demo
	JPNode child types
	Demo
	Demo
	Demo
	Agenda
	Maintaining Proparse
	DEF VAR VAR i AS INTEGER NO-UNDO . 
	Keeping Proparse up to date
	Tooling
	Build new version
	Building Proparse.NET
	Building Proparse .NET
	Future tasks
	Questions

