
Git your source code
under control, for free!
June 29, 2016 Chris Hawkins

2

About the Speaker

• Progress developer since V5 1988
• Director R & D at ASA Automotive Systems Inc.
• We develop software for Tire Dealers (POS/OE, Accounting,

Inventory, many interfaces)
• Small team of developers, several products, including legacy ones.

Millions of lines of code.
• Hundreds of customer systems on various releases of our products.
• Not a Git expert

3

About this Presentation

▪ A brief introduction to source control and Git
▪ Common Git usage
▪ Time travel
▪ Distributed Git and our workflow
▪ Tools
▪ Questions

4

What is Source Control?

▪ Commonly referred to as Version Control or Revision Control
▪ A secure location for source code
▪ Tracking changes to source files (and other artifacts)
▪ Allows controlled releases, typically with a release or revision number

10.2B or 11.6 etc.
▪ Safety net for programmers, can revert to older copies of code if

needed
▪ Recreate the exact source code for previous releases. Allows patching

of old releases (a necessary evil)
▪ Collaborate with other developers in a controlled way

5

What is Git?

▪ Git was initially designed and developed in 2005 by Linux
Kernel developers including Linus Torvalds.

▪ Strong support for non-linear development (easy
branching)

▪ Distributed development (each developer has a local copy
of the full development history)

▪ Compatibility with existing systems/protocols (ssh, https)
▪ Efficient handling of large projects
▪ Cryptographic authentication of history
▪ Is both a repository and/or manager of local source code

6

Why Git?

▪ Git is free! And open source. With paid commercial hosted options.
▪ Very popular! Eclipse Foundation (May 2015) “Git is the most widely

used source code management tool - 43% of professional
developers use it”

▪ All my questions were answered with a Google search
▪ E.g. Stackoverflow has 70k questions and 55k answers
▪ It’s stable (11 years old), robust, fast, redundant
▪ GitHub and BitBucket are the go-to places for open source projects
▪ New developers more likely to be familiar with it

7

Why Git?

▪ Most IDE’s, task tracking & build tools have Git support
▪ Everything can be done using the command line - easily

scriptable
▪ Use with build tools like PCT Ant
▪ Also Java implementation
▪ Excellent free GUI tools for most activities
▪ There are even iOS client apps for Git
▪ Git can be tricky but keep in mind it gives you control over a

complex process

8

Why Git?

▪ Complete confidence to make copies of your source
anywhere

▪ For dev, test, support, on multiple machines?
▪ Every developer, wherever they are
▪ Each copy is the full history
▪ Access to code from any previous release
▪ Or any work any developer has made available
▪ Every copy becomes a backup, no single point of loss
▪ No “locking” of programs for team development

9

Git is not File Revisions

▪ Familiar with file based source control tools like CVS? Git is not file based, no file
versions like 1.1, 1.2 etc.

▪ Git takes snapshots of the entire directory tree. This snapshot is uniquely identified
by a SHA-1 key.

▪ Git tracks the changes to all files at each commit, very efficiently. Including file
deletes & renames.

▪ You have access to these changes and can re-apply
▪ Changes your working directory to the code backwards/forwards in time very quickly
▪ Compare changes over time (and reapply for patches/hot-fixes)
▪ See who changed each line of code (git blame)
▪ It’s difficult to loose anything (once committed)
▪ The past is immutable (like an accounting ledger, changes are always by adding)

10

Getting Started with Git

▪ Read - the (free) Pro Git book has a lot of detail
▪ Learn by experimenting - a lot
▪ Start fresh or import code history? How much history?
▪ There is inbuilt support for SVN

▪ Decide on hosting, in house Gitolite or cloud GitHub,
BitBucket etc.

▪ Not just hosting, they have code view/review
▪ It is distributed but there is likely one “origin” repository.
▪ Decide on workflow that works for your team(s)

11

Getting Started with Git

▪ Download Git - Windows, Mac, Linux, Solaris
▪ https://git-scm.com/downloads
▪ Download GUI tools
▪ Windows TortoiseGit https://tortoisegit.org
▪ Windows & Mac Source Tree https://www.atlassian.com/

software/sourcetree
▪ For Eclipse install eGit http://www.eclipse.org/egit/

12

Identify Yourself

▪ Before using Git for the first time, you need to tell Git who are.
It will use your name and email on each commit (see Git
blame)

▪ Git config can be global, or local. Use global so all your repos
(on this PC) have your id.

git config --global user.name “Chris”

git config --global user.email
chris@myemail.com

mailto:chris@myemail.com?subject=

13

Create a Git Repo

▪ Create from scratch:

git init

▪ Or copy locally from another directory
▪ Or clone from a repo using Git protocols (locally,https,ssh)

git clone

▪ Look at the .git directory. That’s where Git stores everything. Don't delete it.

git status

▪ Git says it’s “On branch master”. We’ll discuss branches later
▪ There is also a “bare repository”. This is where you have just the .git directory

and no files.

14

Git Notices Changes

▪ Copy files from a local directory, into the directory. Then ask Git
for a status

▪ Git notices the new files as “untracked”. All files are like this until
you tell Git to manage them.

▪ Tell Git to ignore files using a .gitignore file.
▪ Very important to ensure never add unwanted files e.g.

Progress ABL .r code files
▪ Use wildcards e.g. ignore all r code *.r
▪ The .gitignore file is not ignored by default

15

Time to Commit

▪ Make our first commit to the Git repo

git add .
▪ Using the period wildcard is a quick shortcut but takes all files (unless in .gitignore file). Safe

to use if you keep a clean directory.
▪ Are we done? No, the files are only “staged”.

git status
▪ Git says “Changes to be committed”
▪ Why the extra stage step?
▪ Very useful when working directory has many new or changed files but you want to commit

them in separate groups.
▪ You can skip the stage step (using a different command) but I don't recommend it. A personal

preference.

16

Make History

▪ To commit the changes to the repo, with a commit comment:

git commit -m ”My first commit”
▪ Or, without the -m brings up a text editor to add the comment
▪ Git tells you what was committed but you can verify at any time using the git status command

git status
On Branch master  
nothing to commit, working directory clean

▪ Use git log to see our newly created history and the SHA-1 key generated. The git log command
has many options for viewing history - you will want to learn more about it.

git log
commit 1099e19124902281b936c5d436bdc45b17b8d00c
My first commit

17

The Stages of Git

▪ Files not managed by Git are “Untracked”
▪ Once managed by Git, there are 3 stages
▪ Committed. The changes are in your local Git repo.
▪ Staged. A snapshot of changes ready to be

committed.
▪ Modified. There are changes to the files managed

by Git, compared with what is staged or committed.

18

Time Travel

▪ All Git repos have the complete source
history, so you can travel in time, locally.
▪ Just to look, or to create an alternate future

from any previous time.

20

Time Travel

▪ Git lets you travel back and forwards in time. You can see the code as it
was.

▪ Git log shows the commit messages and much more
▪ Git checkout allows you to access the code as of that time
▪ Like a time traveller, you cannot change the past, only create an alternate

future. Using a Git “branch”.
▪ NOTE: Changing code without a branch (a “detached head” state), does

not change the history, just your working copy of the files.

Future
TimeBig Bang

21

Branch to an Alternate Future

▪ To create an alternate future, you first create a branch
▪ Create branches for everything, small fixes, major features, experimenting
▪ Never make changes on the master branch - keep it open for merging
▪ Branch names are just names.
▪ The default Git branch is “master”. It’s purely a convention. What matters is the

SHA-1.
▪ Creating a branch is instant, so create one anytime to start tracking changes.

master
Task101

22

Let’s Branch

▪ Create a branch, from master
git checkout -b task101 master

▪ Make some changes to the files
▪ Commit

git add .

git commit -m”My first branch”

▪ Now have a branch with changes separate from master
branch

23

Branches

▪ The master named branch is the main branch by default,
▪ Usually corresponds to release-ready code
▪ Lives forever

▪ A feature branch exists until the work is completed and merged to the
master branch

▪ A release or bug fix branch exists as long as needed
▪ Usage depends on deployment situation - how many customers

running older releases that you may have to patch
▪ Lots of discussions, examples online

24

Branch Maintenance

▪ Branches are intended to keep work separated
▪ Long lived branches often need to integrate work from other

branches
▪ Two most common use cases:
▪ Keeping a branch current with master - use rebase or merge
▪ Rebase makes for a cleaner, simpler commit history
▪ Merge adds (mostly) useless commits to the history

▪ Applying bug fixes to release branches - use cherry-pick
▪ Fix the bug in master, then cherry-pick to release branch

25

Release Branches

▪ A release branch is just a branch but is intended to live for the
life of a release
▪ E.g. OpenEdge releases (grossly simplified)
▪ 10.2B released Dec 2009, 10.2B08 Nov 2013, 11.0 in 2011
▪ PSC must have worked on 11.0 and 10.2B at same time

master branch

10.2B release branch
10.2B01 10.2B08

10.2B 11.0 11.1 11.2

26

Cherry Pick for Bug Fix Release

▪ Cherry-pick allows a “replay” of a change from one branch to another. E.g.
OpenEdge releases

▪ 10.2B released Dec 2009, 10.2B08 Nov 2013,11.0 in 2011
▪ A bug found developing 11.0 (master branch) needs to also go in a 10.2B02

service pack (release branch)

master branch

10.2B branch

Bug Fix

10.2B01 10.2B02

Cherry-pick

10.2B

27

Keep Commits Useful

▪ Git history shows changes over time. It’s more useful if each commit means
something

▪ No need to keep the “mini” commits; small changes you saved, just in case you
needed to revert

▪ Before merging your branch, squash the commits - easy to do with a GUI tool
▪ Alternative to squash is amending a commit. Great for changing the commit

message.
▪ Ideally, you use task software like Bugzilla or JIRA that generates an id for each

task. You can use this id as the branch name to link work to task.
▪ Put the task id in the commit message as permanent connection to task

28

Distributed Git

▪ To share with other PCs, servers etc. you need a repo acting
as a “server”. You can push changes to and pull changes from
it

▪ Tools like Gitolite allow you to self host
▪ Easier to use a hosting company like GitHub or BitBucket
▪ No firewall issues
▪ Less setup and management
▪ Offsite for redundancy, possibly faster
▪ Great tutorials

29

Our Git Workflow

▪ We track/assign work using Bugzilla or JIRA
▪ Our master branch represents tested code, ready for release
▪ Developers create branches named after the Bugzilla task bz1234, usually from the

master branch (unless it’s a patch on a specific release branch)
▪ Developers push code branch to BitBucket for tester to retrieve and test
▪ Once code is approved, it is merged to master by gate keeper (senior developer)

either using fast-forward merge or cherry-pick to avoid merge messages and keep
clean history

▪ Task is closed and developer, gets Bugzilla email and sees commit appear in master
branch.

▪ Developer deletes local and remote branch
▪ We keep release branches to patch old releases

30

Your Git Workflow

▪ Decide on a workflow to control updates from developers to
the important master and release branches

▪ Do you want a gatekeeper - control what gets merged to
master or release branches?

▪ Many discussions online - search “Git workflow”
▪ Encourage good commit messages
▪ They become your quick view of history
▪ Not a good place for long descriptions, use a task tracking

software for that.

31

Git GUI Tools

▪ Sometimes GUI tools are easier to use than command line.
▪ File differences - side by side
▪ Git log - also see the code snippets changed
▪ Don’t have to memorize as many commands e.g. rename branch
▪ Reset - just select the commit you want to reset to

▪ GUI tools I use
▪ JGit/EGit - integrated into Eclipse
▪ TortioseGit - Free but Windows only
▪ SourceTree - From Atlasssian, free but requires registration. Mac or

Windows

32

Git in Eclipse

Current branch is master

33

Git History in Eclipse

34

Git Compare in Eclipse

35

36

37

Useful References

▪ The (free) Pro Git Book https://git-scm.com/book/en/v2 - everyone needs to read this book.
▪ Wikipedia has a good overview and many links https://en.wikipedia.org/wiki/Git_(software)
▪ A good description of why to use Git, with references to other good articles. http://

www.netinstructions.com/the-case-for-git/ and https://colan.consulting/blog/business-case-
switching-vcses-what-git-provides-over-subversion

▪ A useful cheat sheet PDF https://www.atlassian.com/dms/wac/images/landing/git/
atlassian_git_cheatsheet.pdf

▪ A very good walkthrough of setup and usage. https://githowto.com/
▪ A popular Git branch workflow http://www.geekgumbo.com/wp-content/uploads/2011/08/nvie-

git-workflow-commands.png

http://www.geekgumbo.com/wp-content/uploads/2011/08/nvie-git-workflow-commands.png

Thank You!

