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About the Speaker

• Progress developer since V5 1988 
• Director R & D at ASA Automotive Systems Inc.  
• We develop software for Tire Dealers (POS/OE, Accounting, 

Inventory, many interfaces)    
• Small team of developers, several products, including legacy ones. 

Millions of lines of code. 
• Hundreds of customer systems on various releases of our products. 
• Not a Git expert
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About this Presentation

▪ A brief introduction to source control and Git 
▪ Common Git usage 
▪ Time travel  
▪ Distributed Git and our workflow 
▪ Tools  
▪ Questions
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What is Source Control?

▪ Commonly referred to as Version Control or Revision Control 
▪ A secure location for source code  
▪ Tracking changes to source files (and other artifacts) 
▪ Allows controlled releases, typically with a release or revision number 

10.2B or 11.6 etc. 
▪ Safety net for programmers, can revert to older copies of code if 

needed 
▪ Recreate the exact source code for previous releases. Allows patching 

of old releases (a necessary evil) 
▪ Collaborate with other developers in a controlled way
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What is Git?

▪ Git was initially designed and developed in 2005 by Linux 
Kernel developers including Linus Torvalds.  

▪ Strong support for non-linear development (easy 
branching) 

▪ Distributed development (each developer has a local copy 
of the full development history) 

▪ Compatibility with existing systems/protocols (ssh, https) 
▪ Efficient handling of large projects 
▪ Cryptographic authentication of history 
▪ Is both a repository and/or manager of local source code
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Why Git?

▪ Git is free! And open source. With paid commercial hosted options. 
▪ Very popular! Eclipse Foundation (May 2015) “Git is the most widely 

used source code management tool - 43% of professional 
developers use it” 

▪ All my questions were answered with a Google search 
▪ E.g. Stackoverflow has 70k questions and 55k answers  
▪ It’s stable (11 years old), robust, fast, redundant 
▪ GitHub and BitBucket are the go-to places for open source projects  
▪ New developers more likely to be familiar with it
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Why Git?

▪ Most IDE’s, task tracking & build tools have Git support  
▪ Everything can be done using the command line - easily 

scriptable 
▪ Use with build tools like PCT Ant 
▪ Also Java implementation 
▪ Excellent free GUI tools for most activities 
▪ There are even iOS client apps for Git 
▪ Git can be tricky but keep in mind it gives you control over a 

complex process
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Why Git?

▪ Complete confidence to make copies of your source 
anywhere 

▪ For dev, test, support, on multiple machines?  
▪ Every developer, wherever they are  
▪ Each copy is the full history  
▪  Access to code from any previous release  
▪ Or any work any developer has made available 
▪ Every copy becomes a backup, no single point of loss 
▪ No “locking” of programs for team development
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Git is not File Revisions

▪ Familiar with file based source control tools like CVS? Git is not file based, no file 
versions like 1.1, 1.2 etc. 

▪ Git takes snapshots of the entire directory tree. This snapshot is uniquely identified 
by a SHA-1 key.  

▪ Git tracks the changes to all files at each commit, very efficiently. Including file 
deletes & renames. 

▪ You have access to these changes and can re-apply 
▪ Changes your working directory to the code backwards/forwards in time very quickly 
▪ Compare changes over time (and reapply for patches/hot-fixes) 
▪ See who changed each line of code (git blame) 
▪ It’s difficult to loose anything (once committed) 
▪ The past is immutable (like an accounting ledger, changes are always by adding)
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Getting Started with Git

▪ Read - the (free) Pro Git book has a lot of detail 
▪ Learn by experimenting - a lot   
▪ Start fresh or import code history? How much history? 
▪ There is inbuilt support for SVN   

▪ Decide on hosting, in house Gitolite or cloud GitHub, 
BitBucket etc. 

▪ Not just hosting, they have code view/review 
▪ It is distributed but there is likely one “origin” repository. 
▪ Decide on workflow that works for your team(s)
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Getting Started with Git

▪ Download Git - Windows, Mac, Linux, Solaris 
▪ https://git-scm.com/downloads 
▪ Download GUI tools 
▪ Windows TortoiseGit https://tortoisegit.org 
▪ Windows & Mac Source Tree https://www.atlassian.com/

software/sourcetree 
▪ For Eclipse install eGit http://www.eclipse.org/egit/
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Identify Yourself

▪ Before using Git for the first time, you need to tell Git who are. 
It will use your name and email on each commit (see Git 
blame) 

▪ Git config can be global, or local. Use global so all your repos 
(on this PC) have your id.   

git config --global user.name “Chris” 

git config --global user.email 
chris@myemail.com

mailto:chris@myemail.com?subject=
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Create a Git Repo

▪ Create from scratch:  

git init 

▪ Or copy locally from another directory 
▪ Or clone from a repo using Git protocols (locally,https,ssh) 

git clone 

▪ Look at the .git directory. That’s where Git stores everything. Don't delete it.  

git status  

▪ Git says it’s “On branch master”. We’ll discuss branches later 
▪ There is also a “bare repository”.  This is where you have just the .git directory 

and no files. 
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Git Notices Changes

▪ Copy files from a local directory, into the directory. Then ask Git 
for a status 

▪ Git notices the new files as “untracked”. All files are like this until 
you tell Git to manage them. 

▪ Tell Git to ignore files using a .gitignore file.  
▪ Very important to ensure never add unwanted files e.g. 

Progress ABL .r code files 
▪ Use wildcards e.g. ignore all r code  *.r 
▪ The .gitignore file is not ignored by default
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Time to Commit

▪ Make our first commit to the Git repo 

git add . 
▪ Using the period wildcard is a quick shortcut but takes all files (unless in .gitignore file). Safe 

to use if you keep a clean directory.  
▪ Are we done? No, the files are only “staged”. 

git status 
▪ Git says “Changes to be committed” 
▪ Why the extra stage step? 
▪ Very useful when working directory has many new or changed files but you want to commit 

them in separate groups. 
▪ You can skip the stage step (using a different command) but I don't recommend it. A personal 

preference.
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Make History

▪ To commit the changes to the repo, with a commit comment: 

git commit -m ”My first commit” 
▪ Or, without the -m brings up a text editor to add the comment 
▪ Git tells you what was committed but you can verify at any time using the git status command 

git status 
On Branch master  
nothing to commit, working directory clean 

▪ Use git log to see our newly created history and the SHA-1 key generated. The git log command 
has many options for viewing history - you will want to learn more about it. 

git log 
commit 1099e19124902281b936c5d436bdc45b17b8d00c 
My first commit
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The Stages of Git

▪ Files not managed by Git are “Untracked” 
▪ Once managed by Git, there are 3 stages 
▪ Committed. The changes are in your local Git repo. 
▪ Staged. A snapshot of changes ready to be 

committed. 
▪ Modified. There are changes to the files managed 

by Git, compared with what is staged or committed.
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Time Travel



▪ All Git repos have the complete source 
history, so you can travel in time, locally.  
▪ Just to look, or to create an alternate future 

from any previous time.
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Time Travel

▪ Git lets you travel back and forwards in time. You can see the code as it 
was.  

▪ Git log shows the commit messages and much more  
▪ Git checkout allows you to access the code as of that time 
▪ Like a time traveller, you cannot change the past, only create an alternate 

future. Using a Git “branch”. 
▪ NOTE: Changing code without a branch (a “detached head” state), does 

not change the history, just your working copy of the files.

Future
TimeBig Bang
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Branch to an Alternate Future

▪ To create an alternate future, you first create a branch 
▪ Create branches for everything, small fixes, major features, experimenting 
▪ Never make changes on the master branch - keep it open for merging 
▪ Branch names are just names. 
▪ The default Git branch is “master”. It’s purely a convention. What matters is the 

SHA-1. 
▪ Creating a branch is instant, so create one anytime to start tracking changes.

master
Task101
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Let’s Branch

▪ Create a branch, from master  
git checkout -b task101 master  

▪ Make some changes to the files 
▪ Commit 

git add .  

git commit -m”My first branch” 

▪ Now have a branch with changes separate from master 
branch
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Branches

▪ The master named branch is the main branch by default,  
▪ Usually corresponds to release-ready code 
▪ Lives forever 

▪ A feature branch exists until the work is completed and merged to the 
master branch 

▪ A release or bug fix branch exists as long as needed  
▪ Usage depends on deployment situation - how many customers 

running older releases that you may have to patch 
▪ Lots of discussions, examples online 
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Branch Maintenance

▪ Branches are intended to keep work separated 
▪ Long lived branches often need to integrate work from other 

branches 
▪ Two most common use cases: 
▪ Keeping a branch current with master - use rebase or merge 
▪ Rebase makes for a cleaner, simpler commit history 
▪ Merge adds (mostly) useless commits to the history 

▪ Applying bug fixes to release branches - use cherry-pick 
▪ Fix the bug in master, then cherry-pick to release branch
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Release Branches

▪ A release branch is just a branch but is intended to live for the 
life of a release 
▪ E.g. OpenEdge releases (grossly simplified) 
▪ 10.2B released Dec 2009, 10.2B08 Nov 2013, 11.0 in 2011 
▪ PSC must have worked on 11.0 and 10.2B at same time

master branch

10.2B release branch
10.2B01 10.2B08

10.2B 11.0 11.1 11.2
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Cherry Pick for Bug Fix Release

▪ Cherry-pick allows a “replay” of a change from one branch to another.  E.g. 
OpenEdge releases 

▪ 10.2B released Dec 2009, 10.2B08 Nov 2013,11.0 in 2011  
▪ A bug found developing 11.0 (master branch) needs to also go in a 10.2B02 

service pack (release branch)

master branch

10.2B branch

Bug Fix

10.2B01 10.2B02

Cherry-pick

10.2B
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Keep Commits Useful

▪ Git history shows changes over time. It’s more useful if each commit means 
something  

▪ No need to keep the “mini” commits; small changes you saved, just in case you 
needed to revert 

▪ Before merging your branch, squash the commits - easy to do with a GUI tool 
▪ Alternative to squash is amending a commit. Great for changing the commit 

message.  
▪ Ideally, you use task software like Bugzilla or JIRA that generates an id for each 

task. You can use this id as the branch name to link work to task. 
▪ Put the task id in the commit message as permanent connection to task
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Distributed Git

▪ To share with other PCs, servers etc. you need a repo acting 
as a “server”. You can push changes to and pull changes from 
it 

▪ Tools like Gitolite allow you to self host 
▪ Easier to use a hosting company like GitHub or BitBucket 
▪ No firewall issues   
▪ Less setup and management 
▪ Offsite for redundancy, possibly faster  
▪ Great tutorials



29

Our Git Workflow

▪ We track/assign work using Bugzilla or JIRA 
▪ Our master branch represents tested code, ready for release 
▪ Developers create branches named after the Bugzilla task bz1234, usually from the 

master branch (unless it’s a patch on a specific release branch) 
▪ Developers push code branch to BitBucket for tester to retrieve and test 
▪ Once code is approved, it is merged to master by gate keeper (senior developer) 

either using fast-forward merge or cherry-pick to avoid merge messages and keep 
clean history 

▪ Task is closed and developer, gets Bugzilla email and sees commit appear in master 
branch.  

▪ Developer deletes local and remote branch 
▪ We keep release branches to patch old releases
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Your Git Workflow

▪ Decide on a workflow to control updates from developers to 
the important master and release branches  

▪ Do you want a gatekeeper - control what gets merged to 
master or release branches? 

▪ Many discussions online - search “Git workflow” 
▪ Encourage good commit messages  
▪ They become your quick view of history  
▪ Not a good place for long descriptions, use a task tracking 

software for that.
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Git GUI Tools

▪ Sometimes GUI tools are easier to use than command line.  
▪ File differences - side by side 
▪ Git log - also see the code snippets changed 
▪ Don’t have to memorize as many commands e.g. rename branch 
▪ Reset - just select the commit you want to reset to 

▪ GUI tools I use 
▪ JGit/EGit - integrated into Eclipse  
▪ TortioseGit - Free but Windows only 
▪ SourceTree - From Atlasssian, free but requires registration. Mac or 

Windows
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Git in Eclipse

Current branch is master
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Git History in Eclipse
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Git Compare in Eclipse
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Useful References

▪ The (free) Pro Git Book https://git-scm.com/book/en/v2 - everyone needs to read this book. 
▪ Wikipedia has a good overview and many links https://en.wikipedia.org/wiki/Git_(software) 
▪ A good description of why to use Git, with references to other good articles. http://

www.netinstructions.com/the-case-for-git/ and https://colan.consulting/blog/business-case-
switching-vcses-what-git-provides-over-subversion 

▪ A useful cheat sheet PDF https://www.atlassian.com/dms/wac/images/landing/git/
atlassian_git_cheatsheet.pdf 

▪ A very good walkthrough of setup and usage. https://githowto.com/ 
▪ A popular Git branch workflow http://www.geekgumbo.com/wp-content/uploads/2011/08/nvie-

git-workflow-commands.png

http://www.geekgumbo.com/wp-content/uploads/2011/08/nvie-git-workflow-commands.png


Thank You!


