
Code performance

workshop

The TL;DR version

2

agenda

 Intro

• This is the short version of the Code Performance Workshop

 Compile-listing ain't enough

 Network effects

 Unnecessary work

 Conclusion

3

your hosts

 One named Peter

 One named Paul

4

one named Peter (Judge)

pjudge@progress.com

Software Architect*

@ Progress since 2003

Integration-y stuff – Authentication Gateway, HTTP-Out,

Corticon et al

OE Best Practices / OERA / AutoEdge / CCS

4GL since 1996

* Aka programmer who knows PowerPoint

mailto:pjudge@progress.com

one named Paul (Koufalis)

pk@wss.com

Progress DBA and UNIX admin since 1994

Expert consulting related to technical aspects

of Progress and OpenEdge

Wide range of experience

Small 10 person offices to 2500+ concurrent users

AIX, HPUX, Linux, Windows…if Progress runs on it,

I’ve worked on it

Single malts and American bourbons

mailto:pk@wss.com

 The oldest and most respected independent DBA consulting firm in the world

 Four of the world’s top OpenEdge DBAs

 Author of ProTop, the #1 FREE OpenEdge Database Monitoring Tool

• http://dashboard.dbappraise.com

7

compile-listing ain't enough

 Everybody knows that there's a problem: "It's slow". Now what?

1. Find the source of the problem

1. Reproduce the issue or at least follow it live - HOW ?

2. Identify the errant code – HOW ?

3. Fix it. That's the easy part

8

Where are you hiding Mr. Problem?

"The system is slow" or better yet "it's slow". Sound familiar?

Three ways to identify problems

1. The user actually tells you what he was doing

• Go buy a lottery ticket

2. Trend data

• Conceptually easy (more later)

3. Sit in front of a screen 24/7 and watch the system

9

Finding the Problem - Trending data

 In a nutshell: there's a LOT of data

 Tools like ProTop and OE Management trend global data

• For example: Index and table usage statistics

 Trending data at the user level is daunting

• Ex.: 500 users, 500 tables, 1500 indexes => 1M data points per sample

– Most of them zero

– How often do you sample? Every minute? 5 minutes?

– "Don’t store the zeros" - sure – but there is a CPU cost to read the million samples and discard them

• Same idea for CSC (Client Statement Cache)

10

Finding the Problem - Trending data

• Identify tables being hit

• In this case, 1M+ reads/sec in one table

• 750K+ reads/sec sustained for 2h – one table

• Graphs from ProTop web dashboard

• Table names not shown but they're there

11

Finding the problem – from trending data to source code

 You have to play detective

 Repeating pattern tells me it's a nightly batch

 If necessary, login at 10:00pm and start monitoring in real time

 Processes consuming excessive CPU or disk I/O

• Use nmon (Linux, AIX) or glance (HPUX) or Windows PerfMon

 Processes doing excessive database reads/writes

• Use VST data (more later)

12

Identify bad code

 Focus on 3 tools to help you identify problems:

• VSTs

• LOG-MANAGER

• –zqil

 Profiler is a great tool but we don't have time

13

Using VST Data

 Assumption for Part 1: Problem is query-related

• Peter will talk later about unnecessary work in your code

 _UserTableStat /_UserIndexStat VSTs

• Which process is hitting what tables/indexes

• Calculate volume but don’t ignore rate and relative size

– 1K reads in 1M records may be normal

– 10M reads in 10K records probably is not

– 750K reads/sec is probably a tad high

 CSC: What code is running

• Turn on Client Statement Cache to follow in real time

• Info in _Connect VST

15

Using VST Data

 Collect data before and after the problematic code and subtract

 Do a little math with etime() to calculate rates

find _connect where _connect-pid = 12345.

for each _UserTableStat where _UserTableStat-conn = _connect-usr:
find _file no-lock where _file-number = _UserTableStat-id.
displ _file-name _UserTableStat-read.

end.

for each _UserIndexStat where _UserIndexStat-conn = _connect-usr:
find _index no-lock where _idx-num = _UserIndexStat-id.
displ _index-name _UserIndexStat-read.

end.

16

Using VST Data

ProTop Free

does it all for you

17

LOG-MANAGER

 A terribly underused but awesomely amazing tool

 Allows you to leave debug messages in your code

• No more /* Message here vValue. */

 Create some secret hotkey sequence to activate

• I.e. you can turn it on in production for one user

 Writes detailed info to a log file

 As easy as …

assign log-manager:logfile-name = "c:\temp\wshop.log"
log-manager:logging-level = 3
log-manager:log-entry-types = "4GLTrace,4GLTrans,QryInfo".

/* Writing your own messages is easy too ... */
log-manager:write-message(

string(LogLevelEnum:WARN) + ': ' + pcMessage,
pcMessageGroup).

18

LOG-MANAGER

for each order where order-num > x:

Type: FOR Statement

Client Sort: N

Scrolling: N

Table: wshop.Order

Indexes: Order-Num

Query Statistics: Bad1 logmgr.p line 23

QueryId: 101299360

DB Blocks accessed:

wshop : 15599

DB Reads:

Table: wshop.Order : 4557

Index: Order.Order-Num : UNAVAILABLE

wshop.Order Table:

4GL Records: 3399

Records from server: 3399

Useful: 3399

Failed: 0

Select By Client: N

16K DB reads

4557 fragments

3399 records

19

LOG-MANAGER

for each order fields(order-num) where order-num > x:

Type: FOR Statement

Client Sort: N

Scrolling: N

Table: wshop.Order

Indexes: Order-Num

Query Statistics: Bad1 logmgr.p line 23

QueryId: 101299360

DB Blocks accessed:

wshop : 11333

DB Reads:

Table: wshop.Order : 3400

Index: Order.Order-Num : UNAVAILABLE

wshop.Order Table:

4GL Records: 3399

Records from server: 3399

Useful: 3399

Failed: 0

Select By Client: N

11K DB reads

3400 fragments

3399 records

20

LOG-MANAGER

for each order where terms = "net30" by terms:

Type: FOR Statement wshop.Order Table:

Client Sort: Y Records from server: 15526

Scrolling: N Useful: 15526

Table: wshop.Order Failed: 0

Indexes: Order-Num Select By Client: N

Query Statistics: Bad3 logmgr.p line 45 Fields: Terms

QueryId: 35632288 Query Statistics: Bad3 logmgr.p

Entries in result list: 15526 QueryId: 35632288

Time to build result list (ms): 169 DB Blocks accessed:

DB Blocks accessed to build result list: wshop : 73703

wshop : 252527 DB Reads:

DB Reads to build result list: Table: wshop.Order : 20571

Table: wshop.Order : 61300 Index: Order.Order-Num : UNAVAILABLE

Index: Order.Order-Num : UNAVAILABLE wshop.Order Table:

4GL Records: 15526

 Read all records (61K) PLUS another 20K fragments to return 15K records
 320K total DB reads

21

-zqil

 Unsupported and undocumented startup parameter

• Aren't those the best!?!

 Writes detailed run-time index usage information to db.lg - yes db.lg

• Do NOT use in prod please

 Tells you which index is used and how many fields deep

 Format is INDEX # LOWER-BOUND UPPER-BOUND TYPE

22

-zqil

for each order: INDEX 20 0 0 (pu order-num)

 … where ship-date = today INDEX 37 1 1 (Ship-date + carrier)

 … and carrier = “pk” INDEX 36 2 2 EQUALITY (Carrier + ship-date)

 … and sales-rep = “pk” INDEX 35 3 3 EQUALITY (sales-rep+carrier+ship-date)

 Now let’s make it interesting

 … where ship-date=... and carrier=... and sales-rep GT “”

• INDEX 36 2 2 EQUALITY (Carrier + ship-date)

 … where sales-rep=... and carrier=... and ship-date LT ...

• INDEX 35 2 3 (Sales-rep + Carrier + ship-date)

 … where sales-rep =... and carrier NE... and ship-date LT ...

• INDEX 23 1 1 EQUALITY (sales-rep)

 … where sales-rep =... and carrier GT “” and ship-date LT ...

• INDEX 35 2 1 (sales-rep + Carrier)

23

Network Effects

 Shared memory DB connections make programmers look like (geeky) rock stars

 Network connections are more like the morning after – not so pretty

24

Network Effects - Basics

MTU

-prefetch*

-Mm

-Mm

-Mm

-Mm

-Mm

-Mm

-Mm

25

Network Effects - Basics

 Field lists: fields of record that are sent to the client

 Prefetch: multiple records per message (no-lock)

 Message: Unit of measure for 4GL network data transfers

• Size controlled by –Mm database start-up parameter

 MTU (maximum transmission unit): the largest packet size that can be transmitted over a

network

• This is a network parameter, not a Progress parameter

 Server Parameters

• -Mi / -Ma / -Mpb: min, max users per server and number of servers per broker

• 4GL servers are round-robin single-threaded

• SQL servers are multi-threaded

26

Network Effects - LOBS

 Thank <insert favourite deity> Progress doesn’t send the LOB across the wire unless you

ask for it

 The LOB field is really a separate entity to the record

 The real record only contains a pointer to the LOB

 The LOB may be in another storage area (and should be)

 When you access the LOB, the client requests it from the

server

27

Network Effects – Legacy Parameters

 -Mm: message buffer size

• Default 1024 is too small

• Max 32600 doesn’t seem to be warranted

• 8192 is a nice sweet spot

 -Mi / -Ma: min/max users per server

• The more users per server, the less time the server can dedicate to any one user

• -Mi 1 -Ma 5 is a good start

• -Mi 1 -Ma 1 if you have heavy duty users

– AppServer agents

28

Network Effects – New Prefetch Parameters

 No-lock queries

 Forward only or scrolling

 10.2B06 + and 11.1+

 -prefetchPriority: server defers poll for other requests while filling message

• Current suggested value 100 records added before next poll

 -prefetchDelay: Fills first message. By default first message contains one record

• In theory this is better. In practice the ms difference is not significant

 -prefetchNumRecs : How many records are stuffed in a message

• 100 records is a good start (default is 16)

 -prefetchFactor: How full (%-wise) to fill a message

• 90-100%

29

Maximum Transmission Unit (MTU)

 A network parameter set at the NIC level

 Enable on the routing infrastructure

 Default is 1500

 “Jumbo Frames” is typically 9000 bytes

 The advantage lies in the relative size of network header data

• 1500 byte MTU: 1460 byte payload / 1538 byte total = 95% efficient

• 9000 byte MTU: 8960 byte payload / 9038 byte total = 99% efficient

30

Monitoring Server Messages

 _ActServer VST

• Key: _server-ID

• Interesting fields: _Server-ByteSent, _ServerMsgSent, _ServerRecSent

• Calculate send size (Bytes sent / messages sent) and compare to –Mm

 Bug: When a record is larger than –Mm, only the first msg is counted

• I.e. if you send a 4K record and –Mm is 1024, only 1 msg and 1024 bytes sent recorded

• Blobs sent in 32,000 byte chunks – each chunk increments msgSent by 1 and byteSent by -Mm

 ProTop Free:

31

unnecessary work

1. Too many calls

2. Too much stuff per call

3. Too many copies of data

32

data across the network

 Network typically major bottleneck

• Makes other performance problems worse

 Number of roundtrips

• Making a server connection has cost

 Data volume per roundtrip

 Network topography has impact …

… but usually out of our control

Data per trip

N
u

m
 t
ri
p

s

33

optimise network roundtrips

getLoginLanguages()

getLoginCompanies()

loginWindow.w
run getLoginLanguages()

run getLoginCompanies()

run buildUI().

34

optimise network roundtrips

getLoginLanguages()

getLoginCompanies()

loginWindow.w
run getLoginLanguages()

run getLoginCompanies()

run buildUI().

1

35

optimise network roundtrips

getLoginLanguages()

getLoginCompanies()

loginWindow.w
run getLoginLanguages()

run getLoginCompanies()

run buildUI().

2

36

optimise network roundtrips

getUiData()
run getLoginLanguages()
run getLoginCompanies()

loginWindow.w
run getUIData()

run buildUI().

1

38

no deep copies

define temp-table ttData ...

run populateData (output table ttData).
run showData (input table ttData).
run getChanges (output table ttData).
run saveChanges (input table ttData).

define temp-table ttData ...
h = buffer ttData:handle.

run populateData (output h).
run showData (input h).
run getChanges (output h).
run saveChanges (input h).

39

no deep copies

define temp-table ttData ...

run populateData (output table ttData).
run showData (input table ttData).
run getChanges (output table ttData).
run saveChanges (input table ttData).

define temp-table ttData ...

run populateData (output table ttData by-reference).
run showData (input table ttData by-reference).
run getChanges (output table ttData by-reference).
run saveChanges (input table ttData by-reference).

40

dataset-handles are not really handles

 Yes, you define HANDLE variables to work with them

 But you can pass / call them as datasets

• To a parameter defined as DATASET-HANDLE

• To a parameter defined as DATASET

• To a parameter defined as HANDLE

 Nice thing with DATASET-HANDLE is that if you receive them you can use static code

against them as if you got a 'real' dataset

41

dataset-handles are not really handles

procedure fetch_data:
def output param poLotsaData as JsonObject.

def var hDataset as handle.
def var oDataObject as Object.

oDataObject = new CustomerData().
oDataObject:GetData(

output dataset-handle hDataset).

poLotsaData:Read(hDataset).
/* now has a property called dsCustomer */

oDataObject = new EmployeeData().
oDataObject:GetData(

output dataset-handle hDataset).

poLotsaData:Read(hDataset).
/* now has a property called dsCustomer

AND one called dsEmployee */
end procedure.

class CustomerData:
define dataset dsCustomer for

ttCustomer, ...

method public void GetData(
output dataset dsCustomer).

end class.

class EmployeeData:
define dataset dsEmployee for

ttEmployee, ttDepartment, ...

method public void GetData(
output dataset dsEmployee).

end class.

42

finding deep copies: find it

 Make sure you have a problem

• LOG-MANAGER:LOG-ENTRY-TYPES = 'Temp-tables'

• Data structure reference counts – datasets, buffers, objects, procedures, etc

define variable hDS as handle no-undo.
define variable iLoop as integer no-undo.

hDS = session:first-dataset.
do while valid-handle(hDS):
assign iCnt = iCnt + 1.
hDS = hDS:next-sibling.

end.

43

finding deep copies: fix it

 Make value passing of tables/dataset the

exception

• Look for ANY and ALL temp-table, table-

handle, dataset, dataset-handle calls without

BY-REFERENCE

 When you have to make a deep copy, clean

up after yourself

 Desperate measures may be needed

run get_data.p (
output dataset-handle hDataset).

finally:
delete object hDataset.

end finally.

run get_data.p (
output dataset-handle hDataset

by-reference).

hDS = session:first-dataset.
do while valid-handle(hDS):
delete object hDS.
hDS = session:first-dataset.

end.

44

too many calls

 Make sure you evaluate functions only once

do i = 1 to udf() vs. do i = udf() to 1 by -1

• Functions are sadly not always idempotent

 Use arrays instead of delimited strings

 Stuff inside a loop

• Record FINDs

• RUN (INPUT-OUTPUT tt)

45

conclusion

 There are no few wizards. There is no barely any magic.

 Measurement is the only sure way to KNOW

• That you have a problem

• That you fixed the problem

47

48

sidebar - profiler

 Unsupported tool introduced in V9

 Now supported in PDSOE 11.6 (maybe 11.5 ?)

 Example UI available in $DLC/src/samples

• I just wrote some simple ChUI/text code to do it myself

 Use the PROFILER handle

• Ex.: PROFILER:ENABLED = TRUE.

 Outputs time spent in each line of code, number of executions…

 Sorry – no time to go into Profiler in detail

49

50

Sidebar - Index Rules

 This is not a "Learn how to use indexes 101" workshop

 Go see Proper Care and Feeding of an Index by Mike Lonski

 With that said, here is a simplified version of the rules

1. If there is a "CONTAINS" then use a word-index

2. If an index is unique and all of it's components are used in an equality match, use that index

3. Use the index with the most equality matches on SUCCESSIVE, LEADING INDEX components

4. Use the index with the most active range matches on SUCCESSIVE, LEADING INDEX

components

5. Use the index with the most active sort matches

6. Use the first index alphabetically

7. Use the primary index

51

Sidebar – Multi-Index Use

 Where … and …

• All components of each index involved in equality matches

• No unique indexes

 Where … or …

• Both sides of OR contain at least the lead component of an index

• Equality or range matches

52

Sidebar - 4GL vs SQL = Rules vs Cost

 4GL and SQL are two different animals

 The 4GL compiler uses rules to pick an index

 The SQL analyzer uses cost statistics to select the lowest cost path to the data

• You need to run UPDATE STATISTICS

 CAVEAT: update statistics is buggy in earlier versions

• Search the KB and the release notes

• I have personally noticed issues up to 10.2B03

 TEST TEST TEST

