
Mike Fechner, Director, Consultingwerk Ltd.
mike.fechner@consultingwerk.de

OO-Oh!

http://www.consultingwerk.de/ 2

Consultingwerk Ltd.

http://www.consultingwerk.de/ 3

 Independent IT consulting organization
 Focusing on OpenEdge and related technology
 Located in Cologne, Germany
 Customers in Europe, North America, Australia

and South Africa
 Vendor of tools and consulting programs
 26 years of Progress experience (V5 … OE11)
 Specialized in GUI for .NET, OO, Software

Architecture, Application Integration

Audience questions

 OO-ABL coders anybody?
 Who has ever implemented an Interface?
 Who has ever defined an Interface?
 Who has ever written an Abstract class?
 Who has ever inherited from a Class?
 Who has ever defined custom Error classes?
 Who knows the ABL reflection API by heart?

OO-Oh 4

CLASS Statement

 Only a single CLASS statement per .cls file
 No nested types
 A class forms a data-type in ABL runtime
OO-Oh 5

CLASS Statement

 Class Type Name: Class Name including
relative path (package)

 INHERITS: Base class name (full or based on
USING)

 IMPLEMENTS: 0, 1 or multiple Interface types
implemented by the class

 USE-WIDGET-POOL: Create an unnamed
widget pool scoped to class instances or the
static portion

 SERIALIZABLE: Allow serialization across
AppServer boundary (AppError derived) 6

CLASS Statement

 ABSTRACT
– Class cannot be instantiated
– Requires child class to inherit from
– May have abstract members
– Class can only be used as “include file”

 FINAL
– Class cannot be inherited from

 ABSTRACT and FINAL are mutually exclusive
OO-Oh 7

OOABL: Members of a class

 Constructor(s)
 Destructor
 Methods, overloaded methods, polymorphic

methods
 Data Members

– Properties
– Variables (primitive and reference types)
– Defined non OO objects, Temp-Tables, ProDatasets,

Query, Buffer, …
 Events
 Static or instance based
OO-Oh 8

PRIVATE or PUBLIC or PROTECTED

 Properties and Methods (including Constructor)
can be PRIVATE/PROTECTED/PUBLIC

 PUBLIC is generally a bad default

 Can’t change signature of a PUBLIC method
without potentially harming consumers

 PUBLIC should only be chosen when there is a
requirement for another class to call into that
method, access that property

OO-Oh 9

PRIVATE or PUBLIC or PROTECTED

 PRIVATE/PROTECTED is not about hiding the
implementation. It’s about avoiding the risk of
having to support those API’s

 Our default is PROTECTED. Less strict than
PRIVATE, our framework designed to support
customization also through inheritance

 We use PRIVATE only where we have good
reasons, because we want to remain able to
change without notice

 Others may have PRIVATE as default
OO-Oh 10

Inheritance

CLASS ChildClass INHERITS BaseClass

OO-Oh 11

Base Class Child Class

Inheritance

CLASS GrandChildClass INHERITS ChildClass

CLASS ChildClass INHERITS BaseClass

OO-Oh 12

BaseClass ChildClass GrandChildClass

Inheritance

 The Include file in the OO world
 Child Class inherits behavior of Base Class

– Similar to including Properties, Methods and
Events

 Methods of Base class accessible on instance of
the Child class, ability to “OVERRIDE”

 No override for properties
 Constructors are not inherited

– Relevant as soon as constructors require
parameters to call them

OO-Oh 13

Inheritance

 Parent Class can be used on it’s own unless
– it has only a PRIVATE/PROTECTED

Constructor
– is defined as ABSTRACT

 ABSTRACT is not the proper indication that a
class cannot be instantiated. ABSTRACT
declares an Implementation requirement

 PRIVATE/PROTECTED Constructor disallows
instance creation (static helper class)

OO-Oh 14

Inheritance

CLASS CustomerBE INHERITS BusinessEntity
CLASS SalesrepBE INHERITS BusinessEntity

OO-Oh 15

BusinessEntity

CustomerBE

SalesrepBE

Inheritance

 Inheritance creates multiple classes (aka Types)
that can be referenced with Variables of that
type

OO-Oh 16

Inheritance

 Consumer of Child Classes of the Base Class
knows that all Child Classes provide at the
minimum the METHOD’s, PROPERTY’s,
EVENT’s of the Base Class

 There may be additional ones

OO-Oh 17

Abstract Base Classes

 If Base Class is incomplete or not usable on it’s
own, it can be defined as ABSTRACT

1. Can’t new Base Class
2. Can have ABSTRACT METHOD’s
3. Can have ABSTRACT PROPERTY’s

– ABSTRACT PROPERTY’s can be
overridden in Child class

OO-Oh 18

Abstract Base Classes

 Protects developers from assuming they can use
the Base class

 ABSTRACT METHOD’s allow the Base Class to
call in a Child Classes METHOD without
DYNAMIC-INVOKE or any CAST
– ABSTRACT METHOD’s can be PUBLIC,

PROTECTED and PRIVATE
 Inner-class callback

OO-Oh 19

OO-Oh 20

Abstract Base Classes

 Implementation detail between Child Class and
Base Class

 Consumer of the Child Class should not care
about this minor detail

OO-Oh 21

Interfaces

 Interfaces enforce implementation of
METHOD’s, PROPERTY’s, EVENT’s without
providing an implementation

 Interfaces provide a common type like Base
Classes do

 Interfaces guarantee consumer of a Class
certain methods

 Interfaces do not limit “creativity” during
implementation as requiring to inherit would

OO-Oh 22

Interfaces

 Do only contain PUBLIC members
– PROTECTED and PRIVATE members are an

implementation detail
 Do not contain CONSTRUCTORS

– Factory classes still need to know this
implementation detail

– i.o.W. there is no way to enforce availability of
certain constructors

OO-Oh 23

Interfaces

OO-Oh 24

Interfaces

 When instances of classes are passed as
parameters or returned from methods,
INTERFACE’s are preferable over Base Classes
or Child Classes as parameters
– There are hardly any cases where a class is

the best solution here
 Specification on requirements only, not

enforcing implementation details (like Base
class)

OO-Oh 25

Interfaces Sample

 CCSBE IBusinessEntity
– IUpdatable BusinessEntity
– GetDataRequest etc.

OO-Oh 26

OO-Oh 27

Multiple-Inheritance

 Mawg – “half man, half dog”

OO-Oh 28

Base Class 1

Child Class
Base Class 2

Multiple-Inheritance

 Like most OO Languages ABL does not support
multiple inheritance

 ABL does support multiple Interface
implementation
– So based on Interfaces “Barfolomew” can be

of type IMan and Idog
– Google for “composition over inheritance” or

“delegation over inheritance”

OO-Oh 29

OO-Oh 30

type-concept via Interfaces

Implementation via
Delegate classes

CAST

 Compiler attempts to verify type compatibility
– assignment of reference variables
– passing object references as parameters

 With CAST developer says, “I know better than
compiler”

 Type checking delayed from compile time to
runtime

 CAST from more generic type reference to a
more specific one

OO-Oh 31

CAST with CCSBE Service Manager

 Demo

OO-Oh 32

CAST with UltraToolbarsManager

 UltraToolbarsManager has a list of „ToolBase“
instances

 ToolBase common set of properties for all tools
on the Ribbon, like Enabled, Text

 StateButtonTool (Checkbox) has additional
properties, like Checked

 When retrieving a StateButtonTool reference
from the Tools collection, you must CAST to be
able to access the Checked property

OO-Oh 33

CAST with UltraToolbarsManager

OO-Oh 34

CAST (CAST (o, P.L.Object), Type)

 There are rare scenarios where a single CAST is
not enough

 CASTING form an interface to a base class that
does not directly implement that interface
– typically when working with a base class that

you can’t influence
– GUI for .NET

 Compiler will not accept CAST as Base class
and Interface are incompatible

 Fool the Compiler with CAST(CAST())
OO-Oh 35

OO-Oh 36

TYPE-OF

 Verifies if CAST is possible
 Returns true, when type implements Interface
 Returns true, when type is child type
 Returns true, when types are the same

OO-Oh 37

Reflection

 Dynamic access to methods and properties
 DYNAMIC-NEW
 DYNAMIC-INVOKE
 DYNAMIC-PROPERTY

 Similar to RUN VALUE(), DYNAMIC-
FUNCTION, hProcedure:INTERNAL-ENTRIES

OO-Oh 38

Reflection API in 11.6

 Allows to query a class for properties, methods
and constructors at runtime

 Allows for fully dynamic (configurable) INVOKE-
METHOD

 Based on classes in Progress.Reflect package

OO-Oh 39

Reflection API in 11.6

OO-Oh 40

Reflection API in 11.6

OO-Oh 41

Reflection

 Don‘t use reflection, just because you can
 Great way of giving up many OO benefits …

– Interfaces and CAST are safer way
 Reflection is typically used in central framework

components
– OERA Service Interface
– Developer tools

 Reflection should be avoided in regular business
logic

OO-Oh 42

DatasetModel in SmartComponent Library

 Demo …

 Create new Business Entity with Dataset Model
 Review generated code

OO-Oh 43

DatasetModel Problem

OO-Oh 44

CustomerDatasetModel

ListTableModel

CustomerTableModel

CustomerTableModelFilter

Solution: Split DatasetModel class into 2

OO-Oh 45

CustomerDatasetModel

ListTableModel

CustomerTableModel

CustomerTableModelFilter

DatasetModelPerformer

Solution: Split DatasetModel class into 2

 By moving those parts of Class A that class B
and C depend on into a separate class, the
circular reference could be resolved

 DatasetModel construct does no longer hold a
circular reference by itself

 As soon as no consumer does no longer hold a
reference to the DatasetModel instance, it’s
GC’d from memory

 No need for DELETE OBJECT
OO-Oh 46

Events Publishing the .NET way

 Events are typically defined PUBLIC
– That controls the ability to SUBSCRIBE

 Events can only be published from the defining
class
– :PUBLISH is always PRIVATE

 Event subscribers receive event callbacks in
FIFO order

 Similar implementation in .NET

OO-Oh 47

On…EventName method

OO-Oh 48

On…EventName Method

 Only place to PUBLISH the Event
 PROTECTED METHOD

– Callable from Child Class
– Overridable in Child Class

 In the Base Class that defines the event the
On…EventName Method allows to verify event
pre-conditions before PUBLISH

 In the Child Class an override to the
On…EventName method allows to handle event
before OR after any body else

OO-Oh 49

Demo

 Progress Developer Studio for OpenEdge macro
to define events: “defevent”

50

/*--
Purpose: Raised ${cursor}
Notes:
@param sender The object that raised the ${event} event
@param e The ${eventargs} with the data for the event

--*/
DEFINE PUBLIC EVENT ${event} SIGNATURE VOID (sender AS Progress.Lang.Object,

e AS ${eventargs}).

/*--
Purpose: Raises the ${event}
Notes:
@param e The ${eventargs} with the data for the event

--*/
METHOD PROTECTED VOID On${event} (e AS ${eventargs}):

/* Consultingwerk.Assertion.EventArgsAssert:IsValid (e, "${event}":U) . */

IF NOT VALID-OBJECT (e) THEN
e = Consultingwerk.EventArgs:Empty .

THIS-OBJECT:${event}:Publish (THIS-OBJECT, e) .

END METHOD .

Class Naming Recommendations

 Keep class names unique over all
packages!!!

 Makes copy & paste programming less error
prone

 Don’t do:
– Consultingwerk.Frontend.Views.Customer
– Consultingwerk.Data.Models.Customer
– Consultingwerk.Backend.Customer

 Rather do: CustomerView, CustomerModel,
CustomerBusinessEntity

OO-Oh 51

PDSOE on Steroids …

 http://oedt.hh-berlin.de

OO-Oh 52

Don‘t miss our other presentations
 Monday 11:00: CCS Deep Dive (Mike)
 Tuesday 11:00: OO-Oh (Mike)
 Tuesday 13:00: Application Modernization

using the SmartComponent Library (Mike and
Marko)

 Tuesday 16:45: REST in Peace (Mike)
 Wednesday 11:00: CCS BoF (all CCS)
 Wednesday 11:00: Angular JS for

OpenEdge programmers (Marko)

CCS - A deep dive 53

Questions

54http://www.consultingwerk.de/

	Foliennummer 1
	Foliennummer 2
	Consultingwerk Ltd.
	Audience questions
	CLASS Statement
	CLASS Statement
	CLASS Statement
	OOABL: Members of a class
	PRIVATE or PUBLIC or PROTECTED
	PRIVATE or PUBLIC or PROTECTED
	Inheritance
	Inheritance
	Inheritance
	Inheritance
	Inheritance
	Inheritance
	Inheritance
	Abstract Base Classes
	Abstract Base Classes
	Foliennummer 20
	Abstract Base Classes
	Interfaces
	Interfaces	
	Interfaces
	Interfaces
	Interfaces Sample
	Foliennummer 27
	Multiple-Inheritance
	Multiple-Inheritance
	Foliennummer 30
	CAST
	CAST with CCSBE Service Manager
	CAST with UltraToolbarsManager
	CAST with UltraToolbarsManager
	CAST (CAST (o, P.L.Object), Type)
	Foliennummer 36
	TYPE-OF
	Reflection
	Reflection API in 11.6
	Reflection API in 11.6
	Reflection API in 11.6
	Reflection
	DatasetModel in SmartComponent Library
	DatasetModel Problem
	Solution: Split DatasetModel class into 2
	Solution: Split DatasetModel class into 2
	Events Publishing the .NET way
	On…EventName method
	On…EventName Method
	Demo
	Class Naming Recommendations
	PDSOE on Steroids …
	Don‘t miss our other presentations
	Questions

