Climb Aboard The
ProDataSet Train

Paul Guggenheim & Associates, Inc.
1788 2" St., Ste 200
Highland Park, IL 60035
(847) 926-9800
www.pgasmarts.com

Climb Aboard The ProDataSet Train

Copyright © 2016

Paul Guggenheim & Associates, Inc.

The Climb Aboard The ProDataSet Train is copyrighted and all rights are reserved by Paul Guggenheim &
Associates, Inc. This manual is copyrighted and all rights are reserved. This document many not, in whole or
in part, be copied, photocopied, translated, or reduced to any electronic medium or machine-readable form
without prior consent, in writing, from Paul Guggenheim & Associates, Inc.

Printed in U.S.A.
First Printing — June, 2016

All company and product names are the trademarkes or registered trademarks of their respective
companies. OpenEdge is a registered trademark of Progress Software Corporation.

Page 2 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Notes

Page 3 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Introduction to ProDataSets

ProDataSet
Database
DataSourcel
tstudent
,‘_*,
student srcstduent Eve Hoffman L
Eve Hoffman Query... Edward Feinstein
Edward Feinstein 1 ———p 01 for Ahmad Jordan
AAUTER) SR student Relationship 1
tstuchrg
Stl.lchrg 1‘ I DataSource2 1 ‘ *' 798 8/‘29 BOOk $325 .<.|
100 3/23 Book $275 Srcstuchrg 805 9/25 Book $450
101 3/25 Food $15 812 9/27 Food $22
102 3/27 Room $500 X .
Relationship 2
tcharge
charge le I DataSource3 = el S »
Book Charge srccharge Food Charge
Food Charge Room Charge
Room Charge
v EventLogic
before_buffer_fill
after_buffer_fill
before_buffer_update

Page 4 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Introduction to ProDataSets

What is a ProDataSet?

e A collection of one or more temp-tables that optionally contain a collection of data-relations
amoung the member temp-tables.

e Each member temp-table can attach to a data-source object in order to receive data from
the database or writing data to the database.

e The term for a ProDataSet receiving data from the database is called filling.
e In addition, 4GL procedures may be assigned to the many ProDataSet named events in

order to customize the behavior, perform validation, and execute different kinds of
business logic.

Page 5 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Introduction to ProDataSets
What can ProDataSets do?

¢ Define complex business logic between many levels of related data

e Defind a data mapping between the ProDataSet and the database

e Associate hooks to custom event procedures

e Records changes to ProDataSet temp-table records for updating the database

e (Can pass the DataSet as a single parameter with a single handle from one procedure to
another, within a single Progress session or between sessions.

e Can be either a static or dynamic object, consistent with other objects such as temp-tables

What are ProDataSet good for?

e |solating business logic into one object
e Minimizing network traffic in distributed applications
e Use the ABL to develop applications using the .NET user interface

e Provide a convenient, powerful and consistent way to separate application data access
from how the underlying data is stored in the database

e Capture creates, changes and deletions on either client or server and allow maximum
flexible transaction control

e Provide a migration strategy for ADM2 SDOs and SBOs (SMARTDataObjects and
SMARTBusinessObijects)

Page 6 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Introduction to ProDataSets
Typical uses for ProDataSets

1. A database disconnect user interface application such as WebClient or .NET.

e For example, a client enters a purchase order which requests a ProDataSet from a
server. The client receives the PO information from the server, using the data in the
ProDataSet to display the data in browses or viewers. Data is updated on the client and
a reduced ProDataSet containing only the changes is then passed back to the
AppServer to minimize network traffic. On the AppServer the data is validated and
updated against the database.

2. Processing server-side business logic.

e A business logic procedure uses one or more ProDataSets to access the pertinent
application data. ProDataSets encapsulate the data, insulating the logic from the actual
structure of the data sources. This is an essential aspect of a future-proof application
architecture.

3. Using ProDataSets to perform complex calculated data such as a price sheet.

4. Pass a ProDataSet containing a single temp-table BY-REFERENCE, since this option is
not available for passing temp-tables by themselves.

5. Use a ProDataSet as a mechanism to pass a set of possibly unrelated lookup tables to be
used by the client session.

Page 7 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Page 8 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

ProDataSet Syntax

e ProDataSets are defined using the DEFINE DATASET statement.
e There are 3 components to a ProDataSet:

o Temp-Tables
o Data-Relations
o Data-Sources

e Temp-tables must be defined before the static ProDataSet is defined. The ProDataSet
references the temp-table in the ProDataSet definition by referring to a buffer name of the
temp-table. By default, the buffer name is the temp-table name.

e Data-Relations are optional, dependent components defined in the ProDataSet. Typically,
Data-Relations are commonly used to define how a parent and child buffer are linked

together in a ProDataSet. If only one buffer is defined for a ProDataSet, then a Data-
Relation doesn't need to be defined.

Syntax
Define DATASET statement

DEFINE { [[NEW] SHARED] | [PRIVATE | PROTECTED] [STATIC] }

DATASET dataset-name

[NAMESPACE-URI namespace] [NAMESPACE-PREFIX prefix]

[XML-NODE-NAME node-name] [SERIALIZE-NAME serialize-name]
[XML-NODE-TYPE node-type] [SERIALIZE-HIDDEN]

[REFERENCE-ONLY] FOR buffer—-name [, buffer—-name]

[DATA-RELATION [data-rel-name] FOR data-rel-spec]

[PARENT-ID-RELATION [data-rel-name] FOR parent-id-rel-spec]

Page 9 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

ProDataSet Syntax

e A Data-Source is an independent object that is used to transfer data between the database
and a ProDataSet.

Page 10 of 120

Typically, there is one Data-Source defined for each defined temp-table buffer in a
ProDataSet. However, the Data-Source may represent more than one database buffer
(table) if there are fields in the temp-table buffer that come from different database
tables.

The Data-Source definition identifies the unique key in the database table for the Data-
Source. How it maps to the temp-table buffer of the ProDataSet is defined in the
attach-data-source method (more on that later).

The Data-Source definition may specify either a query phrase or a source-buffer-
phrase or both.

e Typically, a query is defined for the top-level ProDataSet buffer. The purpose is to
only read a subset of the parent records when the ProDataSet is filled.

e Typically, a source-buffer-phrase is used for a child ProDataSet buffer. This
populates the child buffer with related records from the parent when the ProDataSet
is filled.

The reason the data-source is a separate object gives the developer flexibility in
passing the ProDataSet to another session. Data-sources are connected with database
buffers which can't be passed across a session boundary. Another advantage is it
allows a ProDataSet to attach and detach data-sources during program execution
which makes it easy to load data into a ProDataSet from different databases.

Even though you can't pass data-sources across the session boundary, and cannot
pass a data-source as a parameter, the data-source handle may be accessed through
its DataSet if the DataSet is passed locally. Or another option is to simply include the
same data-source definition in multiple procedures.

Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

ProDataSet Syntax

e In general, a query is not appropriate or necessary to be defined for a data-source when:

e The data-source is a child table in a data-relation of a ProDataSet. The data-source will
retrieve the records based on the relationship with the parent record during a FILL
method.

o There are exceptions where a query is desired on a child data source. This is
covered in the Advanced Reading Operations section.

e The data-source is a top level table (one with no parent) and retrieving all the records
from the data-source is desirable.

e The data-source is used for update purposes only. Remember, a defined query for a
data-source is only used on a FILL.

e A query will be attached to the data-source dynamicly at run-time.
¢ |n general, a data-source may not be needed at all when an event procedure is used to fill

or update the table. For example, a flat file of data may be used to load data into a temp-
table during the execution of an event procedure.

Page 11 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Populating a ProDataSet
pdsi.p

/* pdsl.p dataset example one - one table read-only dataset */

define temp-table tstudent no-undo like student.
define dataset dsstudent for tstudent.

define query qgstudent for student.

define data-source srcstudent

for query gstudent
student keys (studentid).

buffer tstudent:attach-data-source(data-source srcstudent:handle).

query qgstudent:query-prepare("for each student NO-LOCK
where stcode = 'IL' and syear = 2007").

dataset dsstudent:fill().

buffer tstudent:detach-data-source().

StudentlD Firgst Mame Last Mame GPA Phone

000206 D ervwood Glaz= 275 [312)804-7418
001956 Diane Huber IS [3121519-8147
002037 Gladus Larzon 2832 [312] 524-0669
ao2219 Cuincy Jacaobzon 2.80 1212 7e5-0009

StudentlD; 00020
Mame: Denwood Glazs

Citp 5t Zip: Chicago 1L BO05Z9
FPhone: (312) S504-7418

First M=t Fresw Laszt Full Done

Page 12 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Populating a ProDataSet

e The first example, pds1.p, the ProDataSet consists of only one table, and therefore there
are no data-relations.

e This example shows how to populate a ProDataSet using the fill method.

e |t defines a browse built on the query associated with the tstudent temp-table that is
defined on the ProDataSet dsstudent.

e Ingeneral, it is recommended that the DataSet temp-tables should be as normalized
and concise as possible irrespective of how the data is stored in the database tables.

e This allows the business logic and data display logic to reference properly
organized data in the form best suited for the application.

e Use the ProDataSet mapping features and custom logic to map the temp-table
representation to the existing database design.

e The advantage to this approach is that if the database changes later, only the
mapping needs to change; the internal ProDataSet logic may remain the same.

¢ Another recommendation is to use include files to define the temp-tables used in a
ProDataSet. The same temp-tables may be used in many DataSet definitions and/or
many procedures. Therefore the include files may be reused many times.

Page 13 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Populating a ProDataSet
There are 8 steps to building a ProDataSet.

Define the temp-table used in a ProDataSet.

Define the ProDataSet.

Define a database query used in the top-level data-source.

Define the data-sources used with the ProDataSet.

Execute the attach-data-source method for the data-sources.

Execute a query-prepare method on the query associated with the top-level data-source.
Execute the fill method on the ProDataSet.

Execute the detach-data-source method for the data-sources.

©®NoOoTkwN -

Page 14 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

ATTACH-DATA-SOURCE Method

e The buffer-handle is the handle to the temp-table buffer defined in the ProDataSet.
e The datasource-hdl is the handle to the data-source object.

e The optional pairs-list is a comma delimited list of field pairs between the data-source field
and then the ProDataSet field.

e Each field pair equates the data-source field with the corresponding DataSet field in the
pair during the attachment. This is useful if the temp-table fields are named differently from
the database fields.

e If there are any fields in the database buffer that don't match a temp-table field and are not
specified in the pairs-list, then they are skipped.

e Make sure there are no embedded spaces between fields.

e The optional except-fields list excludes fields in the list from being loaded on the fill
method. This is useful to limit how many fields are passed to reduce network traffic.

e The optional include-fields list specifies only those fields that may be loaded on the fill
method. Like the except-fields list, this is also useful to limit how many fields are passed to
reduce network traffic.

e Either the except-fields list or the include-fields list may be used but not both.

e If the include-fields list is used, a question mark "?" must be used with a comma "," as a
place holder for the exclude-fields list.

e |tis possible to use the rowid(db-buffer-name),ttrowid-field in the pairs-list. This allows
Progress to use the ROWID of the database record as the key to uniquely identify the
record. In this case, the phrase KEYS(ROWID) should be specified in the data-source
definition.

¢ Inthis example, pairs-list option for ATTACH-DATA-SOURCE wasn't used. This is
because the temp-table tstudent was defined exactly like the database table student so
there was no need to use the pairs list.

e However, the except-fields and include-fields options could have been used.

Syntax

ATTACH-DATA-SOURCE method

ATTACH-DATA-SOURCE (datasource-hdl
[[[, pairs-list] , except-fields] , include-fields]

Page 15 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Populatlng a ProDataSet

Progress provides the fill method for populating the entire DataSet or for populating data
for a particular member buffer of a DataSet.

e ProDataSet-object-handle:FILL() or buffer-object-handle:FILL()

e The fill method provides a consistent and uniform way for populating data in the
ProDataSet.

¢ As noted in the steps to building a ProDataSet, the query-prepare method MUST be used
for each query that is to be filled. This is true even if the query is static. Progress cannot
associate a static OPEN QUERY statment with a DataSet.

¢ In this simple example, the fill is executed in this way:

dataset dsstudent:fill().

e However, since the ProDataSet contains only one temp-table the fill command could have
been executed this way with the same results:

buffer tstudent:fill().
e Like other Progress methods, handle variables could have been used. For example:
define var hds as handle no-undo.

hds = dataset dstudent:handle.
hdsfill().

OR

define var hbuff as handle no-undo.
hbuff = buffer tstudent:handle.
hbuff:fill ().

e There will be more on the fill method in the next example.

Syntax
Fill Method

EILL ()

Page 16 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Populating a ProDataSet
pds2.p

/* pds2.p dataset example two - added fill button to load additional data */

define temp-table tstudent no-undo like student
index studentid is unique studentid .

define dataset dsstudent for tstudent.

define query gstudent for student.
define data-source srcstudent

for query gstudent
student keys (studentid).

procedure fillds:

buffer tstudent:attach-data-source(data-source srcstudent:handle,"").

query gstudent:query-prepare("for each student no-lock

where stcode =
o
stcodevar

+
+
+ " and syear =
+ string(syearvar)
).

/* or use quoter function */

query gstudent:query-prepare("for each student no-lock

where stcode =

+ quoter(stcodevar)

+ " and syear =
+ string(syearvar)

if fillmodevar
then buffer tstudent:fill-mode = "empty".
else buffer tstudent:fill-mode = "merge".

dataset dsstudent:fill().

buffer tstudent:detach-data-source().
end.

Page 17 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

@
Climb Aboard The ProDataSet Train

Populating a ProDataSet

Fill Method

StudentlD Firszt Mame Lazt Mame GPA Phone State Grd T
000206 Demwood Glass 278 [32] 804-7418 1L 2007
0071956 Diane Huber ATR 321 519-8147 1L 2007

0028713 Guircy Jacobzon 280 (312) 7E5-0003 IL 2007
002037 Gladys Larzon 2.83([32) 534-0869 IL 2007

State/Pravince: C0 A
CT

DC
DE
Gy
HI
I8,
ID
L v

[araduation 'ear:

2007
0
Fill ode:) Empty (8 Merge

StudentiD:
M arne:
Address
City, 5t Zip: Chicago IL B0E39
Phone: (312) 804-7418

Page 18 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Populating a ProDataSet

e |n pds2.p, the fill method is executed as many times as the user desires to populate the
DataSet with a particular group of records.

Each buffer defined in a DataSet has an attribute called the FILL-MODE.

e When the FILL method executes, Progress checks the FILL-MODE attribute for
each buffer and acts according to the FILL-MODE specified.

e The four FILL-MODE values are:

EMPTY - Any data that is in the temp-table for this particular buffer is emptied
before the FILL method executes.

NO-FILL - No data is to be loaded into the temp-table. Possible reasons are
that the temp-table has already been loaded and it is from a static database
table such as state, or the temp-table will be filled in a separate operation.

APPEND - Records will be added to the temp-table in addition to the records
already there. If the records added are duplicates based on the unique key for
the table, an error condition will be raised. This is useful if a developer wants to
be notified of duplicate records.

MERGE - This is the default FILL-MODE. Similar to APPEND, the MERGE
mode adds records and automatically checks for duplicates. Duplicate records
are not added and no error condition is raised. The MERGE mode requires that
the temp-table have a unique index and the same field(s)are defined as keys for
the data-source.

In pds2.p, the user may press the Fill button and select query conditions stcode (State)
and syear (graduation year) for the FILL method.

In addition, the user may select either EMPTY or MERGE for the FILL-MODE. If
EMPTY is selected, the current data in the tstudent temp-table is removed and
replaced with the new records based upon the current query conditions. If MERGE
mode is selected, new records are added to the existing set of records.

The QUOTER function is useful for quoting string values in the QUERY-PREPARE
method.

Page 19 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Populating a ProDataSet
pds3.p

/* pds3.p dataset example three - multi-table read-only dataset */

define temp-table tstudent no-undo like student
field chargetot as decimal label "Total Charges"
index studentid is unique primary studentid .

define temp-table tstuchrg no-undo like stuchrg.
define temp-table tcharge no-undo like charge.

define dataset dsstuchrg for tstudent, tstuchrg, tcharge
data-relation stuchrg for tstudent, tstuchrg
relation-fields (studentid, studentid)

data-relation charge for tstuchrg, tcharge
relation-fields (chargecode, chargecode).

define query gstudent for student.
define data-source srcstudent

for query gstudent

student keys (studentid).

define data-source srcstuchrg for stuchrg.

define data-source srccharge for charge.

buffer tstudent:attach-data-source(data-source srcstudent:handle,"").
buffer tstuchrg:attach-data-source(data-source srcstuchrg:handle,"").
buffer tcharge:attach-data-source(data-source srccharge:handle,"").

query qstudent:query-prepare("for each student
where stcode = 'IL'
and syear = 2007").

dataset dsstuchrg:fill().
buffer tstudent:detach-data-source().

buffer tstuchrg:detach-data-source().
buffer tcharge:detach-data-source().

Page 20 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Populating a ProDataSet

Studentt Firzt Mame Laszt Mame GPA Phone Total Charges
000206 Derwood Glass 275 (218047418 0,00
0013956 Diane Huber ATE 2519347 0.00
002037 Gladys Larzon 283 [312) 5340669 0.00
0028113 Quircy Jacobson 280 [312) 7E5-0003 0.00

Charge Mo. chargelate chargeCode Arnount # | | chargeCode Description

014964 01.8/08 QOther $50.00 bioal Book Charge
014965 01/06/08 Other $50.00 food Food Charge
014966 06/26/08 Other $12.00 ather Other Charge
014967 11/24/07 Other $50.00 room Foom Charge
014909 03/02/068 Room $400. 00 tuition Tuition Charge
014919 12/02/06 Roaomm $060.00 W

Done

In pds3.p, we introduce a multiple table ProDataSet. The top-level temp-table is tstudent
based on the student database table. The child table to tstudent is tstuchrg based on the
stuchrg (Student Charge) database table. The third temp-table is tcharge, the parent of the
tstuchrg temp-table and is based on the database table charge.

The three temp-tables must be defined before the ProDataSet definition.
Notice that there is a calculated field called chargetot defined on the tstudent temp-table.
This field is displayed as 0 for each record in pds3.p and pds4.p. We will show you how to

populate this field later using event procedures in pds5.p.

With multiple temp-tables defined, it is desirable to define data-relations between the temp-
tables.

The DATA-RELATION name is optional. For example, the ProDataSet definition could
have been written like this:

define dataset dsstuchrg for tstudent, tstuchrg, tcharge

data-relation for tstudent, tstuchrg
relation—-fields (studentid, studentid)
data-relation for tstuchrg, tcharge

relation-fields (chargecode, chargecode).

o Ifthe name isn't specified, then the first DATA-RELATION name is relation1 and
the second one is relation2 by default.

Page 21 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Populating a ProDataSet

e The RELATION-FIELDS phrase specifies a comma-separated pair of fields in the order
the buffers were specified in the DATA-RELATION.

¢ In the stuchrg data-relation, the first relation-field is from the tstudent temp-table and the
second is from the tstuchrg temp-table.

¢ |nthe charge data-relation, the first relation-field is from the tstuchrg temp-table and the
second is from the tcharge temp-table.

e Remember that Progress uses this data-relation information when ProDataSet is filled.

o Before the DataSet can be filled all defined data-sources for the ProDataSet must be
attached, otherwise a run-time error occurs.

e The FILL method on the ProDataSet retrieves records from all data-sources into all temp-
tables.

e The FILL method starts by reading the first record in the top-level query, then proceeds
down through the data-relation relationships recursively.

e |n pds3.p, the FILL method reads the first student record, then it reads the first stuchrg
child record of the student record, followed by the parent charge record of the student
charge record.

It then continues through all the child stuchrg records of the first student and their
corresponding charge record before reading the second student record and repeating
the process.

e |tis possible to load the temp-tables in a non-nested manner during a FILL method if the
RELATIONS-ACTIVE attribute on the ProDataSet object is set to false. Filling the DataSet
this way also requires a query to be defined on each child temp-table.

e One issue on how we structured the DataSet in pds3.p is that the tcharge temp-table will
only contain records that are related to the tstuchrg temp-table. However, there may be
more records in the tcharge temp-table but do not relate to any children in tstuchrg table.
Therefore, those tcharge records will not be included in the tcharge browse.

e For example, there is a tax tcharge record, but in pds3.p, it will not be added from the
FILL method unless the tstuchrg record is a tax charge.

e If you want all tcharge records to be included in the DataSet, yet still be directly related
to the tstuchrg temp-table, then the REPOSITION keyword should be added to the
charge data-relation.

Page 22 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Populating a ProDataSet

pds4.p

/* pds4.p dataset example four - added reposition to tcharge data-relation */.

define dataset dsstuchrg for tstudent, tstuchrg, tcharge
data-relation stuchrg for tstudent, tstuchrg
relation-fields (studentid, studentid)

data-relation charge for tstuchrg, tcharge
relation-fields (chargecode, chargecode) REPOSITION.

Studentft Firzt Mame LaztMame GPA Phone Total Charges
000206 Derwond Glass 275 [32)804-7418 0.oo
001956 Diane Huber 275 (A2 515-8147 0.o0
002037 Gladys Larzon 283 [312)524-0663 0.oo
002373 Quincy Jacobzon 2.80([312) 765-0009 0.oo
Charge Mao. chargelate chargeCode Amount » | | chargeCode Description ~
011593 05/06/08 Other $18.00 bioak, Book Charge
M1600 11/28/07 Other $40.00 finance Finance Charge
0116071 0302408 Other $50.00 food Food Charge
M1565 08/02/08 Roam $400.00 ather Other Charge
011563 12/02/06 Room $560.00 room Room Charge
1571 03/02/07 Room £700.00 » | itax Tax Charge | W
Done

e In pds4.p, the REPOSITION keyword was added, which allows loading of the entire charge
table into the tcharge temp-table.

e This makes it easier to add new stuchrg records and allows the user to select the
correct charge from the browse.

e Think of REPOSITION as sort of an "outer-join", where the parent table displays all
records whether or not the child records relate to all the parent records or not.

Page 23 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Populating a ProDataSet
pds5.p

/* pds5.p dataset example five - added after-fill callback procedure */

default-window:width = 100.

buffer tstuchrg:set-callback-procedure
("after-fill", "poststuchrgFill", THIS-PROCEDURE).

query qstudent:query-prepare("for each student
where stcode = 'IL'
and syear = 2007").

wait-for close of this-procedure.

procedure poststuchrgfill:
define input parameter dataset for dsstuchrg.
for each tstuchrg of tstudent:
accumulate chargeamt (total).

end.
assign chargetot = accum total chargeamt.

end.

Studentd First Mame Last Mame GPA Phone Tatal Charges
000206 D enwood Glasz 275 [312)804-7418 27 B4B.00
001956 Diane Huber 3753125198147 20,371.00

002037 Gladys Larzon 2.83[32]534-0669 25,362.00
002813 Quincy Jacobzon 2,80 [312) 7E&-0003 25.020.00

Charge Mo. chargelDate chargeCode Arnount A | | chargeCode Description "

013057 M./03/08 Other $60.00 finance Finance Charge

0130588 118/0F Other $30.00 food Food Charge

013059 04/08/08 Other $12.00 ather Qther Charge

013001 08/024068 Room $400.00 ronom FRoom Charge

3011 1202408 Room $860.00 kaw Tax Charge

013021 0302407 Roam $700.00 » | | tuition Tuition Charge W
Done

Page 24 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Populating a ProDataSet

e |n pds5.p, we introduce event procedures or callback procedures to help populate the total
charges per student.

e The SET-CALLBACK-PROCEDURE method associates a named event with an
internal procedure to run when the event occurs, and the persistent procedure handle
indicating where to run the internal procedure.

e callback-name is the event of when the internal procedure executes internal-
procedure is the name of the internal procedure procedure-context is the persistent
procedure handle where the internal procedure will be executed.

¢ Internal-procedure is the name of the internal procedure

e Procedure-context is the persistent procedure handle where the internal procedure
will be executed.

e The following are the Progress supplied DataSet events:

BEFORE-FILL
AFTER-FILL
BEFORE-ROW-FILL
AFTER-ROW-FILL

e The top two of these events may be used on both the DataSet and the DataSet temp-
table buffer handle. The latter two may only be used for the DataSet temp-table buffer
handle.

e |n pds5.p, the AFTER-FILL callback procedure is used on the tstuchrg temp-table
buffer. This means after the tstuchrg temp-table records are filled for a particular
tstudent, the poststuchrgfill procedure is executed. It reads all the tstuchrg records of
the tstudent record and calculates the total for the chargetot field in the tstudent table.

e The SET-CALLBACK method is used in OO classes to associate a named event with
a routine-name in a routine-context. A routine-name can refer to either an OO method
or an internal procedure. A routine-context refers to an object reference for a class
instance or a handle to a persistent procedure that contains the method or internal
procedure specified by routine-name.

Syntax
SET-CALLBACK-PROCEDURE Method

SET-CALLBACK-PROCEDURE (callback-name, internal-procedure
[, procedure-context])

SET-CALLBACK Method
SET-CALLBACK (callback—-name , routine-name [, routine-context])|

Page 25 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train
Lab 1 — Reading Records into a ProDataSet

1. Create Your First ProDataSet
a. Copy teacher1.p in the labs folder to teacherilab.p.
b. Do the 8 steps needed to use a ProDataSet in the procedure for the teacher table.
c. Putthe 8 steps in the procedure where indicated by the comments.

2. Fill the ProDataSet
a. Copy teacher2.p in the labs folder to teacher2lab.p.
b. Setup the query-prepare method based upon the selection of the lastnamevar and
gendervar.
c. Assign the corresponding fill-mode attribute based upon the fillmodevar variable.

3. Create a Multi-Table ProDataSet
a. Copy offering1.p in the labs folder to offering1lab.p.
b. Define temp-tables like the database tables:
i. teacher
ii. offering
ii. course
iv. season
c. Define the dataset dsoffering referencing the 4 temp-tables in the following order:
i. tteacher
ii. toffering
iii. tcourse
iv. tseason

4. Allow all courses to be loaded into the ProDataSet, even ones not linked to the Teachers,
Offerings and Courses
a. Copy offering2.p in the labs folder to offering2lab.p

5. Calculate the total number of offerings per teacher and store it in the offeringcount temp-
table field.
a. Copy offering2.p in the labs folder or offering2sol.p in the solutions folder to
offering3lab.p
b. Use the set-callback-procedure to calculate the number of offerings for each
teacher

Page 26 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations
In this section, the following topics will be covered:
e Batching data with ProDataSets

e Using Multiple Database Buffers on a Data-Source

e Query on a child temp-table

Batching Data with ProDataSets

Up to this point, the examples shown have used a filter on the top level data-source to limit the
number of records read.

What if a filter is not desired, how do we limit the number of records being read on a large table?
Also, what if not all the fields in the record need to be read?
OpenEdge provides ways to batch records into a ProDataSet.

The following language components will be used to control the data read into ProDataSets:

Component Type

OFF-END ProDataSet Event
BATCH-SIZE Temp-Table Buffer Attribute
LAST-BATCH Temp-Table Buffer Attribute
NEXT-ROWID Data-Source Attribute
RESTART-ROWID | Data-Source Attribute

Page 27 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations
Batching Data with ProDataSets

pds23.p

/* pds23.p dataset twenty-three - one table read-only dataset with batching all in one procedure
no appserver */

def var vFieldList as char init
"StudentID,sfirstname,slastname,phone,city,stcode,postalcode”.

query qtstudent:set-callback-procedure("off-end", "offend").
run fillds (input 2975, output dataset dsstudent).

message "Show batching message when browse goes off the end?"
view-as alert-box question buttons yes-no update showmsg.

wait-for close of this-procedure.

procedure fillds:
define input parameter ipstudentid as int.
define output parameter dataset for dsstudent.

buffer tstudent:attach-data-source(data-source srcstudent:handle,"", ?, vFieldList).

buffer tstudent:batch-size = 10.
query gstudent:query-prepare("for each student no-lock where student.studentid > " +
string(ipstudentid)).

dataset dsstudent:fill().
buffer tstudent:detach-data-source().
end.

procedure offend:
define input parameter dataset for dsstudent.

if showmsg then
message "inside offend" skip
"last batch?" buffer tstudent:last-batch skip
view-as alert-box.
if not buffer tstudent:last-batch then do:
find last tstudent.
run fillds (tstudent.studentid, output dataset dsstudent).
return no-apply.
end.
end.

Page 28 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations

Batching Data with ProDataSets

e In pds23.p, the student table is read in studentid order.

e The user is prompted when the program executes asking to show the batching message
when the browse goes off the end.

Question (Press HELP to view stack trace)

9 Show batching message when browse goes off the end?

Yes Mo Help

e To demonstrate the last-batch attribute efficiently, the data-source starts reading student
records at 2,975 (out of approimately 3,000). This is show when by the statement:

e runfillds (input 2975, output dataset dsstudent).
¢ Inside procedure fillds, the batch-size is set to 10 for the temp-table buffer tstudent.
e When the fill method executes, only ten records are read into the temp-table.

¢ When the user scrolls down the browse after ten records and more records remain, the
following message is displayed:

inside offend
last batch? no

e Since more records remain, then the last batch attribute is set to no.

Page 29 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations
Batching Data with ProDataSets

e Once the last record is read into the temp-table buffer and the user attempts to scroll
forward in the browse, then the last batch attribute is set to yes.

Message (Press HELP to view stack trace) “

inside offend
last batch? yes

OK Help

e The RETURN NO-APPLY is very important to put into this event procedure. Without it, the
program will go into an infinite loop.

e The vfieldlist variable consists of fields used in the browse and frame from the student
table. When this variable is specified in the include field list parameter on the attach-data-
source method then only those fields are populated from the database.

e This is used to limit network traffic.

¢ Notice when the full button is pressed, the fields not included in the list are shown as blank.

StudentlD: 00237& First Wame: Ed
Lagt Mame: Kayp
Addresz:
address2:
address3:
city: Charleston State/Province: 5C
Zip Code: 29415 Country: US4
addrezzdgn;

Phore: (8437 436-3717

email:

Ethnic 1D: 000000 Sex Male

Birthday: Year 1337

Seazonl: 0 Graduated?: no
GPa: 2 Balance: $0.00

Page 30 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations

Batching Data with ProDataSets

pds24.p

/* pds24.p dataset twenty-four - one table read-only dataset with batching all in one procedure
with appserver */

create server happsrv.

ok = happsrv:connect("-AppService aspdsdbaschool -H localhost -sessionModel session-free").
if not ok then do:
message "Failed to connect to Appserver" view-as alert-box.
return no-apply.
end.
else message "Connection successful" view-as alert-box.

query qtstudent:set-callback-procedure("off-end", "offend").
run pds24callee.p on server happsrv (input 2975, output dataset dsstudent append).

message "Show batching message when browse goes off the end?"
view-as alert-box question buttons yes-no update showmsg.

wait-for close of this-procedure.

procedure offend:
define input parameter dataset for dsstudent.

if showmsg then
message "inside offend" skip
"last batch?" buffer tstudent:last-batch skip
view-as alert-box.
if not buffer tstudent:last-batch then do:
find last tstudent.
run pds24callee.p on server happsrv (tstudent.studentid, output dataset dsstudent append).
return no-apply.
end.
end.

pds24callee.p

/* pds24callee.p - Fill Dataset for calling program */

def var vFieldList as char init
"StudentID,sfirstname,slastname,phone,city,stcode,postalcode”.
define temp-table tstudent no-undo like student

index studentid is unique studentid .

define dataset dsstudent for tstudent.

define query gstudent for student.

define data-source srcstudent
for query gstudent

Page 31 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

student keys (studentid).

define input parameter ipstudentid as int.
define output parameter dataset for dsstudent.
buffer tstudent:batch-size = 10.

buffer tstudent:attach-data-source(data-source srcstudent:handle,"", ?, vFieldList).

query qstudent:query-prepare("for each student no-lock where student.studentid > " +

string(ipstudentid)).

dataset dsstudent:fill().
buffer tstudent:detach-data-source().

Page 32 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations

Batching Data with ProDataSets

In pds24.p, batching is performed on the AppServer by calling fillds in pds24callee.p.
student
StudentlD Firgt Mame Last Mame FPhone ~
: 002976 Ed k.ay [843] 4336-971%
002977 Debbie Fieilly [E153) B&R7-922E
002978 Enid Anderzon [F01] 325-020C
002979 Eugenes Dechter [£14) 8B7-823E
002930 Judith Mages [907) GBE-5521
0025931 Laney Peters [B04] 7R4-038% w
StudentlD: 00378
Mame: Ed F.ay
Citw 5t 2ip: Charleston SC 294145
Phone; (534£3) 438-3717
Firgt| |Mext| |Presv| |Last |Full| | Done

e In using the OFF-END callback event remember:

You can attach these events only to a query on a single ProDataSet temp-table buffer.
You cannot attach these events to a query on a database buffer, or a query that
involves a join.

The query must be a scrolling query.

If you never RETURN NO-APPLY, from the OFF-END event handler, the query will
infinitely loop!

Call the SET-CALLBACK-PROCEDURE() method before the query is opened.

If you use the GET LAST statement or GET-LAST() method to get the last record
associated with the query, the event handler is called repeatedly until it does not
RETURN NO-APPLY (indicating that all records have been retrieved). For this reason,
use caution when offering users the GET LAST action or avoid this.

The INDEXED-REPOSITION option is ignored for the query.

The APPEND keyword is needed going to the AppServer which appends the new
batching data with the existing set of records. APPEND is not needed if it is a local call.

Page 33 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations
Batching Data with ProDataSets

pds25.p

/* pds25.p dataset twenty-five - one table read-only dataset with batching all in one procedure
no appserver sorting on student name */

def var restartrowid as rowid.

run fillds (input-output restartrowid, output dataset dsstudent).

procedure fillds:
define input-output parameter iopnextrowid as rowid.
define output parameter dataset for dsstudent.

buffer tstudent:attach-data-source(data-source srcstudent:handle,"", ?, vFieldList).

query qstudent:query-prepare("for each student no-lock
where student.studentid > 2975
by student.slastname by student.sfirstname").

buffer tstudent:batch-size = 1e@.
data-source srcstudent:restart-rowid = iopnextrowid.
dataset dsstudent:fill().
iopnextrowid = data-source srcstudent:next-rowid.
buffer tstudent:detach-data-source().

end.

procedure offend:
define input parameter dataset for dsstudent.

if showmsg then
message "inside offend" skip
"last batch?" buffer tstudent:last-batch skip
view-as alert-box.
if not buffer tstudent:last-batch then do:
find last tstudent use-index name.
run fillds (input-output restartrowid, output dataset dsstudent).
return no-apply.
end.
end.

Page 34 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations

Batching Data with ProDataSets

student
StudentIDd First Mame Lazt Hame Phone ﬁ
002995 Jason Albert T ET 4] TS E50T
002987 Kathw Ai [843) 592-6891
002378 Enid Anderson [FO1] 325-020C
002389 Lucyna Berman [907] 336-4877
002982 Jack Bizhop [302) 927-h495

002334 Ahmad Chawez (502) BOB-230% w

Student|D: 002335
M arne: Jason Albert

Citp.5t Zip: St Louis MO B302
Phore: (314) 725-3301

First| |Mext| | Prew| | Laszt) Full |Done

e What if batching is to performed where the records are sorted in an order with a non-

unique index?

e |n pds25.p, the student table is sorted by last name, first name. Again, for efficiency, we
are only looking at the records where the studentid > 2975. The QUERY-PREPARE

statement looks like this:

query gstudent:query-prepare ("for each student no-lock
where student.studentid > 2975

by student.slastname
by student.sfirstname").

e Each time the FILL method executes, the fillds procedure retrieves the NEXT-ROWID

attribute and assigns it to the restartrowid variable.

e |n order for the data-source to pick up where it left off, it assigns this saved rowid into the
RESTART-ROWID attribute for the data-source before performing the FILL method.

Page 35 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations

Batching Data with ProDataSets
pds26.p

/* pds26.p dataset twenty-six - one table read-only dataset with batching with appserver sorting
on student name */

create server happsrv.
ok = happsrv:connect("-AppService aspdsdbaschool -H localhost -sessionModel session-free", ""
IIII).
if not ok then do:
message "Failed to connect to Appserver" view-as alert-box.
return no-apply.
end.
else message "Connection successful" view-as alert-box.

query qtstudent:set-callback-procedure("off-end", "offend").

run pds26callee.p on server happsrv
(input-output restartrowid, output dataset dsstudent append).

wait-for close of this-procedure.

procedure offend:
define input parameter dataset for dsstudent.

if showmsg then
message "inside offend" skip
"last batch?" buffer tstudent:last-batch skip
view-as alert-box.
if not buffer tstudent:last-batch then do:
run pds26callee.p on server happsrv
(input-output restartrowid, output dataset dsstudent append).
return no-apply.
end.
end.

pds26callee.p

/* pds26callee.p - Fill Dataset for calling program sorting by student name */

def var vFieldList as char init
"StudentID,sfirstname,slastname,phone,city,stcode,postalcode”.

define temp-table tstudent no-undo like student
index studentid is unique studentid .

define dataset dsstudent for tstudent.

define query gstudent for student scrolling.

Page 36 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

define data-source srcstudent
for query gstudent
student keys (studentid).

define input-output parameter iopnextrowid as rowid.
define output parameter dataset for dsstudent.

buffer tstudent:attach-data-source(data-source srcstudent:handle,"", ?, vFieldList).
query qstudent:query-prepare("for each student no-lock

where student.studentid > 2975

by student.slastname by student.sfirstname").
buffer tstudent:batch-size = 10.
data-source srcstudent:restart-rowid = iopnextrowid.
dataset dsstudent:fill().

iopnextrowid = data-source srcstudent:next-rowid.

buffer tstudent:detach-data-source().

Page 37 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations
Batching Data with ProDataSets

In pds26.p, batching on a non-unique sorting of temp-table records is performed using an
AppServer.

Passing the dataset as an output parameter with APPEND tells Progress to append all the data
passed back to the data that is already in the client's ProDataSet.

We will cover parameter passing in more detail later.

Page 38 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations

Multiple Database Buffers on a Data-Source

pds30.p

/* pds30.p dataset example thirty - multiple database buffers on a data-source */

define query gstudent for activity, stuact, student.

define data-source srcstudent
for query gstudent
activity, stuact, student keys (studentid).

procedure fillds:

buffer tstudent:attach-data-source(data-source srcstudent:handle,"").
buffer tstuchrg:attach-data-source(data-source srcstuchrg:handle,"").
buffer tcharge:attach-data-source(data-source srccharge:handle,"").

query qstudent:query-prepare("for each activity
where activityid =
+ string(activityidvar)
+ ", each stuact of activity,
each student of stuact
where syear = " + string(syearvar)

+ " and gpa ge " + string(gpavar)).
if fillmodevar
then buffer tstudent:fill-mode = "empty".
else buffer tstudent:fill-mode = "merge".

dataset dsstuchrg:fill().

buffer tstudent:detach-data-source().
buffer tstuchrg:detach-data-source().
buffer tcharge:detach-data-source().

run openq.
apply "value-changed" to bl in frame f1.
end.

Page 39 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

=
Climb Aboard The ProDataSet Train

Advanced Reading Operations
Multiple Database Buffers on a Data-Source

e Sometimes, the relationship between the number of database buffers in the data-source
and receiving temp-table is not one to one.

e To get the desired subset of records for a particular temp-table it might be necessary to
use several database buffers to filter the records.

e |n pds30.p, the query gstudent is based upon the activity, stuact and student database
buffers.

e The initially loaded subset is based upon students that have chess as an activity, are the
class of 2008 and have a GPA greater than equal to 3.0.

e The fillds procedure can be used to put in different conditions like it did in pds2.p.

StudentH First Hame LaztMame GPA Phone Total Charges »
000 22 Jill French 2.00 [243) 5741047 36.842.00
001257 Diane Blvth 3.20 [207) 3836272 711200
001307 Armold Moss 3.14 [208) B33-6555 37 B45.00
002692 Lucy Hudszon 3.33 [408) 7RE-0141 77400 w
Charge Mo. chargelate chargeCode Arnount | | chargeCode Description ~
028476 09/28/06 Book $325.00 biook, Book Charge
028482 12/27/06 Boak $450.00 finance Finance Charge
022488 04/02/07 Book $575.00 food Food Charge
028434 03/28/07 Boak $326.00 ather Other Charge
028500 12/27/07 Boak $450.00 [laliy} R oom Charge
028506 04/02/08 Boak $575.00 v | taw Tax Charge W

Fill

Activity: | Cycling w

Graduation Tear:
2008

(]
GPA, Threshhold:

Fill Mode:) Empty (@) Merge

Page 40 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

~g
Climb Aboard The ProDataSet Train

Advanced Reading Operations

Multiple Database Buffers on a Data-Source

pds31.p

/* pds31l.p dataset example thirty-one - multiple database buffers on a data-source */

procedure fillds:

data-source srcstuchrg:fill-where-string

data-source srcstuchrg:fill-where-string + " and stuchrg.chargeamt >
+ string(chargevar).
end.
Student$ First Hame LaztMame GPA Phone Total Charges »
0001 22 Jill French 3.00 [243) 5741047 32,.475.00
001257 Diane Blvth 3.20 [207) 3896272 32.475.00
001 307 Armold Moszs 3.14 [208) B83-65595 32.475.00
002692 Lucy Hudszon 3.33 [408) 7RE-0141 3247500 w
Charge Mo. chargelate chargeCode Arnount » | | chargeCode Description ~
028488 04/02/07 Book $575.00 biook, Book Charge
028506 04/02/08 Boak $575.00 finance Finance Charge
028524 04/02/09 Book $575.00 food Food Charge
028481 12/02/06 Room $550.00 ather Other Charge
028487 03/02/07 Room $700.00 [laliy} R oom Charge
028499 12/02/07 Roam $E50.00 » | taw Tax Charge W

Aoty

raduation 'ear:
2008

]

P& Threshhaold: |3 - 00

Charge Amount Threshhold; |$500 .00
Fill Mode; () Empty (®) Merge

Page 41 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations

Multiple Database Buffers on a Data-Source

e Inpds31.p, the FILL-WHERE-STRING is used on the stuchrg buffer to further filter the
records to only those charges with a charge amount greater than or equal to a value.

e This was added to the fill dialog box.

Page 42 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations

Query on a child temp-table

Sometimes, it is desirable to setup a query on a child temp-table.

For example, suppose you want to show all of the activities for a particular student.
The relationship between student and activity is many to many. This means that a
particular student may be involved in many activities, and a particular activity may have

many students engaged with it.

In the school database, there are the student and activity master tables and the stuact
cross reference table.

The unique keys for the student and activity table are studentid and activityid respectively.
The stuact table has a unique key based upon studentid and activityid.

Here is how the dataset consisting of the three temp-tables appears with 3 browses:

pds32.p
Studentd First Mame Last Mame GPA Phone
000206 Demrwond Glass 270 [312)804-7430
001956 Diane Huber 3703125198147

002037 Gladys Larson 283 [312)534-0665
002319 Guincy Jacobzon 2.80[312] 765-0009

Done

Studentd Activite |0 Activity [0 Mame ~
002819 00003 000024 Chugging Beer

i 002819 000027 000026 b arching Band
002a1s 0000z 000027 Jazz Band

000022 Orchestra
000031 Y achtzes

Page 43 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations

Query on a child temp-table

pds32.p

/* pds32.p dataset example three - multi-table read-only dataset with student, stuact and
activity */

define temp-table tstudent no-undo like student
index studentid is unique primary studentid .

define temp-table tstuact no-undo like stuact.
define temp-table tactivity no-undo like activity.

define dataset dsactivity for tstudent, tstuact, tactivity
data-relation stuact for tstudent, tstuact

relation-fields (studentid, studentid)

data-relation activity for tstuact, tactivity
relation-fields (activityid, activityid).

define query gstudent for student.

define data-source srcstudent
for query gstudent
student keys (studentid).

define data-source srcstuact for stuact.
define data-source srcactivity for activity.
define query qgtstudent for tstudent.

define browse bl query qgtstudent
display tstudent.studentid label "Student#"
tstudent.sfirstname
tstudent.slastname
tstudent.gpa column-label "GPA"
tstudent.phone Label "Phone" width 16
with 4 down.

define query qgtstuact for tstuact.

define browse b2 query qgtstuact
display tstuact.studentid label "Student#"
tstuact.activityid
with 6 down.

define query qtactivity for tactivity.

define browse b3 query qgtactivity
display tactivity.activityid
tactivity.activityname
with 6 down.

Page 44 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

buffer tstudent:attach-data-source(data-source srcstudent:handle,"").
buffer tstuact:attach-data-source(data-source srcstuact:handle,"").
buffer tactivity:attach-data-source(data-source srcactivity:handle,"").
query gstudent:query-prepare("for each student
where stcode = 'IL'

and syear = 2007").
dataset dsactivity:fill().
buffer tstudent:detach-data-source().
buffer tstuact:detach-data-source().
buffer tactivity:detach-data-source().
enable all with frame f1.
open query qtstudent for each tstudent.
open query gtstuact for each tstuact of tstudent.
open query qtactivity for each tactivity.
bl:select-focused-row().

apply "value-changed" to bl.

wait-for close of this-procedure.

e |t might be more convenient to view the activities in a single browse.

pds33.p
Studentd First Mame Last Mame GPA Phone
000206 Demrwood Glass 270 [312)804-7430
001956 Diane Huber A7A 31215198147

002037 Gladys Larzon 2,83 [312) 5340669
0028119 Guincy Jacobzon 280 [312] 7650009

Activity
qolf
iJazz Band

Yachtzes

Done

Page 45 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Reading Operations

Query on a child temp-table

/* pds33.p dataset example three - multi-table read-only dataset with student and activity */

define temp-table tstudent no-undo like student
index studentid is unique primary studentid .

define temp-table tstuact no-undo like stuact
field activityname like activity.activityname.

define dataset dsactivity for tstudent, tstuact
data-relation stuact for tstudent, tstuact
relation-fields (studentid, studentid).

define query gstudent for student scrolling.

define data-source srcstudent
for query gstudent
student keys (studentid).

define query qgstuact for stuact, activity scrolling.

define data-source srcstuact
for query gstuact
stuact keys (studentid, activityid), activity.

define query qgtstudent for tstudent.

define browse bl query qgtstudent
display tstudent.studentid label "Student#"
tstudent.sfirstname
tstudent.slastname
tstudent.gpa column-label "GPA"
tstudent.phone Label "Phone" width 16
with 4 down.

define query qgtstuact for tstuact.

define browse b2 query qtstuact
display tstuact.activityname label "Activity"
with 5 down.

default-window:width = 110.

buffer tstudent:attach-data-source(data-source srcstudent:handle,"").
buffer tstuact:attach-data-source(data-source srcstuact:handle,"").

query gstudent:query-prepare("for each student
where stcode = 'IL'
and syear = 2007").
query qstuact:query-prepare("for each stuact where stuact.studentid = tstudent.studentid, "
+ " each activity of stuact").

dataset dsactivity:fill().

Page 46 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

buffer tstudent:detach-data-source().
buffer tstuact:detach-data-source().

enable all with frame f1.

open query qtstudent for each tstudent.
open query gtstuact for each tstuact of tstudent.

bl:select-focused-row().
apply "value-changed" to bl.

wait-for close of this-procedure.

e To accomplish this, the activityname is added to the tstuact temp-table.
e The tactivity temp-table is eliminated and removed from the dataset dsactivity.
e The query gstuact is created for the stuact and activity tables.

e The data-source srcstuact is modified to include the gstuact query and the stuact and
activity tables.

e The QUERY-PREPARE method is created for the gstuact query. It links the stuact
database table with the tstudent temp-table so that the FILL method will continue

properly.

Page 47 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Lab 2 - Advanced Reading Operations

1. Batching records to a Prodataset

a.
b.

C.

Copy coursebatch1.p in the labs folder to coursebatchilab.p.

This program will batch course records by course name where the courseid is
greater than 50

Follow the commented instructions in the internal procedure fillds.

2. Limit fields to be sent from the server

a.
b.

Copy coursebatchilab.p in the labs folder to coursebatch2lab.p.
The course description is too wordy, only allow fields courseid, coursename and
deptname to be filled from the server.

3. Using multiple database buffers on a Data-Source

a.
b.

C.

Page 48 of 120

Copy studentmultdb.p in the labs folder to studentmultdblab.p.
This query asks the question who are the students from a given zip code range that
received a grade of something or better for a particular course?
This involves joining the following tables together for the QUERY, DATA-SOURCE
statements and the QUERY-PREPARE method.

i. student

ii. registration

ii. grade

iv. offering

V. course
You might want to consider making the course table first in the query for
performance reasons.
Follow the commented instructions in the internal procedure fillds and at the top of
the program.

Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Lab 2 - Advanced Reading Operations

4. Query on a Child Temp-table
a. Copy teacheroffcourse.p to teacheroffcourselab.p.
b. Run the program. It is shown below:

Teachert First Mame Last Mame A

000028 June B artlett
000029 Byron Crawfard
00030 0arrin Browan
000031 Kevin b cullizter

000032 Lucyna Seqgal
000033 Howard FPazquesi W

Course [D Year Seasoni Courze [0 Wame
000011 2006 1 000010 Introduction to Biology
oooo14 2006 000011 Intermediate Disection of Frogs
000015 2007 000012 Malecular Biology
no0o14 2007 000013 Zoolagy
noooin 2008 000014 Botany
000015 2009 000015 Anatormy and Physiology
000014 2009

P = D L = L

Done

C. Modify program to combine the two lower browses into one browse consisting of
the columns Course ID, Year, Season Name and Course Name. (see below)

Teacherlt First Mame Laszt Mame A

000023 June Bartlett
000029 Byron Crawford
000030 Darrin Brown
000031 Kevin Mcdillizter

000032 Lucyna Seqal
000033 Haward Pazquesi W

Courge ID vear Mame Marne
000011 2008 Fall Intermediate Disection of Frogs
000014 2008 Spring Batany
0000715 2007 Fall Anatorny and Phypsiology
000014 2007 Spring Botany
000010 2008 Spring Intraduction ta Biology
000015 2009 Fall Anatorny and Phypsiology
000014 2009 wWinker Botany

Done

d. Follow the commented instructions inside the program.

Page 49 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Maintaining ProDataSet Changes

e The next section will cover how the temp-tables in ProDataSets are updated. This area will
show how flexible and easy it is to undo individual records or the entire ProDataSet.

e The following attributes and methods address updating ProDataSets:

Keyword Type
TRACKING-CHANGES Attribute
ROW-STATE Attribute, Function
BEFORE-ROWID Attribute
AFTER-ROWID Attribute
BEFORE-TABLE Attribute
AFTER-TABLE Attribute
BEFORE-BUFFER Attribute
AFTER-BUFFER Attribute
ACCEPT-CHANGES Method
ACCEPT-ROW-CHANGES Method
REJECT-CHANGES Method
REJECT-ROW-CHANGES Method

e The first thing that is required for tracking changes in a DataSet is defining a BEFORE-
TABLE for each temp-table that changes are to be tracked.

Page 50 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Maintaining ProDataSet Changes

/* pds6.p dataset example six - reject changes and row changes */

def var choice as log no-undo.
def var i as int no-undo.

/* make sure all temp-tables are no-undo otherwise the refresh
after the reject-row-changes and reject-changes will not work */

define temp-table tstudent no-undo like student
before-table tstudentb4

field chargetot as decimal label "Total Charges"
index studentid is unique primary studentid .

define temp-table tstuchrg no-undo like stuchrg
before-table tstuchrgb4.

define temp-table tcharge no-undo like charge.

define dataset dsstuchrg for tstudent, tstuchrg, tcharge
data-relation stuchrg for tstudent, tstuchrg
relation-fields (studentid, studentid)

data-relation charge for tstuchrg, tcharge
relation-fields (chargecode, chargecode) reposition.

define query gstudent for student.

define data-source srcstudent
for query gstudent
student keys (studentid).

define data-source srcstuchrg for stuchrg.
define data-source srccharge for charge.
define query qgtstudent for tstudent.

define browse bl query qtstudent

display tstudent.studentid label "Student#"
tstudent.sfirstname
tstudent.slastname
tstudent.gpa column-label "GPA"
tstudent.phone Label "Phone" width 16
chargetot

enable tstudent.gpa tstudent.phone

with 4 down.

define query qtstuchrg for tstuchrg.

define browse b2 query qgtstuchrg

display /* tstuchrg.studentid label "Student#" */
tstuchrg.chargeno
tstuchrg.chargedate
tstuchrg.chargecode
tstuchrg.chargeamt

enable tstuchrg.chargedate tstuchrg.chargecode tstuchrg.chargeamt

with 6 down.

define query qgtcharge for tcharge.

Page 51 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

define browse b3 query qgtcharge
display tcharge.chargecode
tcharge.chargedesc
with 6 down.

define button brrow label "Reject Student Charge Row".

define button brallrow label "Reject All Student Charge Rows".
define button brall label "Reject All".

define button bdone label "Done".

define variable rstable as log label "Reject”
view-as radio-set horizontal radio-buttons
"Student", yes, "Student Charge", no.

define frame f1

bl skip(1) b2 b3 skip(1) rstable
skip(1)

brall brallrow brrow bdone

with side-labels width 100.

on value-changed of rstable
do:
assign rstable
brrow:label = "Reject
+ entry(lookup(rstable:screen-value,rstable:radio-buttons) - 1,rstable:radio-buttons)
+ " Row
brallrow:label = "Reject ALl "

+ entry(lookup(rstable:screen-value,rstable:radio-buttons) - 1,rstable:radio-buttons)

+ " Rows" .
end.
on choose of brallrow
do:
def var msg as char.
if rstable
then
msg = "Do you want to reject ALL Student's row changes?".
else
msg = "Do you want to reject ALL Student Charges's row changes?".

message msg skip
view-as alert-box
question buttons yes-no update choice.
if choice then do:
if rstable then do:
/* need to find modified tstudent, since current row may not be
changed. */
find first tstudent where row-state(tstudent) gt @ no-error.
if available tstudent then do:
find tstudentb4 where rowid(tstudentb4) = buffer tstudent:before-rowid
no-error.
if available tstudentb4 then do:
buffer tstudentb4:reject-changes() no-error.
bl:refresh().
end. /* available tstudentb4 */
end. /* available tstudent */
end. /* rstable */

else do:
/* need to find modified tstuchrg, since current row may not be
changed. */

find first tstuchrg where row-state(tstuchrg) gt 0 no-error.
if available tstuchrg then do:

Page 52 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

find tstuchrgb4 where rowid(tstuchrgb4) = buffer tstuchrg:before-rowid
no-error.

if available tstuchrgb4 then do:
buffer tstuchrgb4:reject-changes() no-error.
b2:refresh().

end. /* available tstuchrgb4 */

end. /* available tstuchrg */
end. /* not rstable */
end. /* choice */
end. /* choose of brallrow */

on choose of brrow

do:
def var msg as char.
if rstable
then
msg = "Do you want to reject this Student's row changes?".
else
msg = "Do you want to reject this Student Charges's row changes?".

message msg skip
view-as alert-box
question buttons yes-no update choice.
if choice then do:
if rstable then do:
find tstudentb4 where rowid(tstudentb4) = buffer tstudent:before-rowid
no-error.
if available tstudentb4 then do:
buffer tstudentb4:reject-row-changes() no-error.
bl:refresh().
end. /* available tstudentb4 */
end. /* rstable */
else do:
find tstuchrgb4 where rowid(tstuchrgb4) = buffer tstuchrg:before-rowid
no-error.
if available tstuchrgb4 then do:
buffer tstuchrgb4:reject-row-changes() no-error.
b2:refresh().
end. /* available tstuchrgb4 */
end. /* not rstable */
end. /* choice */
end. /* choose of brrow */

on choose of brall
do:
message "Do you want to reject all changes?" view-as alert-box
question buttons yes-no update choice.
if choice then do:
dataset dsstuchrg:reject-changes() no-error.
bl:refresh().
b2:refresh().
end. /* choice */
end.

on value-changed of bl

do:

open query qtstuchrg for each tstuchrg of tstudent.
apply "value-changed" to b2.

end.

on value-changed of b2
do:
find tcharge of tstuchrg NO-ERROR.

Page 53 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

IF AVAILABLE tcharge THEN
reposition gtcharge to rowid rowid(tcharge).
end.

on choose of bdone apply "close" to this-procedure.

on close of this-procedure
do:

if this-procedure:persistent then delete procedure this-procedure.
end.

default-window:width = 100.

buffer tstuchrg:set-callback-procedure
("after-fill", "poststuchrgFill", THIS-PROCEDURE).

buffer tstudent:attach-data-source(data-source srcstudent:handle,"").
buffer tstuchrg:attach-data-source(data-source srcstuchrg:handle,"").
buffer tcharge:attach-data-source(data-source srccharge:handle,"").

query gstudent:query-prepare("for each student
where stcode = "IL'
and syear = 2007").

dataset dsstuchrg:fill().

buffer tstudent:detach-data-source().
buffer tstuchrg:detach-data-source().
buffer tcharge:detach-data-source().

display rstable with frame f1.
enable all with frame f1.

open query qtstudent for each tstudent.
open query qtstuchrg for each tstuchrg of tstudent.
open query qtcharge for each tcharge.

temp-table tstudent:tracking-changes = yes.
temp-table tstuchrg:tracking-changes = yes.

wait-for close of this-procedure.

procedure poststuchrgfill:
define input parameter dataset for dsstuchrg.
for each tstuchrg of tstudent:
accumulate chargeamt (total).
end.
assign chargetot = accum total chargeamt.
end.

Page 54 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Maintaining ProDataSet Changes

In pds6.p, the following temp-table definition defines a BEFORE-TABLE:

define temp-table tstuchrg no-undo like stuchrg
before-table tstuchrgbi4.

The BEFORE-TABLE phrase allows the developer access to the original values in the
table before the records were changed, and before the new values are accepted.

If there is a BEFORE-TABLE, then logically there must be an AFTER-TABLE. The name
of the AFTER-TABLE is simply the name defined for the temp-table.

Both the BEFORE-TABLE and the AFTER-TABLE contain a field called the ROW-
STATE.

The ROW-STATE values are as follows:

Value Keyword

0 ROW-UNMODIFIED
1 ROW-DELETED

2 ROW-MODIFIED

3 ROW-CREATED

The above four keywords are actually functions that return the corresponding integers.

Page 55 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Maintaining ProDataSet Changes

tstudent after-buffer

studentid sfirstname slastname gpa ROW-STATE

1200 Barb Wilson 3.2 ROW-MODIFIED

3002 Joe Hughes 3.1 ROW-CREATED
tstudentb4 before-buffer

studentid sfirstname slastname gpa ROW-STATE

1200 Barb Miller 3.0 ROW-MODIFIED

1205 Ted Hamilton 3.5 ROW-DELETED

Page 56 of 120

Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Maintaining ProDataSet Changes

This field can be accessed in two ways:

ROW-STATE attribute
ROW-STATE function

Use the ROW-STATE attribute on either the BEFORE-TABLE or AFTER-TABLE.

For example, either of these forms are equivalent:

if buffer tstudentb4:ROW-STATE = 2
if buffer tstudent:ROW-STATE = ROW-MODIFIED

Use the ROW-STATE function in the where clause when reading the BEFORE-TABLE
buffer.

For example, either of these forms are equivalent:

for each tstudentb4 where ROW-STATE (tstudentbd4) =1
for each tstudentb4 where ROW-STATE (tstudentb4) = ROW-DELETED

The BEFORE-TABLE only contains records that are created, modified or deleted. As
mentioned previously, the old data is stored in these records.

Page 57 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Maintaining ProDataSet Changes

Studentd First Marme | Last Mame GPA Phone Total Charges #
000073 Eve Haoffran [312]920-1926 728224 —
000253 Enid Bilocerkowpe 256 [312] 433-7263 A7.220.00

000521 Edward Feinztein 226[N2]1571137 3E.752.53
0018283 Akmad Jordan 29532 938-3077 3E6.827.00 »

Charge Mo. chargelate chargeCode Amount # | | chargeCode Description
042738 08/29/00 Book $325.00 —| Jafalal Book Charge
042805 12, 1] $450.00 finance Finance Charge
042812 04/02/01 Book $E00.00 food Food Charge

042813 08/28/01 Book $325.00 ather Otker Charge
042826 12/27/1 Book $500.00 room Room Charge
042833 04/02/02 Book F575.00 » | | tax tax charge

10|

Reject:) Student) Student Charge

[Heiect .-“-".II] [Heiect All Student Hawsl [Heiect Student Huw] [Dane]

Studentd First Mame | Last Mame | GPA Phone Total Charges #
Q00073 Eve Haffrmat 3703 -] 24
000253 Ernid Bilocerkowye 256 [312) 493-7269 3722000
000521 Edward Feinstein 225 [A2)15711371 3673299
001223 Ahmad Jordan 295 [312)938-3077 36,527.00 »

Charge Mo. chargeDate chargeCode Amount # | | chargeCode Description
042738 08/29/00 Book $326.00— | [l Book Charge
042805 12/27/00 Book finance Finance Charge
042812 04/02/01 Book $E00.00 food Food Charge
042813 08/28/01 Book $325.00 other Other Charge
042826 12/27/01 Book Fa00.00 10 Room Charge
042333 04/02/02 Book $575.00 % | |tax taw charge

[EI[E

Feject O Student (&) Student Charge

[Heiect .-'1'-.II] [Heiect All Student Charge HDWS] [Fleieu:tStudent Charge Fh:uw] [Dune]

Question (Press HELP to view stack trace)

_:.i) Do you want to reject this Student Charges's row changes?

[ves J[[1 J[reb

Page 58 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Maintaining ProDataSet Changes

After a ProDataSet is filled, it is likely that changes to the data will need to be tracked.

This is accomplished by setting the TRACKING-CHANGES attribute for a particular temp-
table to be tracked.

Only changes made to a temp-table while TRACKING-CHANGES is yes will be tracked by
Progress.

In pds6.p, TRACKING-CHANGES is set to yes for both the tstudent and tstuchrg temp-
tables AFTER the FILL method is executed.

Setting TRACKING-CHANGES to yes before doing a FILL method will result in a run-time
error.

Changes may be made to the gpa and phone fields in the tstudent temp-table directly in
the first browse.

Changes may be made to the chargedate, chargecode and chargeamt fields in the tstuchrg
temp-table directly in the second browse.

These changes a recorded in either the tstudentb4 or the tstuchrgb4 before-tables
respectively.

The user may select a changed student charge row in a browse and then select the Reject
Student Charge Row button.

If the user answers yes to the alert-box, then that specific student charge row is undone,
and the old values are re-displayed in the browse.

This trigger uses the REJECT-ROW-CHANGES method on the temp-table BEFORE-
TABLE buffer handle.

e The BEFORE-TABLE buffer is not available by default. However, it is easy to find the
corresponding BEFORE-TABLE buffer for the current temp-table buffer in the browse
by using the BEFORE-ROWID attribute on the after-table buffer in the FIND statement.

e Conversely, there is also an AFTER-ROWID attribute on the BEFORE-TABLE buffer
which can also be used to locate records in the other direction.

Page 59 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Maintaining ProDataSet Changes

e The REJECT-CHANGES method may be used on either the temp-table BEFORE-TABLE
buffer or the DataSet handle.

If REJECT-CHANGES is used on the BEFORE-TABLE buffer, all changes made to
that temp-table will be rejected. This is the result of selecting "Reject All Student
Charge Rows" in pds6.p. This will undo all changes to the tstuchrg temp-table. If the
student radio-button is selected, then this will undo all tstudent rows.

If REJECT-CHANGES is used on the DataSet handle, all changes to all temp-tables in
the DataSet will be undone. This is the result from selecting the "Reject All" button in
pds6.p.

The BEFORE-TABLE values are put back into the after-table records. After that, then
all BEFORE-TABLE records are cleared from each BEFORE-TABLE in this case.
Also, the ROW-STATE attributes in each after-table are zeroed out and the BEFORE-
ROWID attribute has be reset to ?.

¢ In all of these triggers, the REFRESH method is used on the appropriate browse to re-
display the old values back to the user.

Page 60 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Maintaining ProDataSet Changes
pds7.p

/* pds7.p dataset example seven - accept changes and row changes
- but don't update database */

on choose of bsaveall
do:
message "Do you want to accept all changes?" view-as alert-box
question buttons yes-no update choice.
if choice then do:
dataset dsstuchrg:accept-changes() no-error.
end. /* choice */
end.

on choose of bsaveallrow

do:
def var msg as char.
if rstable
then
msg = "Do you want to accept all of the Student row changes?".
else
msg = "Do you want to accept all of the Student Charges row changes?".

message msg skip
view-as alert-box
question buttons yes-no update choice.
if choice then do:
if rstable then do:
/* need to find modified tstudent, since current row may not be
changed. */
find first tstudent where row-state(tstudent) gt @ no-error.
if available tstudent then do:
buffer tstudent:accept-changes() no-error.
end. /* available tstudent */
end. /* rstable */
else do:
/* need to find modified tstuchrg, since current row may not be
changed. */
find first tstuchrg where row-state(tstuchrg) gt @ no-error.
if available tstuchrg then do:
buffer tstuchrg:accept-changes() no-error.
end. /* available tstuchrg */
end. /* not rstable */
end. /* choice */
end. /* on choose of bsaveallrow */

on choose of bsaverow

do:
def var msg as char.
if rstable
then
msg = "Do you want to accept this Student's row changes?".
else
msg = "Do you want to accept this Student Charges's row changes?".

message msg skip
view-as alert-box
question buttons yes-no update choice.

Page 61 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

if choice then do:
if rstable then do:
find tstudentb4 where rowid(tstudentb4) = buffer tstudent:before-rowid
no-error.
if available tstudentb4 then do:
buffer tstudentb4:accept-row-changes() no-error.
end. /* available tstudentb4 */
end. /* rstable */
else do:
find tstuchrgb4 where rowid(tstuchrgb4) = buffer tstuchrg:before-rowid
no-error.
if available tstuchrgb4 then do:
buffer tstuchrgb4:accept-row-changes() no-error.
end. /* available tstuchrgba */
end. /* not rstable */
end. /* choice */
end. /* on choose of bsaverow */

StudentH First Name | Last Name GPA Phone Total Charges #
000072 Eve Haffran 370312] 24
000253 Enid Bilocerkaowye 256 [312] 499-7269 37.220.00

000521 Edward Feinztein 2253121571137 36.732.93
0071883 &hmad Jordan 295 (312) 938-3077 36.827.00 »

Charge Mo, chargeD ate chargeCode Amaunt # | | chargeCode Description L
) 08/23/00 Book $325.00 Book Charge
042805 12/27/00 Book finance Finance Charge
042812 04/02/01 Book $600.00 food Food Charge
042813 08/28/01 Book $325.00 other Other Charge
042826 12,2701 Book $500.00 roam Fioom Charge
042833 04/02/02 Book $575.00 » | |tax tax charge w

laccept/Reject: @5 E 3 Student Charge

’ Fieject .t’-'«ll] ’ Fieject All Student Flom] [Fieject Student B ow]
[Au:u:ept AII] [Au:c:ept All Student F!nws] [Au:c:ept Student Fh:uw] [Dnne]

StudentH First Name | Last Name GPA Phone Total Charges #
078 Eve Haffran 370[312] 9301926] 24
000253 Enid Bilocerkawpe 256 [312] 499-726 37.220.00
000521 Edweard Feinztein 2203125711371 36,792,939
001883 Ahmad Jordan 295 (312) 938-3077 A6.827.00 »

173 Eve

Charge Mo, chargeD ate chargeCode Amaunt # | | chargeCode Description L
2798 08/29/00 Book $325.00 bk, Book Charge
042805 12/27/00 Book 450,00 finance Finance Charge
042812 04/02/01 Book $600.00 food Food Charge
042813 08/28/01 Book $325.00 other Other Charge
042826 12,2701 Book $500.00 roam Fioom Charge
042833 04/02/02 Book $575.00 » | |tax tax charge w

tccept/Feject:) Student @5

’Heiect .t’-'«ll] ’Heiect All Student Charge Fh:um] [Heiect Student Charge Flow]
[Au:u:ept AII] [Au:c:ept All Student Charge F!ows] [AcceptStudent Charge Fh:w] [Dnne]

Page 62 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Maintaining ProDataSet Changes

Question (Press HELP to view stack trace) |g|

9

2)

Do you want to accept all of the Student row changes?

b=] [Mo l [Help]

e Inpds7.p, we introduce the ACCEPT-CHANGES and ACCEPT-ROW-CHANGES
methods.

These two methods work similarly to the REJECT-CHANGES and REJECT-ROW-
CHANGES of pds6.p except the changes are accepted and cannot be rejected or
undone after they are accepted. As before, the BEFORE-TABLE records are cleared
out, the ROW-STATE values are zeroed out in the after-table records and the
BEFORE-ROWID attributes are set to ?.

Contrary to Progress' documentation, the TRACKING-CHANGES attribute doesn't
have to be set to no before using REJECT-CHANGES, ACCEPT-CHANGES,
REJECT-ROW-CHANGES and ACCEPT-ROW-CHANGES.

Both REJECT-ROW-CHANGES and ACCEPT-ROW-CHANGES must use the
BEFORE-TABLE buffer, whereas REJECT-CHANGES and ACCEPT-CHANGES may
use either the BEFORE-TABLE or after-table buffers.

Keep in mind that ACCEPT-CHANGES and ACCEPT-ROW-CHANGES do not update
the database. They only prevent the temp-table records from being undone.

Page 63 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

/* pds8.p dataset example eight - accept changes and row changes
- and update database */

on choose of bsaveall
do:
message "Do you want to save all changes?" view-as alert-box
question buttons yes-no update choice.
if choice then do transaction:
buffer tstudent:attach-data-source(data-source srcstudent:handle,"").
buffer tstuchrg:attach-data-source(data-source srcstuchrg:handle,"").
for each tstudentb4 where row-state(tstudentb4) > @:
buffer tstudentb4:save-row-changes() no-error.
if buffer tstudentb4:error
then do:
buffer tstudentb4:reject-row-changes() no-error.
bl:refresh().
buffer tstudentb4:error = no.
end. /* buffer tstudentb4:error */
else buffer tstudentb4:accept-row-changes() no-error.
end. /* for each */
for each tstuchrgb4 where row-state(tstuchrgb4) > o:
buffer tstuchrgb4:save-row-changes() no-error.
if buffer tstuchrgb4:error
then do:
buffer tstuchrgb4:reject-row-changes() no-error.
b2:refresh().
buffer tstuchrgb4:error = no.
end. /* buffer tstuchrgb4:error */
else buffer tstuchrgb4:accept-row-changes() no-error.
end. /* for each */
buffer tstudent:detach-data-source().
buffer tstuchrg:detach-data-source().
end. /* choice */
end. /* on choose of bsaveall */

on choose of bsaveallrow

do:
def var msg as char.
if rstable
then
msg = "Do you want to save all of the Student row changes?".
else
msg = "Do you want to save all of the Student Charges row changes?".

message msg skip
view-as alert-box
question buttons yes-no update choice.
if choice then do:
if rstable then do:
buffer tstudent:attach-data-source(data-source srcstudent:handle,"").
for each tstudentb4 where row-state(tstudentb4) > @ transaction:
buffer tstudentb4:save-row-changes() no-error.
if buffer tstudentb4:error
then do:
buffer tstudentb4:reject-row-changes() no-error.
bl:refresh().
buffer tstudentb4:error = no.
end. /* buffer tstudentb4:error */
else buffer tstudentb4:accept-row-changes() no-error.
end. /* for each */
buffer tstudent:detach-data-source().
end. /* rstable */
else do:
buffer tstuchrg:attach-data-source(data-source srcstuchrg:handle,"").
for each tstuchrgb4 where row-state(tstuchrgb4) > @ transaction:
buffer tstuchrgb4:save-row-changes() no-error.

Page 64 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

if buffer tstuchrgb4:error
then do:
buffer tstuchrgb4:reject-row-changes() no-error.
b2:refresh().
buffer tstuchrgb4:error = no.
end. /* buffer tstuchrgb4:error */
else buffer tstuchrgb4:accept-row-changes() no-error.
end. /* for each */
buffer tstuchrg:detach-data-source().
end. /* not rstable */
end. /* choice */
end. /* on choose of bsaveallrow */

on choose of bsaverow

do:
def var msg as char.
if rstable
then
msg = "Do you want to save this Student's row changes?".
else
msg = "Do you want to save this Student Charges's row changes?".

message msg skip
view-as alert-box
question buttons yes-no update choice.
if choice then do:
if rstable then do:
find tstudentb4 where rowid(tstudentb4) = buffer tstudent:before-rowid
no-error.
if available tstudentb4 then do:
buffer tstudent:attach-data-source(data-source srcstudent:handle,"").
buffer tstudentb4:save-row-changes() no-error.
if buffer tstudentb4:error
then do:
buffer tstudentb4:reject-row-changes() no-error.
bl:refresh().
buffer tstudentb4:error = no.
end. /* buffer tstudentb4:error */
else buffer tstudentb4:accept-row-changes() no-error.
buffer tstudent:detach-data-source().
end. /* available tstudentb4 */
end. /* rstable */
else do:
find tstuchrgb4 where rowid(tstuchrgb4) = buffer tstuchrg:before-rowid
no-error.
if available tstuchrgb4 then do:
buffer tstuchrg:attach-data-source(data-source srcstuchrg:handle,"").
buffer tstuchrgb4:save-row-changes() no-error.
if buffer tstuchrgb4:error
then do:
buffer tstuchrgb4:reject-row-changes() no-error.
b2:refresh().
buffer tstuchrgb4:error = no.
end. /* buffer tstuchrgb4:error */
else buffer tstuchrgb4:accept-row-changes() no-error.
buffer tstuchrg:detach-data-source().
end. /* available tstuchrgb4 */
end. /* not rstable */
end. /* choice */
end. /* on choose of bsaverow */

Page 65 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

In pds8.p, we take it one step further by updating the database from
the ProDataSet.

Here are the steps that need to be performed:

1. Find the associated BEFORE-TABLE buffer to the temp-table buffer.
If the BEFORE-TABLE buffer is available, then attach the data-source from the temp-table
to the database table.

3. Execute the SAVE-ROW-CHANGES method on the BEFORE-TABLE buffer.

4. Assuming no errors execute the ACCEPT-ROW-CHANGES method on the BEFORE-
TABLE buffer.

5. Detach the data-source from the temp-table to the database table.

Syntax
SAVE-ROW-CHANGES method

handle:SAVE-ROW-CHANGES([buffer-index | buffer-name [, skip-list [, no-lobs]]])

handle is the before-table buffer in a ProDataSet

Page 66 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

SAVE-ROW-CHANGES takes the following parameters:
handle is the before-image table buffer in a ProDataSet

buffer-index is an INTEGER expression that specifies the index of the buffer in the data source's
buffer list. The default value is 1.

buffer-name is a CHARACTER expression that evaluates to the name of the buffer in the data
source.

skip-list is an optional character expression that evaluates to a comma-separated list of field
names for fields that should not be assigned after a new row is created (that is, fields to skip). For
example, a key field or other fields assigned a value by a CREATE database trigger.

no-lobs is A logical expression indicating whether to ignore BLOB and CLOB fields in the save
operation. If TRUE, BLOB and CLOB fields are ignored during the save operation. If FALSE,
BLOB and CLOB fields are saved along with the other fields. The default value is FALSE (that is,
BLOB and CLOB fields are included in the save operation).

Please note that there is no SAVE-CHANGES method for the entire temp-table or DataSet. Each
individual record must be dealt with the SAVE-ROW-CHANGES method.

Page 67 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

e The SAVE-ROW-CHANGES methods gives the developer maximum flexibility in grouping
records into transactions.

e The SAVE-ROW-CHANGES goes through the following steps for a modified row:

1. Find the corresponding database record exclusive-lock based on its key. If the record is
not available, the method retries every two seconds up to ten times, and then returns
an error if the record is still not available.

2. Compares the BEFORE-TABLE table buffer to the database buffer to see whether
data has changed since it has been read. More on this in pds10.p.

3. Buffer-copies changed fields in the corresponding after-table buffer to the
corresponding database buffer fields. This uses the same field mapping used to FILL
the table (as defined in the ATTACH-DATA-SOURCE method).

4. Validates the updated record to force any WRITE or ASSIGN triggers to fire.

5. Sets the ERROR logical attribute in the after-table row as well as in its temp-table and
in the DataSet if any errors resulted from the attempted update, such as duplicate
unique keys.

6. Repopulate the after-table record from the database record, to catch any changes
made by either event procedure code or trigger procedure code.

7. Released the after-table and database table records.

e For a newly created row, SAVE-ROW-CHANGES creates the record in the database and
buffer-copies all data table buffer fields except any create-field to the database buffer
specified in the SAVE-ROW-CHANGES method. It then executes steps 4-7 above.

e For a delete row, SAVE-ROW-CHANGES deletes the corresponding row from the data-
source, based on the record's keys.

¢ Note that SAVE-ROW-CHANGES can create or delete only a single database buffer at a
time, not both sides of a one-to-one join.

e Even though the SAVE-ROW-CHANGES method updates the database, it does not count
as a reference for automatically making a block a transaction block. Try to think of the
SAVE-ROW-CHANGES method as a self-contained procedure block, where the
transaction is committed at the end of the SAVE-ROW-CHANGES method statement.

e This means that the developer must specify the TRANSACTION keyword on the block that
is desired for the transaction.

Page 68 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

pds9.p

/* pds9.p dataset example nine - one table update dataset */

on choose of badd
do:
def var saverowid as rowid.
def var i as int no-undo.
do with frame studadd view-as dialog-box 1 column title "Student Add":
form tstudent.studentid label "Student#"
tstudent.sfirstname
tstudent.slastname
tstudent.city
tstudent.stcode
tstudent.postalcode
tstudent.phone
tstudent.gpa
tstudent.syear.
create tstudent.
assign saverowid = rowid(tstudent).
display tstudent.studentid.
update tstudent.sfirstname
tstudent.slastname
tstudent.city
tstudent.stcode
tstudent.postalcode
tstudent.phone
tstudent.gpa
tstudent.syear.

buffer tstudent:attach-data-source(data-source srcstudent:handle,"").

find tstudentb4 where rowid(tstudentb4) = buffer tstudent:before-rowid
no-error.
if available tstudentb4 then do:
buffer tstudentb4:save-row-changes("student","studentid") no-error.
if buffer tstudentb4:error
then do:
buffer tstudentb4:reject-row-changes() no-error.
buffer tstudentb4:error = no no-error.
bl:refresh().
end. /* buffer tstudentb4:error */
else do:
buffer tstudentb4:accept-row-changes() no-error.
open query qgtstudent for each tstudent.
bl:set-repositioned-row(3,"conditional™).
reposition gtstudent to rowid saverowid no-error.
run dispstud.
end. /* else do */
end. /* available tstudentb4 */
end. /* with view-as dialog-box 1 column title "Student Add" */
end. /* on choose of badd */

Page 69 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

E

11 Procedure Editor - Bun

Lazt Mame ' GPA Phone

Huoffmar 375 [312)930-193
000253 Ernid Bilocerkawy: 257 [312] 499-7260
100521 Edward Feinztein 223 [#215711370

Student DY First Mame

001553 Ahmad Jordan 2.96 [312)935-3070
0071330 .Jeff Teague 2.40(312)929-3385
001391 Harvey Ffeifer 280 [312) 265-4400

StudentiD: 000072
Marme: Eve Haffrnar

Citw. 5t Zip: Chicago IL B0EE3
Phone: (212) 330-1331

(5 (Fr] (o] (] [

Student Add
Studentf: 000000
First Mame: [Jack

Last Mame: [Black
city: |Hinzdale

State/Province: |IL
Zip Code: |B0512

Phone: | (7081 81z-2345 |

GPA: |2-73

Year [200Z]

StudentlD) First Mame | Last Hame GPA Phone ~
002552 Enid Parsons 319 [312) 229-6360
002640 Byran Payne 1.91 [312) 236-6605

StudentlD; 003001
Mame: Jack Black

Citp. 5t Zip: Hinsdale IL BO5TZ
Phone: (708) 812-234%

IM [First] [Ne:-ct] [F'rev] [Last] M]

Page 70 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

e In pds9.p, we will show how you can add temp-table records in a ProDataSet and then use
SAVE-ROW-CHANGES to update the database.

The SAVE-ROW-CHANGES method will either add, change or delete the database
record based upon whether the temp-table is added, changed or deleted.

That is why you need to use the BEFORE-TABLE temp-table handle for the SAVE-
ROW-CHANGES method, since it contains the deleted temp-table record.

To prevent the studentid from being updated from the temp-table in the DataSet, we
supply two arguments, the buffer-name and the skip-list in the SAVE-ROW-CHANGES
method.

e The buffer-name, student, specifies the buffer that corresponds to a buffer in the
ATTACH-DATA-SOURCE method.

e The skip-list, "studentid" in this case, is a comma-separated list of field names for
fields that should not be assigned after a new record is created.

e Since the studentid value is generated from studentseq sequence in the student
create trigger, we don't want to overwrite this value from the DataSet.
Therefore, studentid is specified in the skip list.

e Please note that the skip list can also be specified for updating records.

Other fields such as calculated fields could also be specified for updating a record,
such as student gpa and address-agg fields.

Page 71 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

pds10.p

/* pdsl1@.p dataset example ten - test conflicts and error flags */

def var choice as log no-undo.
def var i as int no-undo.
def var swstr as char no-undo.
def var pdflag as log no-undo label "Prefer Dataset" view-as toggle-box.
def var mbfflag as log no-undo label "Merge by Field" view-as toggle-box.

on value-changed of pdflag
do:
assign pdflag
data-source srcstudent:prefer-dataset

pdflag.
end.

on value-changed of mbfflag
do:
assign mbfflag
data-source srcstudent:merge-by-field = mbfflag.
end.

on choose of bsaverow

do:
def var msg as char.
if rstable
then
msg = "Do you want to save this Student's row changes?".
else
msg = "Do you want to save this Student Charges's row changes?".

message msg skip
view-as alert-box
question buttons yes-no update choice.
if choice then do:
if rstable then do:
find tstudentb4 where rowid(tstudentb4) = buffer tstudent:before-rowid
no-error.
if available tstudentb4 then do transaction:
buffer tstudent:attach-data-source(data-source srcstudent:handle,"").
buffer tstudentb4:save-row-changes() no-error.
message "Data source modified after save-row-changes?"
buffer tstudentb4:data-source-modified skip
"Prefer dataset:" data-source srcstudent:prefer-dataset skip
"Merge By Field:" data-source srcstudent:merge-by-field skip
"Dataset Error?" dataset dsstuchrg:error skip
"Temp-table Student Error?" temp-table tstudent:error skip
"Student Buffer Error?" buffer tstudentb4:error skip
"Dataset Rejected?" dataset dsstuchrg:Rejected skip
"Temp-table Student Rejected?" temp-table tstudent:Rejected skip
"Student Buffer Rejected?" buffer tstudentb4:rejected skip
view-as alert-box.
/* also check datarow modified to see if another field was changed. */
/* need to get that value into the temp-table */

Page 72 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

/* refresh temp-table if conflict */

if buffer tstudentb4:error

or buffer tstudentb4:data-source-modified

then do:

swstr = data-source srcstudent:save-where-string(1).
message "Save Where string:" swstr skip
"Student Buffer Error?" buffer tstudentb4:error skip
"Data source modified after save-row-changes?"
buffer tstudentb4:data-source-modified skip
view-as alert-box.
buffer student:find-first(swstr).
find tstudent where rowid(tstudent) = buffer tstudentb4:after-rowid
no-error.
/* only changed fields in Student buffer will be copied */
/* don't need this statement since save-row-changes refreshes step 6 pg 6-67 */
buffer tstudent:buffer-copy(buffer student:handle).
bl:refresh().

end. /* dataset dsstuchrg:error */

/* need to release student because student record scope is
containing procedure block, otherwise student will still
be share-locked at the end of the transaction. */

release student no-error .
buffer tstudent:detach-data-source().
buffer tstudentb4:accept-row-changes() no-error.
end. /* available tstudentb4 */
end. /* rstable */
else do:
find tstuchrgb4 where rowid(tstuchrgb4) = buffer tstuchrg:before-rowid
no-error.
if available tstuchrgb4 then do transaction:

buffer tstuchrg:attach-data-source(data-source srcstuchrg:handle,"").

buffer tstuchrgb4:save-row-changes() no-error.

if buffer tstuchrgb4:error

then do:

buffer tstuchrgb4:reject-row-changes() no-error.
b2:refresh().

end. /* buffer tstuchrgbd:error */

else buffer tstuchrgb4:accept-row-changes() no-error.

release stuchrg no-error.

buffer tstuchrg:detach-data-source().

end. /* available tstuchrgb4 */
end. /* not rstable */
end. /* choice */
end. /* on choose of bsaverow */

assign pdflag = data-source srcstudent:prefer-dataset
mbfflag = data-source srcstudent:merge-by-field.

display rstable pdflag mbfflag with frame f1.

Page 73 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database
e |n pds10.p, we will explore how Progress supports change conflicts with ProDataSets.

e Because a given user is updating a temp-table in a DataSet, it is possible that another
user could have changed the same record before the given user saves the row back to
the database. This doesn't violate any Progress locking rules since the other user
completed their transaction first before the given user tried to update the same record.

e However, the before buffer for a given user will now be different from the current record
in the database due to the other user's change. The question now arises what to do
with the update? Do we disallow the update since the given user could be overriding
changes the other user made, or do we allow the DataSet to take precedence and
overwrite the previous changes?

e There is also a third option which says allow the given user to update only those fields
that were changed as long as those fields weren't changed by the other user.

e There are two data-source attributes that help answer these questions:

Attribute Default Value
PREFER-DATASET NO
MERGE-BY-FIELD YES

e |f the PREFER-DATASET attribute is false (no) for the data-source, then the comparison is
made between the database record and the BEFORE-TABLE temp-table row in the
DataSet. If there is any conflict, then the change is rejected and the ERROR attribute is
set.

e |f the PREFER-DATASET is true, then the check is not made and the changes are written
to the data-source from the ProDataSet, without regard to any changes from another user
that may have been made.

e |f the MERGE-BY-FIELD attribute is true (yes) for the data-source, then the comparison is
made on individual fields between the database record and the BEFORE-TABLE temp-
table row in the DataSet. A conflict will only exist if the same field has been changed by
another user and the ProDataSet. In this case, the ERROR attribute is set.

e |f the MERGE-BY-FIELD attribute is false, then if another user changed any field in the
same record, then the DataSet changes will be completely rejected and the ERROR
attribute is set.

Page 74 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

For example, the first user changes the gpa field in the student record and then the second user
changes the phone number for the same student record.

If MERGE-BY-FIELD is true, then there is no conflict when the second user updates the database
so field changes are kept.

If MERGE-BY-FIELD is false, then any change to any field by the first user results in a conflict.

Here is a table summarizing the different scenarios for the PREFER-DATASET and MERGE-BY-
FIELD data-source attributes. This assumes that a change was made by the first user, causing the
data-source-modified attribute is true:

PREFER-DATASET

MERGE-BY-FIELD

If Field Conflict

What is copied to DB

FALSE TRUE Data-Source wins Only non-conflicting fields
FALSE FALSE Data-Source wins Nothing

TRUE FALSE DataSet wins All temp-table fields
TRUE TRUE DataSet wins Changed Fields Only

Page 75 of 120

Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

Figure pds10-1

= User 1 = User 2
Student$ First Mame Last Mame GP4 Phone Total Charges Student$ Firzt Mame Last Hame GFA Phone Tatal Chan
000206 Derwond — Glass (312) 804-7420 27 E46.00 000206 Derwond — Glass 285([312) 504-7421] | 2764
001 956 Diane Huber 379325198147 25.371.00 001956 Diake Huber 37 (N2 5198147 2R.37
002037 Gladys Larsan 2833 215340669 25.362.00 002037 Gladys Larsan 2.83[312) 534-0669 25,3E:
002819 Gluincy Jacobzon 2.801[312) 765-0009 25,020.00 002819 Quincy Jacobson 2.80(312) 7E5-0004 25,020

011556 08/28/06 Book
011564 12/27/06 Book
011572 04402407 Book
011580 08/28/07 Book
01158812/27/07 Book
011536 04402408 Book

Charge Mo. chargelate chargeCode

|| Prefer D ataset erge by Field

Armnount A
$326.00
$700.00
$669.00
$320.00
$450.00
$575.00

S ave/Peject (®) Student () Student Charge

chargeCode Descn

boal
finance
food
ather
roorm
bax

Book [
Financ
Food [
Other |
Room
Tax Ct

Charge Mo. chargeDate chargelCode

011 556 08/28/06
011564 1242706
011 572 D4/02407
011 580 082807
011583 12/2707
011536 04/02/08

Book,
Bool:
Book,
Book
Book
Book,

Arnount
$326.00
$700.00
$EE9.00
$325.00
$450.00
$575.00 w

5 ave/Feject: ® Student () Student Charge

|| Prefer D atazet terge by Field

chargeCode O
book, B
finarice F
food F
ather (
room R
tax T

Prefer dataset: no
Merge By Field: yes
Dataset Error? no

Student Buffer Error? no
Dataset Rejected? no

Temp-table Student Error? no

Ternp-table Student Rejected? no
Student Buffer Rejected? no

0K

Message (Press HELP to view stack trace)

Data source modified after save-row-changes? yes

Help

Message (Press HELP to view stack trace)

Save Where string: WHERE student. Student|D=tstudentb4.Student/D
Student Buffer Error? no
Data source modified after save-row-changes? yes

0K

Help

Page 76 of 120

Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

e Infigure pds10-1, User 1 has changed the student gpa and User 2 is changing the phone
number. When User 2 goes to save their changes, no errors attributes are set since there
is not a conflict with merge-by-field set to true. The result is that User 2 will show the same
gpa as User 1 when the update is completed. (see pds10-2 below)

pds10-2

| Studentd First Mame
| 000206 Denwood
| 00195 Diane

| 002037 Gladys
| 002813 Quincy

_ | Charge Mo. chargeDate chargeCode

011564 12/27/06

011572 04/02/07
| 011580 D8/28/07
| 0115881242707
| 011596 04/02/08

ﬁ 011556 08./28/06

Save/Reject: (® Student

Prefer Datazet kerge by Field

Last Marme

Glazs
Huber

Larzon
Jacobson

Book
Bool,
Book,
Book
Bool
Book,

& Phoke

Arnount A
$326.00
$700.00
$EE9.00
$325.00
$450.00
$A7E.00 w

() Student Charge

Tatal Charges

12) 804-7421 27.546.00
75 [312]519-8147 25.371.00
283 [312) 534-0669 25.362.00

2.80[312] /65-0003 ~23.020.00

chargeCode Descr

book, Book (
finarice Financ
food Food C
ather Other |
room Foom
bax Tax Cl

Page 77 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

pds10-4
= User 1 = User 2
Studentd First Mame Last Mame GEA Phone 1 | Studenty First Mame Last Mame GPA Phone
i 000206 Denwood Glass 1 2] 804-7421 000206 Demwond — Glass 2.95([312) 804-7420 |
0015956 Diane Huber 0 [312) 5198147 0013956 Diane Huber 7R [312) 5198147
002037 Gladys Larzon 283 [312) 5340669 002037 Gladyps Larzon 2.83 [312) 5340669
002819 Guincy Jacobzon 280 [312] V650009 002819 Cluincy Jacobzon 2,80 ([312] 765-0009
Charge Mo. chargelate chargeCode Arnount A | | char | Charge Mo, chargeDate chargeCode Amnount A | | cha
F 11556 08/28/06 Book $326.00 biook 011556 09/28/06 Book $326.00 biool
L | 011864 12/27/06 Book $700.00 finar 011564 12/27/06 Book $700.00 firar
011572 04/02/07 Book $6E3.00 food 011572 0402407 Book $669.00 fooc
11530 08/28/07 Book $325.00 othe 011580 08/28/07 Book $326.00 othe
1538 12/27/07 Book $450.00 roor 011588122707 Book $450.00 roon
011596 04,/02/08 Book $575.00 v | |taw 011596 04/02/08 Book 57500 w | tax

S ave/Reject: (® Student () Student Charge

[] erge by Field

" [Preter Datazet

Data source modified after save-row-changes? yes
Prefer dataset: no

Merge By Field: ne

Dataset Error? yes

Temp-table Student Error? yes

Student Buffer Error? yes

Dataset Rejected? no

Temnp-table Student Rejected? no

Student Buffer Rejected? no

5 ave/Reject: (® Student () Student Charge

| | Prefer Datazet [| Merge by Field
= User 2
| Studentd First Mame Last Mame GPA Phone
000206 Derwond Glass 24
001956 Diane Huber ElE212] 519-8147
002037 Gladyps Larzon 283 [312)534-0669
002819 Guincy Jacobzon 2,80 ([312) 765-0009
Charge Mo, chargelate chargelode Amount | | cha
013002 08/28/06 Book $325.00 bl
01302 12/27/06 Boaok $500.00 finar
013022 04/02/07 Boaok $575.00 fooc
013032 08/28/07 Book $325.00 athe
013042 12/27/07 Boak $450.00 ran
013052 04/02/08 Boaok $575.00 » | |tax

S ave/Feject @) Student () Student Charge

| | Prefer Datazet [| Merge by Field

Page 78 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

e Infigure pds10-4, it is the same scenario as before except that the merge-by-field is now
false. Even though different fields were changed, the ERROR attribute is set to yes and no
data is updated.

e [f an error occurs during the save-row-changes method, then Progress sets the
ERROR attribute on the temp-table buffer, the temp-table and the DataSet.

e Possible reasons for the ERROR attribute to be set are unique index violation, a db
trigger procedure that returns an error, or if the record was changed by another
user.

e The ERROR attribute can also be set by the developer to signal an error condition
of any kind. Manually setting the ERROR on the buffer doesn't automatically set it
on the temp-table and the DataSet.

e You are free to set the ERROR attribute on those levels. The advantage to setting it
at a higher level makes it easy to check if there is an error at any of the lower
levels.

e There is also an ERROR-STRING character attribute on each temp-table, and temp-
table buffer. This is never set by Progress and allows the developer to specify the exact
description of the error.

e There is also a REJECTED logical attribute for the DataSet, each temp-table, and
temp-table buffer. This is never set by Progress and allows the developer to specify
that a change was not saved to the database because of an error condition. Progress
does not set this attribute because it is not possible for Progress to determine the
scope of the failed update.

e The ERROR, ERROR-STRING, DATA-SOURCE-MODIFIED and REJECTED
attributes are all cleared for all tables and rows affected by an ACCEPT-CHANGES,
REJECT-CHANGES, MERGE-CHANGES, or FILL method. Other methods that clear
these attributes are EMPTY-DATASET and the EMPTY-TEMP-TABLE.

e The ERROR, ERROR-STRING, DATA-SOURCE-MODIFIED and REJECTED
attributes are all also cleared for the buffer affected by an ACCEPT-ROW-CHANGES,
REJECT-ROW-CHANGES or MERGE-ROW-CHANGES.

Page 79 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

@
Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database
pds10-2

J Student First Mame Last Mame _GES Phone Total Charges
000206 Derwood — Glass b12) 804-7421 27 646,00
| 001956 Diare Huber 5 [312] 519-8147 25.371.00

| 002037 Gladys Larzon 2.83[312]534-06E3 25,362.00
| 002819 Quincy Jacobzon 2,80 (312) 7E5-0003 25.020.00

J Charge Mo. chargelate chargeCode Arnount 4 | | chargeCode Descn

11556 08/28/06 Book $326.00 biook, Book [
| O1156412/27/06 Book $700.00 finance Financ
| 011572 04/02/07 Book $EE3.00 food Food C
| 011580 08/28/07 Book $326.00 other Other |
| O1158212/27/07 Book £450.00 room Room
| 0115896 04/02/02 Book $57R.00 % | |taw Tau Cl

S ave/Feject (® Student () Student Charge
Frefer Datazet Merge by Field

pds10-3

Save Where string: WHERE student.StudentlD=tstudentbd. Student!D
Student Buffer Error? no

Data source modified after save-row-changes? yes

Page 80 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

¢ In pds10-2, the phone number remains the same, yet the data from User 1 is refreshed into
the gpa in User 2.

e To pullin the data from User 1's changes into User 2's screen, a few steps must be
performed:

1. Store the SAVE-WHERE-STRING for student to the variable swstr.
2. Use the FIND-FIRST method on the student buffer to find the current record

3. Find the after-image table tstudent temp-table record using the AFTER-ROWID
attribute of the before table tstudent temp-table record.

4. Perform a BUFFER-COPY method from the student database record to the temp-table
tstudent record.

5. Refresh the b1 browse based on temp-table tstudent.

The SAVE-WHERE-STRING is more convenient and more portable than hard coding the WHERE
clause manually yourself. This method is also handy in dynamic ProDataSets when it is difficult for
the developer to hard code the WHERE clause for runtime determined tables in a DataSet. see
pds10-3

We still need to re-find the tstudent record in step 3, otherwise the BUFFER-COPY method in step
4 tries to create a new tstudent record and an error message appears stating that "Student record
already exists with studentid 206".

Page 81 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

pds10-6
= User 1 = User 2
Student$ First Hame LaztMame GF4& Phone StudentH First Wame Last Wame GP4 Phone
000206 Derwood Glass [312] 804-7422 000206 Denwood — Glass 2.95([312) 804-7425
001956 Diare Huber 375 [2519-8147 001956 Diane Huber 375 (321 515-8147
002037 Gladps Larsan 2 83 (3121 534-0669 002037 Gladys Larzan 283321 534-0669
002219 Qusimcy Jacobzorn 280 [312) 7E5-0009 002813 Quincy Jacobzon 280 [312) 7E5-0003

Charge Mo, chargelate chargelCode

011556 08/28/06
011564 12/27/06
011572 0402407
011580 08/28/07
011583 12/27./07
011536 04./02/08

Amount | ch

Bioak $326.00 bo
Boak $700.00 firne
Book, $EE3.00 fio
Book $326.00 atk
Book $450.00 roc
Book $575.00 » | ta-

S ave/Fieject @) Student () Student Charge

Prefer Datazet || Merge by Field

011556 08/28/06
011564 12/27 /06
011572 04/02/07
011580 03/28/07
011633 12/27./07
011536 04,/02/08

Save/Reject (@) Studert

Charge Ho. chargelate chargeCode

Book
Book,
Book,
Book,
Book
Book

Amount # | | cha
$326.00
F700.00
$669.00
$325.00
$450.00

$575.00 w

bool
finat
fooc
othe
roon
tax

() Student Charge

=

s |

Message (Press HELP to view stack trace)

Data source modified after save-row-changes? no
Prefer dataset: yes
Merge By Field: ne
Dataset Error? no
Ternp-table Student Error? no
Student Buffer Error? no

Dataset Rejected? no

Ternp-table Student Rejected? no
Student Buffer Rejected? ne

Help

Prefer D atazet

011556 02/28/06
011564 12/27 /06
011572 04/02407
011580 03/28/07
011588 12/27/07
011536 04./02/08

Charge Ma. chargelDate chargelCode

Book
Book
Book
Book,
Book,
Book,

[] Merge by Field

Prefer Dataset || Merge by Field
= User 2
Studentd First Mame Last Mame GPA Phone
000206 Demnvood Glass 295([312) 804-7425
001956 Diane Huber A7R (325158147
002037 Gladys Larzan 283 [312) 534-06E9
0028719 Quincy Jacobzon 280 [312) 7650009

Armount A | | chal
$326.00
$700.00
F663.00
$325.00
$450.00

$575.00 w

bool
finar
fooc
othe
foon
tax

Save/Reject (® Student () Student Charge

Page 82 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database
e Infigure pds10-6, the prefer-dataset attribute is set to yes, and merge-by-field is set to no.

e These two settings are probably not desirable since the DataSet is overwriting fields that
the user didn't change.

e User 1 changed the gpato 3.76. User 2 changed the phone number. Notice that no
ERROR attributes are set to yes.

e User 2 screen in the lower right in pds10-6 shows that User 1's change to the gpa does not
come over since User 2 overwrites the gpa even though User 2 didn't change the gpa.

Page 83 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

= User 1
_j Studenty First Hame Last Hame GP& Phone _! Studenttt First Hame Last Mame GPA Phone
g Q00206 Demnsvood Glazs 2.00 [212) 804-7425 g Q00206 D ervood Glazs 2.95[312) 804-7 430
| 001956 Diane Huber 375(32) 5198147) | 00956 Diane Huber 375312 515-8147F
| 02037 Gladys Larzon 2.83(312) 5340669 | 002037 Gladys: Larzon 2.83[312) 534-06639
| 002879 Quincy Jacobson 2.80(312) 7650003 | 0023139 Quincy Jacobson 2.80[312] 7E5-0003
_] I:h.arge Mo, chargeD ate chargeCode Arnolnt & u: J Charge Mo cHargeDate chargeCode Smount & | | ot
Iﬁ 011556 02/28/06 Book $326.00 b ﬁ 011556 08/28/068 Book $326.00 b
il 011564 12/27/06 Book $700.00 fild | 011564 12/27/08 Book $£700.00 fir
E 1572 04/02/07 Book $663.00 fdl | 011572 04/02°07 Baook $BE9.00 fia
t 011580 02/28/07 Book $325.00 of | 011580 08/28/07 Book $325.00 at
[1588 12/27/07 Book $450.00 ol | 011588 12/2707 Book $450.00 ra
N 011596 04/02/08 Book $575.00 | |t | 011596 04/02°08 Book $R7R.00 v | [ta
S ave/Feject (® Student () Student Charge S ave/Feject (® Student () Student Charge
Frefer D ataszet Merge by Field Frefer Dataset Merge by Field
= User 2
|J Studentd Firzt Mame Last Mame GPA Phone

Data source modified after save-row-changes? yes ﬁ L D?rw':":'d HIEEs SOl e

Prefer dataset: yes | 0013956 Diane Huber 275 [N 25192147

Merge By Field: yes ! | 002037 Gladys Larsaon 283312 534-0661

Dataset Error? no _J DEIE_B1EI Euincy Jacobzon 28031 2) 7E5-0009

Ternp-table Student Error? no
Student Buffer Error? no -
Dataset Rejected? no

Charge Mo. chargeD ate chargeCode Amaount | | ch

Temp-table Student Rejected? no | 01155608/28/06 Book $326.00 | |ba
Student Buffer Rejected? no . M1564 12/27 /06 Book F700.00 fir
J‘ M1572 04/02/07 Book F6E9.00 fioe

J M158008/23/07 Book $325.00 ath

_‘I M58 12427 /07 Book F450.00 i

j 1596 04/02/08 Book $575.00 v | ta

5 ave/Feject: (®) Student () Student Charge

¥ Prefer D ataset terge by Field

Page 84 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Saving Data from a ProDataSet to the Database

e And finally, pds10-8 shows the last scenario where both the prefer-dataset and merge-by-
field are set to yes.

e Even though prefer-dataset is set to yes, only changed fields from the ProDataSet are
copied to the database.

e Since User 2 only changed the phone number, the gpa entered from User 1 will be
refreshed on to User 2's screen, see lower right screen in figure pds10-8.

Page 85 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions

e Progress provides the ability to pass ProDataSets between procedures within sessions and
between Progress sessions.

e This is accomplished by passing the DataSet as a parameter. The SHARED keyword is
not allowed on the define dataset statement.

e There are two parameter forms for passing DataSets.

e The DATASET parameter form passes a DataSet as a static object to another
procedure in the same session or another session.

e This is similar to the PARAMETER TABLE form for a temp-table.
e The DATASET-HANDLE form passes the DataSet through a handle variable.

e This form allows you to pass either a static or dynamic DataSet through its handle to
another procedure in the same session or another session.

e This form is parallel to the PARAMETER TABLE-HANDLE form for temp-tables.

e Use this PARAMETER DATASET-HANDLE instead of PARAMETER HANDLE to
allow passing a DataSet between sessions.

e A DataSet can be passed statically using the DataSet parameter type yet received as a
dynamic object using the DATASET-HANDLE parameter type and vice versa.

e This allows for example, to take a statically defined DataSet on the server and pass it to a
generic client procedure that receives it dynamically through a DATASET-HANDLE,
analyzes its structure through the handle, and uses its contents for client-side objects.
Static definitions on the server lend themselves for doing business logic that is specific to a
distinct set of tables for validation.

Syntax
DEFINE PARAMETER statement

DEFINE { INPUT | OUTPUT | INPUT-OUTPUT } PARAMETER
DATASET FOR dataset-name [APPEND] [BIND].

RUN statement

RUN procedure
([INPUT | OUTPUT | INPUT-OUTPUT] DATASET-HANDLE handle-var BY-
REFERENCE) .

Page 86 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions

Passing a DataSet BY-REFERENCE

e Progress by default passes the DataSet by value. This means all the DataSet definitions
and data are copied to the called procedure. This is true whether the procedure is in the
same session or a different session through an AppServer.

e The overhead of passing DataSets by value is high and should be avoided in most cases.
e Keep in mind that passing a DataSet to a remote (another) session is always copied.

e However, when DataSet is passed locally (in the same session), the call can be optimized
by including the keyword BY-REFERENCE on the parameter in the RUN statement.

e |f the BY-REFERENCE keyword is used and the call is local, Progress optimizes the
call by having the called procedure point to the instance of the DataSet in the calling
procedure. This eliminates the copying of data to the other procedure.

e |f the BY-REFERENCE keyword is used and the call is remote, Progress ignores the
BY-REFERENCE keyword and passes the DataSet BY-VALUE.

e ltis recommended that the BY-REFERENCE keyword be used in most cases because
of the improved efficiency and the fact that Progress will ignore it if it has to pass the
DataSet remotely without giving an error.

e Progress decided not to make BY-REFERENCE the default because of the known side
effects with this choice and to be consistent with how other data is passed between
procedures.

Page 87 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions

Side Effect Examples

INPUT BY-REFERENCE is like INPUT-OUTPUT since any changes that are made inside the
called procedure are passed back to the calling procedure.

OUTPUT BY-REFERENCE is like OUTPUT APPEND since the data is not emptied from the
ProDataSet when passed to the called procedure.

If you don't want the APPEND, execute the hDataSet:EMPTY-DATASET() method.

Restrictions on DataSet usage

A DataSet cannot be defined inside an internal procedure or trigger. This also true of temp-tables.
The BY-REFERENCE behavior is not supported and cannot be used for temp-tables.

The static parameter form:

cannot be used in the main block of a procedure that is run
persistently.

Page 88 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions

pdsi1i.p

/* pdsll.p dataset example eleven - pass dataset changes to another program for viewing. */

on choose of bviewrow

do:
hdsstuchrg = dataset dsstuchrg:handle.
create dataset hdschanges.
hdschanges:create-1like(hdsstuchrg).
hdschanges:get-changes(hdsstuchrg).

run viewdschg.p (input-output dataset-handle hdschanges by-reference).

delete object hdschanges no-error.
end.

viewdschg.p

/* viewdschg.p - program to display changed records in a browse */

define temp-table tstudent no-undo like student
before-table tstudentb4

field chargetot as decimal label "Total Charges"
index studentid is unique primary studentid .

define temp-table tstuchrg no-undo like stuchrg
before-table tstuchrgb4.

define temp-table tcharge no-undo like charge.

define dataset dsstuchrg for tstudent, tstuchrg, tcharge
data-relation stuchrg for tstudent, tstuchrg
relation-fields (studentid, studentid)

data-relation charge for tstuchrg, tcharge
relation-fields (chargecode, chargecode) reposition.

define input-output parameter dataset for dsstuchrg.

wait-for choose of bok.

Page 89 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions

Studenti First Mame Last Name GPA Phone Tatal Charges
000206 Denvood Glass 200[312) 804-7430 2764600
001956 Diane Huber 37525158147 25,371.00
Q02037 Gladys Larzon 285 [312) 524-0670 25,362.00
002813 Quincy Jacobson 281 [312) 765-0009 25.020.00

[e

J Charge Mo. chargelate chargeCode Amount # | | chargeCode Description A
013152 08/28/06 Book $325.00 biook, Book Charge

J MIE0 1227406 Book F450.00 finance Finance Charge

| MHE204/02/07 Book $E25.00 food Food Charge

J M337608/28/07 Book $325.00 other Other Charge

J MN3412/27/07 Book $450.00 room Room Charge

J 012192 04/02/08 Book $575.00 » | |tax Tax Charge W

Save/Feject () Student (@) Student Charge

| Feject .-'-‘-.II| | Reject All Student Charge Huwsi | Feject Student Charge Fh:uw|
| Save .-“-‘-.II| | Save pll Student Charge Fh:uws| | Save Student Charge Fh:uw|

Done

Miew Change Fows

Studenttt First Mame Last Mame GPA Phone Tatal Charges
002037 Gladys Larzsaon 285 [312)534-0670 20,362.00
002879 Quincy Jacobzon 2.81 [312] VEL-0009 2502000

Studentft Charge Mo, chargeDate chargeCode AmoLnt

000206 011561 02/22/07 Other $35.00
000206 011566 09115/06 Other $55.00
001956 013022 04/02/07 Book £700.00
001986 M304212/27/07 Book $500.00

Page 90 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions

The purpose of pds11.p is to show how only the changed records can be passed to
another procedure for viewing and updating.

e The user may select the View Changed Rows button to view only those records that
have changed in the ProDataSet.

e To clarify, it will send only those records that have a BEFORE-TABLE buffer. Any
student or student charge records that have been saved or rejected will have their
BEFORE-TABLE buffers cleared and will not be sent to the viewdschg.p procedure
called in the "on choose of bviewrow trigger".

e How is this done? It is really very easy! Here are the simple steps:

Define a variable hdschanges of type handle for the change dataset.

Store the handle to the DataSet dstuchrg to the variable hdsstuchrg.

Create a dynamic DataSet and assign it to the variable hdschanges.

Execute the create-like method on the change dataset to inherit the definitions to
the origin dataset.

Execute the get-changes method on the change dataset to extract the changes to
the origin dataset.

o=

o

Once these steps are performed, the changed DataSet may be passed to the viewdschg.p
procedure. If this procedure was located on another computer or server the network traffic
will be minimized since only the changed data will be sent.

It's important to remember to delete the dynamic object after calling viewdschg.p to avoid
memory leaks.

In this example, we are passing the DataSet handle hdschanges BY-REFERENCE to the
viewdschg.p procedure. Because this procedure happens to be local, viewdschg.p will
point to the change DataSet created in pds11.p rather than be copied. This will be more
efficient. In viewdschg.p, the static DataSet definition is used to display the data in the
changed ProDataSet.

Notice that the queries between the tstudent and tstuchrg temp-tables are not linked since
it's possible that there could be a changed tstuchrg record that belongs to a tstudent record
that was not changed. In this example, tstudent charge 11561 belonging to tstudent 206 is
displayed, but tstudent 206 was not changed and does not appear in the tstudent browse.

Page 91 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions

pds12.p

/* pdsl2.p dataset example twelve - add/change/delete stuchrg records
with update in server program illustrating merge-changes */

on choose of bdel
do:
def var choice as log.
def var saverowid as rowid.
def var saverowid2 as rowid.
message "Do you want to delete this Student Charge record?"
view-as alert-box question buttons yes-no update choice.
if choice then do:
temp-table tstuchrg:tracking-changes = yes.
saverowid2 = rowid(tstudent).
delete tstuchrg.
hdsstuchrg = dataset dsstuchrg:handle.
create dataset hdschanges.
hdschanges:create-1like(hdsstuchrg).
hdschanges:get-changes(hdsstuchrg).
run upddschg.p (input-output dataset-handle hdschanges by-reference).
temp-table tstuchrg:tracking-changes = no.
hdschanges :merge-changes(hdsstuchrg).
dataset dsstuchrg:accept-changes() no-error.
delete object hdschanges no-error.
/* need to refind tstudent record, get-changes method clears tstudent buffer */
find tstudent where rowid(tstudent) = saverowid2.
open query qtstuchrg for each tstuchrg of tstudent.
apply "value-changed" to b2.
end. /* choice */
end.

on choose of badd
do:
def var saverowid as rowid.
def var saverowid2 as rowid.
temp-table tstuchrg:tracking-changes = yes.
do with frame chrgadd view-as dialog-box 1 column title "Charge Add":
form tstuchrg.studentid label "Student#"
tstuchrg.chargeno
tstuchrg.chargedate
tstuchrg.chargecode view-as combo-box inner-lines 6
tstuchrg.chargeamt.
for each charge:
tstuchrg.chargecode:add-1last(charge.chargecode).
end.
create tstuchrg.
assign tstuchrg.studentid = tstudent.studentid
tstuchrg.chargecode = tstuchrg.chargecode:entry(1)
saverowid = rowid(tstuchrg)
saverowid2 = rowid(tstudent).
display tstuchrg.studentid
tstuchrg.chargeno.
update tstuchrg.chargedate
tstuchrg.chargecode
tstuchrg.chargeamt.

Page 92 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

hdsstuchrg = dataset dsstuchrg:handle.
create dataset hdschanges.
hdschanges:create-1like(hdsstuchrg).
hdschanges:get-changes(hdsstuchrg).
run upddschg.p (input-output dataset-handle hdschanges by-reference).
temp-table tstuchrg:tracking-changes = no.
hdschanges :merge-changes(hdsstuchrg).
dataset dsstuchrg:accept-changes() no-error.
delete object hdschanges no-error.
/* need to refind tstudent record */
find tstudent where rowid(tstudent) = saverowid2.
b2:set-repositioned-row(3, "conditional").
open query qtstuchrg for each tstuchrg of tstudent.
reposition qtstuchrg to rowid saverowid no-error.
apply "value-changed" to b2.
end. /* with view-as dialog-box 1 column title "Charge Add" */
end.

wait-for close of this-procedure.

upddschg.p

/* upddschg.p - program to update changed records in a browse */
define temp-table tstudent no-undo like student

before-table tstudentb4

field chargetot as decimal label "Total Charges”

index studentid is unique primary studentid .

define temp-table tstuchrg no-undo like stuchrg
before-table tstuchrgb4.

define temp-table tcharge no-undo like charge.

define dataset dsstuchrg for tstudent, tstuchrg, tcharge
data-relation stuchrg for tstudent, tstuchrg
relation-fields (studentid, studentid)

data-relation charge for tstuchrg, tcharge
relation-fields (chargecode, chargecode) reposition.
define input-output parameter dataset for dsstuchrg.
define data-source srcstuchrg for stuchrg.

def var i as int no-undo.

temp-table tstuchrg:tracking-changes = no.

buffer tstuchrg:attach-data-source(data-source srcstuchrg:handle,"").

for each tstuchrgb4 where row-state(tstuchrgb4) > 0 transaction:

buffer tstuchrgb4:save-row-changes("stuchrg","chargeno") no-error.
end. /* for each */

buffer tstuchrg:detach-data-source().

Page 93 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions

= Progress = =

Studentft Firzt Mame LaztMame GPA Phone Total Charges
000206 Derwond Glass 3.00 [312)804-74320 Q.00
001956 Diane Huber 275 [3121515-8147 Q.00
002037 Gladys Larson 283 [312)534-0665 Q.00
002819 Quincy Jacobzon 2,80 ([312] 765-0009 oo
Charge Mao. chargelate chargeCode Amount » | | chargeCode Description ~
013002 08/28/06 Book $326.00 food Food Charge
M3IM212/27406 Boak $R00.00 ather Qther Charge
117563 05/22/416 food $30.00 [{alaliy) Raoom Charge
013027 09/19/068 Other $10.00 ban T ax Charge
M35 09/24/068 Other $30.00 tuiticn Tuition Charge
013023 10/25/068 Qther $20.00 » W
Add Charge | | Delete Ehargel |D|:|ne

Student: 001356
Charge Mo 000000
chargelate; (05722718

chargeCode: | food W

Enter data or presz ESC to end.

Page 94 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions

e Inpdsi2.p, the user adds and deletes student charge temp-table records, with both add
and delete triggers calling upddschg.p which commits the temp-table changes to the
database.

This is a typical way of updating the database in many .NET applications.

Both add and delete trigger minimizes the data passed to upddschg.p by utilizing a
dynamic change DataSet.

In addition, the MERGE-CHANGES method is used to update the origin DataSet from
the change DataSet. This is especially useful for receiving generated key values and
calculated values.

This method can be used on both the DataSet handle and the buffer temp-table
handle.

In order to use it, you must remember to turn the TRACKING-CHANGES attribute
off before running MERGE-CHANGES.

In pds12.p, we must save the current tstudent rowid before doing the MERGE-
CHANGES method. This method appears to clear that buffer from memory.

Once the tstudent charge data is merged, the tstudent record is re-found and used
to open the query for the tstuchrg records of the tstudent.

In the add trigger, the rowid for the new tstuchrg record created is also stored and used
to reposition to the new tstuchrg record in the browse.

Page 95 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions

In upddschg.p, the SAVE-ROW-CHANGES method is used to update the database. The
chargeno field is specified in the skip list since it is generated by the chargeseq sequence
in the create schema trigger.

e One possible improvement to this application is some error checking in upddschg.p that
passes an error back to pdsi12.p.

¢ One side note is that we wanted to limit the number of student charge records loaded in
the tstuchrg temp-table.

e This was accomplished by changing the FILL-WHERE-STRING attribute on the srcstuchrg
Data-Source.

o The value of the FILL-WHERE-STRING on the srcstuchrg Data-Source is set to
WHERE stuchrg.studentid = tstudent.studentid because of the value of the Data-
Relation stuchrg in the DataSet definition.

o Before the FILL method is executed, the FILL-WHERE-STRING attribute is
changed to include only those charges with dates less than 01/01/07.

o Use the FILL-WHERE-STRING on a dependent Data-Source where there is no
query defined. Since the student charge table is dependent on the student table in
this DataSet, the FILL-WHERE-STRING is a convenient way to filter additional
child records.

o ltis possible to define a query on the child Data-Source to achieve filtering but it is
more work and less convenient than the FILL-WHERE-STRING.

Page 96 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions
pds13.p

/* pds13.p dataset example thirteen - add/change/delete stuchrg records
in 1 transaction with update in server program illustrating merge-changes */

on choose of bcmt
do:
def var choice as log.
message "Do you want to commit the changes to the Student Charge records?"
view-as alert-box question buttons yes-no update choice.
if choice then do:
hdsstuchrg = dataset dsstuchrg:handle.
create dataset hdschanges.
hdschanges:create-1like(hdsstuchrg).
hdschanges:get-changes(hdsstuchrg).
run upddschg.p (input-output dataset-handle hdschanges by-reference).
temp-table tstuchrg:tracking-changes = no.
hdschanges :merge-changes(hdsstuchrg).
dataset dsstuchrg:accept-changes() no-error.
delete object hdschanges no-error.
disable bcmt with frame f1.
b2:refresh().
end. /* choice */
end.

on choose of bdel
do:
def var choice as log.
def var saverowid as rowid.
message "Do you want to delete this Student Charge record?"
view-as alert-box question buttons yes-no update choice.
if choice then do:
enable bcmt with frame f1.
temp-table tstuchrg:tracking-changes = yes.
delete tstuchrg.
open query qtstuchrg for each tstuchrg of tstudent.
apply "value-changed" to b2.
end. /* choice */
end.

on choose of badd
do:
def var saverowid as rowid.
temp-table tstuchrg:tracking-changes = yes.
do with frame chrgadd view-as dialog-box 1 column title "Charge Add":
form tstuchrg.studentid label "Student#"
tstuchrg.chargeno
tstuchrg.chargedate
tstuchrg.chargecode view-as combo-box inner-lines 6
tstuchrg.chargeamt.
for each charge:
tstuchrg.chargecode:add-1last(charge.chargecode).
end.
create tstuchrg.
assign tstuchrg.studentid = tstudent.studentid
tstuchrg.chargecode = tstuchrg.chargecode:entry(1)

Page 97 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

tstuchrg.chargeno = ?
saverowid = rowid(tstuchrg).
display tstuchrg.studentid
tstuchrg.chargeno.
update tstuchrg.chargedate
tstuchrg.chargecode
tstuchrg.chargeamt.
enable bcmt with frame f1.
b2:set-repositioned-row(3, "conditional").
open query qtstuchrg for each tstuchrg of tstudent.
reposition qtstuchrg to rowid saverowid no-error.
apply "value-changed" to b2.
end. /* with view-as dialog-box 1 column title "Charge Add" */
end.

Studentt First Hame Laszt Mame GPA Phone Total Charges
000206 Derwood Glass 200 [312) 804-7430 0.00
0013956 Diane Huber AFE 3125198147 0.00
002037 Gladys Larzon 283 [312) 534-0669 .00
002813 Quircy Jacobzon 280 [312) 7E5-0003 0.00

Charge Mao. chargelate chargeCode Amount # | | chargeCode Description

14933 11/07/06 Other $30.00 ather Other Charge

014931 11/20/06 Other $50.00 roam Room Charge
TORS28/06 other $10.00 kam Tax Charge

0143909 08/02/06 Room $400.00 tuition Tuition Charge

014919 12/02/06 Room $560.00

014908 08/001 /06 Tuition $2.000.00 w

Delete Charge | | Commit Changes | | Done

Page 98 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions
Grouping Changes into One Commit

e ProDataSets provide the developer many ways to structure transactions.

e In pdsi13.p, all the changes, both add and delete of the tstuchrg record are committed in
one transaction through the on choose of bcmt trigger.

e Like the previous example, the upddschg.p procedure is called. Please note that the
transaction block is explicitly set for the FOR EACH block. If an error occurs on the
SAVE-ROW-CHANGES method on one of the iterations of the FOR EACH block, then
it will not affect the other records since they will be in separate transactions.

e Unlike the previous example, since the ACCEPT-CHANGES method is performed in
the bcmt trigger and not in the badd or bdel triggers, it is no longer necessary to re-find
the tstudent record with the saverowid2 variable.

¢ Notice that when the tstuchrg record is added, the charge number is assigned to ?
(unknown). If we let the chargeno default to 0, a duplicate key error would result on
attempting to create the second tstuchrg record. Remember that the chargeno field key
is generated from the schema trigger and not updated until the bcmt trigger.

Page 99 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions

pds14.p

/* pdsl4.p dataset example fourteen - add/change/delete stuchrg records
in 1 transaction with update on appserver */

on choose of bcmt

do:
def var happsrv as handle no-undo.
def var ok as logical no-undo.

def var choice as log.

message "Do you want to commit the changes to the Student Charge records?"
view-as alert-box question buttons yes-no update choice.

if choice then do:
create server happsrv.

ok = happsrv:connect("-AppService asdbaschool -H localhost -sessionModel Session-free ").
if not ok then do:
message "Failed to connect to Appserver" view-as alert-box.
return no-apply.
end.
else message "Connection successful" view-as alert-box.

hdsstuchrg = dataset dsstuchrg:handle.
create dataset hdschanges.
hdschanges:create-1like(hdsstuchrg).
hdschanges:get-changes(hdsstuchrg).
run upddschg.p on server happsrv

(input-output dataset-handle hdschanges by-reference).

ok = happsrv:disconnect().
delete object happsrv.

temp-table tstuchrg:tracking-changes no.
hdschanges :merge-changes(hdsstuchrg).
temp-table tstuchrg:tracking-changes = yes.
dataset dsstuchrg:accept-changes() no-error.
delete object hdschanges no-error.
disable bcmt with frame f1.
b2:refresh().

end. /* choice */
end.

Page 100 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Sharing Datasets Between Procedures and Sessions

Passing a ProDataSet to another Session

e Inpdsi4.p, upddschg.p is called from the asdbaschool AppServer.

¢ Notice the call to upddschg.p is a little different than before, where we have added the "ON
happsrv" phrase to specify that the procedure is to be run on the AppServer.

¢ Review the 5 steps to using an AppServer:

1. Create a server handle and store the value in a variable
2. Use the CONNECT method to connect to an AppServer
3. Run the program on the AppServer
4. Use the DISCONNECT method to disconnect from an AppServer
5. Delete the server handle instance
e

Configuration

Broker Agent S50 Messaging Environment Variables
General
Server executable file: "@{Startup\DLC]\bin'_proapsv.exe
Server startup parameters: -dbcwrk116\db\dbaschool -1d schoo
PROPATH: c\wrk11564;c\workspaces\pga\trigpgmic:\workspaces'\pdstrain,c\workspaces\ws\appserver;c\courses\ keys20e\examples
Minimum port number: 2002
Maximum port number: 2202
Flush statistical data: 255

Logging Setting

Server log filename: cwrk116\asdbaschool.server.log
Server logging level: Basic
Append to server log file: r
Server logging entry types: ASPlumbing,DB.Connects
Server log file threshold size: 0
Maximum number of server logfiles: 3
Server watch dog interval: &0
Pool Range
Initial number of servers to start: 2
Minimum servers: 1
Maximum servers: 2

Page 101 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Lab 3 — Maintaining ProDataSets Between Procedures and Sessions

1. Update Teacher and Registration Tables Part 1

a. Copy teachergradei.p in the labs folder to teachergradelab.p.
b. Open itin PDSOE and run the procedure.

teachert First Mame Lazt Mame Email
000007 Bobby Falk. bralkizgmail com
000002 Edgar Cazzidy ecazsidyi@gmail.com
000003 Drarakky b arder
000004 Giovani Rugzel

Reject Al
Save Al

Reject All Student Grade Rows
Save Al Student Grade Rows

Save/Peject () Teacher (@) Student Grade

Reject Student Grade Row

Save Student Grade Row | | Done

Tear Seazon Mame Student First Hame Last Mame GradePoint »
2009 Fall Introduction to Physics 000305 kevin it 7
2009 Fall Intraduction to Physics 002435 Guynell Scanlon 7
2009 Fall Introduction to Physics 000207 Chuck Smythe 7
{2009 Fal Introduction to Physics 000481 Craig Somenting 300
2009 Fall Intraduction to Physics 000322 Ellen Termy 7
2010 Fal Introduction to Physics 001934 Elize Perkinz Tw

ability to update the teacher’s email address.

The top browse lists physics teachers that have offerings in 2009. The user has the

The bottom browse lists the 2009 Fall offerings of the physics teachers and the

students that have registered for them whose last names begin with ‘P’ through ‘Z'.

Update the reject triggers to allow the user to undo changes to temp-tables for both

the teacher’'s email and the student’s course grade (registration).

Update the save triggers to allow the user to save changes to temp-tables for both

the teacher’s email and the student’s course grade (registration).

Page 102 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Follow the commented areas in the triggers.

Climb Aboard The ProDataSet Train

Lab 3 — Maintaining ProDataSets Between Procedures and Sessions

2. Update Teacher and Registration Tables Part 2

Save All

a. Copy either your completed lab in part 1 teachergradeilab.p to teachergrade2lab.p,
or use the solution in solutions/teachergrade1sol.p to copy to teachergrade2lab.p.
teacherl Firzt Mame Last Mame Email ~
000007 Bobby Falk, 3grnail. cor
000002 Edgar Cazzidy ecazzidy@gmail.com
000003 Drarathy b arder
000004 Giowvani Ruszzell W
“ear Season Mame Studentt First Mame Last Mame | LetterGrade
2009 Fall Electricity and Magnetizm 001699 Karen Perez C+
2009 Fall Electricity and Magnetizm 002286 Guy Petrova A+
2009 Fall Electricity and Magnetizm 0071934 Phillip Phillipz B+
2009 Fall Electricity and Magnetizm 000E32 Jozeph Pierce C
2009 Fall Electricity and Magnetizm 000713 Lucy Piper B
2009 Fall Electricity and Magnetizm 002311 Helen Schroeder § 7 W
Gave/Feject () Teacher (@) Student Grade
Reject &l | Beject &ll Student Grade Rows | | Reject Student Grade Row

Save All Student Grade Rows | | Save Student Grade Row | | Done

b.

Replace the GradePoint column in browse b2 above with the LetterGrade column
(stugrade.gradename). The gradename will automatically be populated with the
letter grade from the grade.gradename field if the registration.gradepoint found in
the grade table.

Allow the gradename column to be updated (enable) in the browse.

At the top of the program, define a named buffer gradebuf for grade, define a temp-
table tgrade like grade, a dataset dsgrade for tgrade and a data-source for
gradebuf.

At the bottom of the program, fill the dsgrade dataset with all the grade table
records from the database.

Modify the save triggers so that the letter grade is converted to a grade point to be
stored in the registration.gradepoint field in the database.

Before the tstugradeb4:save-row-changes() method in each of the triggers, perform
the following:
i. Find the tstugrade record from the tstugradeb4 record.
ii. Find the tgrade record based upon the entered letter grade.
iii. Assign the tgrade.gradepoint to the tstugrade.gradepoint field.

Follow the commented areas in the triggers.

Page 103 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Lab 3 — Maintaining ProDataSets Between Procedures and Sessions

3. Move Processing to the AppServer for the trigger on the Save All button
Copy appserver.p in the labs folder to appserverlab.p.

Copy updteachergrade.p to updteachergradelab.p.

Convert the Save All button to call the appserver.

Follow the comments in the trigger.

Examine the contents of the updteachergradelab.p.

Follow the comments in that procedure.

~ooo0oTw®

Page 104 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Advanced Topics

Read and Write ProDataSets from JSON
Write-JSON Method

/* dsstuchrgwritejson.p - create xml file from prodataset */

define temp-table tstudent no-undo like student
field chargetot as decimal label "Total Charges"
index studentid is unique primary studentid .

define temp-table tstuchrg no-undo like stuchrg.
define temp-table tcharge no-undo like charge.

define dataset dsstuchrg for tstudent, tstuchrg, tcharge
data-relation stuchrg for tstudent, tstuchrg
relation-fields (studentid, studentid)

data-relation charge for tstuchrg, tcharge
relation-fields (chargecode, chargecode).

define query gstudent for student.

define data-source srcstudent
for query gstudent
student keys (studentid).

define data-source srcstuchrg for stuchrg.
define data-source srccharge for charge.

query gstudent:query-prepare("for each student
where stcode = 'IL'
and syear = 2007").

buffer tstudent:attach-data-source(data-source srcstudent:handle,"").
buffer tstuchrg:attach-data-source(data-source srcstuchrg:handle,"").
buffer tcharge:attach-data-source(data-source srccharge:handle,"").

dataset dsstuchrg:fill().

buffer tstudent:detach-data-source().
buffer tstuchrg:detach-data-source().
buffer tcharge:detach-data-source().

buffer tstudent:buffer-field("picture"”):SERIALIZE-HIDDEN = true.

dataset dsstuchrg:write-json("file","dsstuchrg.json",true /* formatted */).

buffer tstudent:write-json("file","tstudent.json",true /* formatted */).

find first tstudent.

buffer tstudent:serialize-row("json","file","tstudentrow.json", true /* formatted */).

Page 105 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Read and Write ProDataSets from JSON
dsstuchrg.json

{"dsstuchrg": {

"tstudent": [
{

"StudentID": 206,
"sfirstName": "Derwood",
"slastName": "Glass",
"address1": "443 River Avenue",
"address2": "",
"address3": ""

B
"city": "Chicago",
"stCode": "IL",
"postalCode": "60639",
"countryCode": "USA",
"addressAgg": "443 River Avenue Chicago IL 60639 USA",
"Phone": "3128047418",
"email": "C:\\wav\\tv\\nipitbud.wav",
"ethnicId": 1,
"sex": true,
"bday": "1985-05-17",
"syear": 2007,
"seasonNo": 3,
"graduated": true,
"GPA": 2.75,
"balanceAmt": 7239.00,
"chargetot": 0.0

s
"tstuchrg": [

{
"chargeNo": 11554,
"studentId": 206,
"chargeCode": "Tuition",
"chargeDate": "2006-08-01",
"chargeAmt": 3000.00,
"studentChargeDescription": "Tuition for Fall of 2006"

s

{
"chargeNo": 11555,
"studentId": 206,
"chargeCode": "Room",
"chargeDate": "2006-08-02",
"chargeAmt": 400.00,
"studentChargeDescription": "Room charge for Fall of 2006"

s

1,
"tcharge": [

{
"chargeCode": "food",
"chargeDescription": "Food Charge"

s

{
"chargeCode": "tuition",
"chargeDescription": "Tuition Charge"

}

]

Page 106 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

[1)

Read and Write ProDataSets from JSON
Write-JSON Method

e Unlike XML, there is no WRITE-JSONSCHEMA method. The database structure is
inferred by the JSON output.

e The lack of schema information means that the JSON output does not explicitly include
indexes and data-relations.

e [f this method is used on a temp-table buffer then all the records of the temp-table are
written out, not just the record currently in the record buffer.

e If only a single record being output is desired, then use the SERIALIZE-ROW() method.

e In dsstuchrgwritejson.p, the WRITE-JSON() method is executed after the dataset is filled.
The true value is specified for formatting.

e Since the picture buffer-field is a blob, we decided to omit that from the json output by
setting the SERIALIZE-HIDDEN attribute to true. This is optional as the blob would be
output as base64 encoded equivalent of the binary data.

e Using the buffer tstudent with the WRITE-JSON method outputs all student rows in the
tstudent temp-table.

e |n dsstuchrgwritejson.p, the find first tstudent is done before executing the SERIALIZE-
ROW() method, which output only the current tstudent record.

tstudent.json

{"tstudent": {
"StudentID": 206,
"sfirstName": "Derwood",
"slastName": "Glass",
"addressl": "443 River Avenue",
"address2": "",
"address3": "",
"city": "Chicago",
"stCode": "IL",
"postalCode": "60639",
"countryCode": "USA",
"addressAgg": "443 River Avenue Chicago IL 60639 USA",
"Phone": "3128047418",
"email": "C:\\wav\\tv\\nipitbud.wav",
"ethnicId": 1,
"sex": true,
"bday": "1985-05-17",
"syear": 2007,
"seasonNo": 3,
"graduated": true,
"GPA": 2.75,
"balanceAmt": 7239.00,
"chargetot": 0.0

}
}

Page 107 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Read and Write ProDataSets from JSON

Write-JSON Method

The following table shows the JSON related attributes for ProDataSets and Temp-tables.

Attribute

Data
Type

Applies To

Description

Foreign-Key-Hidden

Logical

Data-Relation

Specifies whether the WRITE-
JSON() method should hide
foreign key fields in the child
records of a nested data-relation in
a ProDataSet.

Nested

Logical

Data-Relation

Specifies whether the AVM
embeds child rows within a parent
row in the JSON. This

affects both the data and schema.

Serialize-Hidden

Logical

Buffer-Field

Indicates whether this field is
written when the temp-table is
serialized, for example into
JSON or XML. This attribute
interacts with the XML-NODE-
TYPE attribute.

Serialize-Name

Char

ProDataSet
temp-table
temp-table buffer
temp-table

buffer field

Optionally specifies the name of a
ProDataSet, a temp-table, a temp-
table buffer, or a temp-table buffer-
field object as

it should appear when serialized,
for example into JSON or XML.
This attribute

interacts with the XML-NODE-
NAME attribute.

Syntax

WRITE-JSON (target-type, {file|stream |stream-handle |memptr{longchar}
[, formatted], encoding[, omit-initial-values[, omit-outer-object, [, write-before-imagelllll)

SERIALIZE-ROW (target-format, target-type, {file|stream|stream-handle|memptr|longchar}
[, formatted[, encoding[, omit-initial-values [, omit-outer-object]]]])

Page 108 of 120

Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Read and Write ProDataSets from JSON
Read-JSON Method

/* dsstuchrgreadjson.p - dynamically create prodataset from json schema and data files */

define var dshand as handle.
define var thand as handle.
define var tbuf as handle.
define var gh as handle.
define var fhl as handle.
define var fh2 as handle.

define var fh as handle.
define var i as int.
define var j as int.

define var ftitle as char.

create dataset dshand.

dshand:read-json("file","dsstuchrg.json","empty").

do i = 1 to dshand:num-buffers with frame a down stream-io:
tbuf = dshand:get-buffer-handle(i).

create query gh.
gh:set-buffers(tbuf).

gh:query-prepare("for each " + tbuf:name).

gh:query-open().
gh:get-first().

hide frame a.
frame a:title = "Read Dataset json for
do while tbuf:available :
clear frame a all.
do j = 1 to tbuf:num-fields
with frame a:
fh = tbuf:buffer-field(j).
display fh:name label "Field" format "x(30)"
string(fh:buffer-value) label "Value" format "x(30)".

+ tbuf:name.

down.
end.
gh:get-next().
end.

end. /* do i =1 to */

delete object fh no-error.
delete object gh no-error.
delete object tbuf no-error.
delete object dshand no-error.

Page 109 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Read and Write ProDataSets from JSON

Read-JSON Method
Here is the display output:

Read Dataset json for tstudent

Field Value

StudentID 208

sfirstHame Derwood
3lastHame Elass

addressl 443 Riwver Avenus
addressZ

address3

city Chicago

gtCode IL

postalCode e0&835
countryCode Ush

addressigg 443 RBiwver Avenue Chicago
Ehone 3128047418

email C-ohvwavitvivnipitbud wawv
ethnicId b3

Sex e

bday 15385-05-17

IYEEE 2007

seasonllo 3

graduated yes

EFER Z2_75

balanceAmt TZ2358

chargetot a

Read Dataset json for tstuchrg

Field Value

chargelo 11554

studentId 208

chargeCode Tuition

chargelate Z200e-08-01

chargeimt 2000
studentChargelescription Tuition for Fall of 2006

Read Dataset json for tcharge

Field Value
chargeCode tuition
chargeDescription Tuition Charge

Page 110 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Read and Write ProDataSets from JSON
Read-JSON Method

e The READ-JSON() method loads data into static or dynamic temp-table, temp-table buffer,
and ProDataSet objects from a JSON string.

e |[f the ABL data object has a defined schema, the AVM assumes that the JSON values
match up with the ABL fields' data types.

e READ-JSON() generates an error message and returns FALSE if the JSON value cannot
be converted to the expected ABL data type.

e READ-JSON() also accepts JsonObject and JsonArrays as source-types since the
ObjectModelParser creates a tree of constructs consisting of JsonObjects and JsonArrays.
This makes conversion between JsonConstruct trees and temp-tables or ProDataSets
easy.

e If a JSON string contains ProDataSet before-image data, the READ-JSON() method
populates the after-table and BEFORE-TABLE data for the ProDataSet.

¢ |n procedure dsstuchrgreadjson.p, the dsstuchrg.json file is read into the dynamic dataset
defined by handle variable dshand.

e Unlike XML, JSON does not have a standard schema language. Because the format of
each JSON value indicates its data type, the AVM can infer a schema from a JSON string.

e This is the case in dsstuchrgreadjson.p since there is no schema defined for this dynamic
dataset.

¢ Please be aware that inferring schema is an inexact science. OpenEdge makes certain
assumptions about the json string when constructing the schema. Unpredictable results
may occur.

e When the AVM has to infer schema for the data object, the AVM makes two passes
through the JSON data: one to build the schema and one to fill in the data.

¢ Please see the OpenEdge development documentation “Working with JSON” for
guidelines on inferring ABL schema from JSON data.

Syntax

READ-JSON (source-type, {file|memptr|handle|longchar | JsonArray |
JsonObject} [, read-mode])

Page 111 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Using .NET Grids

addgrid.p

/* addgrid.p - add ultragrid control to form */
using System.Windows.Forms.*.

def var forml as Progress.Windows.Form no-undo.
def var ustudGrid as Infragistics.Win.UltraWinGrid.UltraGrid no-undo.
def var bsstudent as Progress.Data.BindingSource no-undo.

def query gstudent for student scrolling.

forml = new Progress.Windows.Form ().
ustudGrid = new Infragistics.Win.UltraWinGrid.UltraGrid().

/* open query gstudent for each student no-lock where student le 100. */
bsstudent = new Progress.Data.BindingSource().
bsstudent:handle = query gstudent:handle no-error.

forml:Width = 840.
forml:Height = 500.
forml:text = "Add Ultra Grid".

ustudgrid:Left = 1@.
ustudgrid:Top = 10.
ustudgrid:Width = 810.
ustudgrid:Height = 4260.
ustudgrid:Text = "Student Grid".
ustudgrid:DataSource = bsstudent.
forml:controls:Add(ustudGrid).

wait-for Application:Run(forml).

Student Grid

StudentlD First Name address2 i State/Province

Page 112 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Using .NET Grids

e _NET Grids are similar to a browse in traditional GUI but with many more visual options.
e The Infragistics UltraGrid is particularly robust in how tabular data can be displayed.

e In addgrid.p, the UltraGrid’s DataSource property is assigned to the binding source
bsstudent.

¢ Notice that the headings are displayed but there is no data. This is because the query
gstudent is assigned to the binding source but the query has not been opened.

e The query needs to be assigned to the binding source in order for the column headings to
appear.

Page 113 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train
Using a Dataset with a .NET Grid
addgridpds.p

/* addgridpds.p - add a grid with binding to the student table */

using System.Windows.Forms.*.

def var forml as Progress.Windows.Form no-undo.

def var ustudGrid as Infragistics.Win.UltraWinGrid.UltraGrid no-undo.
def var bsstudent as Progress.Data.BindingSource no-undo.

def temp-table tstudent no-undo like student.

def dataset dsstudent for tstudent.

def query gstudent for student scrolling.

def data-source srcstudent for query gstudent student keys (studentid).
buffer tstudent:attach-data-source(data-source srcstudent:handle).
query qstudent:query-prepare("for each student NO-LOCK where studentid <= 100").
dataset dsstudent:fill().

buffer tstudent:detach-data-source().

forml = new Progress.Windows.Form ().
ustudGrid = new Infragistics.Win.UltraWinGrid.UltraGrid().

bsstudent new Progress.Data.BindingSource().
bsstudent:handle = dataset dsstudent:handle.

forml:Width = 840.
forml:Height = 500.
forml:text = "Add Ultra Grid".

ustudgrid:Left = 10.

ustudgrid:Top = 10.

ustudgrid:Width = 810.

ustudgrid:Height = 4260.

ustudgrid:Text = "Student Grid with ProDataSet".
ustudgrid:DataSource = bsstudent.
forml:controls:Add(ustudGrid).

wait-for Application:Run(forml).

Page 114 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Using a Dataset with a .NET Grid

addgridpds.p
Student Grid with ProDataSet
StudentID First Name Last Name Address address? address3 city State/Province
pil Derwood Serck 484 Sixth Place | Suite 10 Providence Rl

2 Emily Levy 622 Fifth Place Suite 2 Columbus CH

3 Laura Dunn 182 Massachuset | Suite 4 Little Rock AR

4 Dorothy Davidson 225 Golf Place Suite 4 Houston TX

B Raymend Olson 614 Church Court | Suite 5 ‘wichita KS

6 Barry Fiocchi 531 Oriole Boulev | Apt. 24 Montreal QuE

7 Larry Bobhbitt 464 King Avenue Milwaukee il

2 Kyle Talbot 57 Lincoln Avenu | Apt. 28 San Francisco CA

9 Atwood Cunningham 445 Eastern Boul | Apt. 23 Richmond WA

10 Dana Pollack 816 Cardinal Plac Omaha NE

1 Rory Liebovich 968 Second Stree | Apt. 21 Salt Lake City uT

12 Athleen Sweeney 402 Lincoln Court Little Rock AR

13 Raymend Torres 54 3rd Court Apt. 9 ‘wilmington DE

14 Richarda Sweeney 445 Northern Ave Dallas TX

15 Jennifer Marsh 813 Georgia Park Los Angeles CA

16 Harvey Hawkins 672 Cedar Avenu | Apt. 25 Chicago IL

17 Diane Shapiro 723 Cedar Court Las Vegas NY v

J < - i) - - >

e In addgridpds.p, a dataset called dsstudent is defined for the temp-table tstudent.
e To use a dataset, at least one data-source is typically defined.

e A query is prepared on the top level temp-table to limit the number of records, in this case
the first 100 student records are read.

e After the data-source is attached, the dataset if populated using the fill() method before the
data-source is detached.

e Last but not least, the dataset is attached to the probindingsource. This allows the data in
the prodataset to be populated in the grid.

Page 115 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train
Using a multi-table Dataset with a .NET Grid
addgridpds2.p

/* addgridpds2.p - add multiple tables to a grid, student, student activity and activity records
*/

using System.Windows.Forms.*.

def var forml as Progress.Windows.Form no-undo.
def var ustudGrid as Infragistics.Win.UltraWinGrid.UltraGrid no-undo.
def var bsstudent as Progress.Data.BindingSource no-undo.

def temp-table tstudent no-undo like student.
def temp-table tstuact no-undo like stuact.
def temp-table tactivity no-undo like activity.

def dataset dsstuact for tstudent, tstuact, tactivity
data-relation stuact for tstudent, tstuact
relation-fields (studentid,studentid)

data-relation activty for tstuact, tactivity
relation-fields (activityid,activityid).

def query gstudent for student scrolling.

def data-source srcstudent for query gstudent student keys (studentid).
def data-source srcstuact for stuact.

def data-source srcactivity for activity.

buffer tstudent:attach-data-source(data-source srcstudent:handle).
buffer tstuact:attach-data-source(data-source srcstuact:handle).

buffer tactivity:attach-data-source(data-source srcactivity:handle).
query gstudent:query-prepare("for each student NO-LOCK where studentid <= 100").
dataset dsstuact:fill().

buffer tstudent:detach-data-source().

buffer tstuact:detach-data-source().

buffer tactivity:detach-data-source().

forml = new Progress.Windows.Form ().
ustudGrid = new Infragistics.Win.UltraWinGrid.UltraGrid().

bsstudent
bsstudent:handle

new Progress.Data.BindingSource().
dataset dsstuact:handle.

ustudgrid:Text = "Student/Activity Grid with ProDataSet".
ustudgrid:DataSource = bsstudent.
forml:controls:Add(ustudGrid).

wait-for Application:Run(forml).

Page 116 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Using a multi-table Dataset with a .NET Grid

addgridpds2.p
ail Add Ultra Grid = =
Student/Activity Grid with ProDataSet
StudentlD First Mame Last Mame Address address2 address3 city State/F =
= E 1 Derwood Serck 494 Sixth Flace Suite 10 Providence 2]
studentld Activity 1D
[E3] 1 7
(3] 1 15
= 1 24
StudentlD First Name Last Name Address address?2 address3 city State/'F
= | 2 | Emily | Lewvy 522 Fifth Place Suite 2 Columbus OH
studentld Activity 1D
e | 2 = |
Activity 1D Mame
|2 | baseball |
StudentlD First Mame Last Mame Address address2 sddress3 city State/F
= 3 Laura Drunn 182 Massachuset | Suite 4 Little Rock AR
= 4 Dharothy Davidson 225 Golf Place Suite 4 Houston TX
[E3) I 5 Rayrmand Olson 614 Church Court | Suite 5 ‘wichita KS
= I & Barry Fiocchi 551 Oricle Boulev | Apt. 24 Montreal QuE
JE, | 7 Larmy Bobbitt 464 King fvenue Milwaukee Wl w
< >

In addgridpds2.p, a multi-table dataset is created consisting of the student, activity and

stuact tables.

The stuact table is the cross reference table between the student and activity tables.

The dsstuact dataset has 3 levels, starting with the student table, then filling all the stuact
records, then getting the single activity record for each stuact record.

By assigning the dataset dsstuact to the bsstudent binding source, automatically creates
three levels in the UltraGrid.

Page 117 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train
Using a multi-table Dataset with a .NET Grid
addgridpds3.p

/* addgridpds3.p - add grid for student and stuact records adding activity name to temp-table */

def temp-table tstudent no-undo like student.
def temp-table tstuact no-undo like stuact
field activityname like activity.activityname.
def dataset dsstuact for tstudent, tstuact
data-relation stuact for tstudent, tstuact
relation-fields (studentid,studentid).

def query gstudent for student scrolling.

def data-source srcstudent for query gstudent student keys (studentid).
def data-source srcstuact for stuact.

buffer tstudent:attach-data-source(data-source srcstudent:handle).
buffer tstuact:attach-data-source(data-source srcstuact:handle).

dataset dsstuact:set-callback-procedure ("after-fill", "postdsstuactFill", THIS-PROCEDURE).
query gstudent:query-prepare("for each student NO-LOCK where studentid <= 100").
dataset dsstuact:fill().

buffer tstudent:detach-data-source().
buffer tstuact:detach-data-source().

forml = new Progress.Windows.Form ().
ustudGrid = new Infragistics.Win.UltraWinGrid.UltraGrid().

bsstudent
bsstudent:handle

new Progress.Data.BindingSource().
dataset dsstuact:handle.

wait-for Application:Run(forml).
procedure postdsstuactfill:

define input parameter dataset for dsstuact.

for each tstuact,

each activity no-lock where activity.activityid = tstuact.activityid:
assign tstuact.activityname = activity.activityname.

end. /* for each stuact */

end. /* proc postdsstuactfill */

Page 118 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

Using a multi-table Dataset with a .NET Grid

addgridpds3.p
ad Add Ultra Grid - =
Student/Activity Grid with ProDataSet
Student| D First Mame Last Mame Address address2 address3 city Staie.-'F'ro-.rlrf
= » E 1 Derwood Serck 434 Sixth Flace Suite 10 Providence RI
studentld Activity D MName
1 F) government
1 15 field hockey
1 24 Chugging Beer
Student| D First Mame Last Name Address address2 address3 city State/Provwir
=) | 2 | Emily | Lewvy | 622 Fifth Place Suite 2 Columbus OH
studentld Activity 1D Mame
|2 |2 | baseball |
Student|D First MName Last Mame Address address2 zddress3 city State/Prowir
= 3 Laura Dunn 182 Massachuset | Suite 4 Little Rock AR
[+ 4 Dorothy Davidson 225 Golf Place Suite 4 Houston TX
[5 Raymond Olson 614 Church Court | Suite 5 ‘Wwichita KS
=) 5 Barry Fiocchi 591 Oricle Boulev | Apt. 24 Montreal QuUE
(=2 7 Larry Eobbitt 464 King Avenue Milwaukee el
[2 Kyle Talbot 57 Lincoln Avenu | Apt 28 San Francisco CA
2] 9 Atwood Cunningham 449 Eastern Boul | Apt. 23 Richmaond VA v
J < >

In the previous example, addgridpds2.p, the activity name was on the third level and took

two clicks to get there to see what the activity was.

In addgridpds3.p, the dsstuact dataset was reduced to two levels, using just the tstudent
and tstuact temp-tables.

The activity name was added to the tstuact temp-table.

So how is the activity name populated?

The answer is the dataset set-callback-procedure method.

After filling the entire dataset, all the tstuact temp-table records are re-read and joined with
the activity record to populate the tstuact.activityname field.

This could also have been achieved using a query on the child dataset as in pds33.p.

Page 119 of 120

Copyright © 2016 Paul Guggenheim & Associates, Inc.

Climb Aboard The ProDataSet Train

ProDataSet Summary

In this workshop, we have shown how to:
e Fill DataSets
e Advanced Record Reading — batching, multiple buffers and child level queries
e (Change DataSets
e Update the Database
e Error Processing

e Passing DataSets to other procedures and the AppServer

e Advanced Topics — Read/Write JSON and Using .NET Grid

Page 120 of 120
Copyright © 2016 Paul Guggenheim & Associates, Inc.

